
Seeing is Not Believing: Visual Verifications through
Liveness Analysis using Mobile Devices

Mahmudur Rahman
Florida International University

Miami, FL
mrahm004@cs.fiu.edu

Umut Topkara
IBM Research

Yorktown Heights, NY

umut@us.ibm.com

Bogdan Carbunar
Florida International University

Miami, FL
carbunar@cs.fiu.edu

ABSTRACT

The visual information captured with camera-equipped mo-
bile devices has greatly appreciated in value and importance
as a result of their ubiquitous and connected nature. Today,
banking customers expect to be able to deposit checks using
mobile devices, and broadcasting videos from camera phones
uploaded by unknown users is admissible on news networks.
We present Movee, a system that addresses the fundamental
question of whether the visual stream coming into a mobile
app from the camera of the device can be trusted to be un-
tampered with, live data, before it can be used for a variety
of purposes.

Movee is a novel approach to video liveness analysis for
mobile devices. It is based on measuring the consistency
between the data from the accelerometer sensor and the in-
ferred motion from the captured video. Contrary to existing
algorithms, Movee has the unique strength of not depending
on the audio track. Our experiments on real user data have
shown that Movee achieves 8% Equal Error Rate.

1. INTRODUCTION
In response to the ubiquitous and connected nature of mo-

bile devices, industries such as utilities, insurance, banking,
retail, and broadcast news have started to trust visual infor-
mation gleaned from or created using mobile devices. Mo-
bile apps utilize mobile device cameras for purposes varying
from authentication to location verification, to tracking and
witnessing. Today, one can deposit a check using a mobile
phone, and videos from mobile phones uploaded by unknown
users are shown on broadcast news to a national audience.

We address the fundamental question of whether the vi-
sual stream that a mobile app receives from the camera of
the device can be trusted and has not been tampered with
by a malicious user attempting to game the system. We refer
to this problem as video “liveness” verification. The practi-
cal attacks we consider are i) feeding a previously recorded
video through man in the middle software, ii) pointing the
camera to a replay of a video, and iii) pointing and moving

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’13 Dec. 9-13, 2013, New Orleans, Louisiana USA
Copyright 2013 ACM 978-1-4503-2015-3/13/12 ...$15.00.

the camera over a static photo. This problem is a corner-
stone in a variety of practical applications which use the
mobile device camera as a trusted witness, including citizen
journalism, smart cities, mobile authentication, and product
condition verification for online sales (see Section 5).

In this paper, we propose to consult the motion sensors of
mobile devices in order to verify the “liveness” of the video
streams. We introduce Movee, a system that exploits the in-
herent movement of the user’s hand when shooting a video.
The verification relies on the consistency between the in-
ferred motion from captured video and inertial sensor sig-
nals. Movee uses the intuition that being simultaneously
captured, these signals will necessarily bear certain relations,
that are difficult to fabricate and emulate. In this case, the
movement of the scene in the video stream should have sim-
ilarities with the movement of the device that registers at
the motion sensors.

In essence, Movee provides CAPTCHA [42] like verifica-
tions, by including the user, through her mobile device, into
the verification process. However, instead of using the cog-
nitive strength of humans to interpret visual information,
we rely on their innately flawed ability to hold a camera
still. Movee can also be viewed as a visual public notary
that stamps an untrusted video stream, with data simulta-
neously captured from a trusted sensor. This data can later
be used to verify the liveness of the video.

Previously, [25, 19, 18] have proposed to use audio streams
in captured videos as a means to protect against spoofing
in biometric authentication, by using static and dynamic
relations between voice and face information from speak-
ing faces. Others proposed video-based anti-spoofing meth-
ods [15], [14], [35] for biometric authentication. Instead,
we propose to use the previously unexplored combination of
video and accelerometer data to verify the liveness of the
video capture process.

Movee has four main modules. The Video Motion Anal-
ysis (VMA) module processes the video stream as it is cap-
tured by the camera. It uses video processing techniques to
infer the motion of the camera, producing a time-dependent
motion vector. VMA is inspired by the process used in im-
age stabilization capable cameras. Meanwhile, the Inertial
Sensor Motion Analysis (IMA) module converts the data
signal from the inertial sensors into another time-dependent
motion vector. When the video capture is completed, the
motion vectors from the VMA and IMA modules are com-
pared in the Similarity Computation (SC) module. SC relies
on a flavor of the Dynamic Time Warping (DTW) algorithm
from speech and pattern recognition to compute the “simi-

larity” of the two motion vectors. The SC module also pro-
duces a set of features which summarize the nature of the
similarity. The features are used by the Classification mod-
ule, which runs trained classifiers to decide whether the two
motion sequences corroborate each other. If they do, Movee
concludes the video is genuine.

The contributions of this work are the following.
• Introduce the“liveness”analysis problem to videos cap-

tured from mobile devices. Propose a suite of attacks
that enable the perpetrator to tamper with and claim
ownership of plagiarized media.

• Devise Movee, a lightweight liveness analysis solution
that verifies the similarity of movement as inferred
from simultaneously captured video and inertial sensor
streams.

• Collect datasets of genuine and fraudulent video/inertial
sensor samples. Provide a full-fledged implementation
of Movee, consisting of a mobile client and a server
component.

We have implemented Movee using a combination of An-
droid, for the mobile app, and C++/PHP for the processing
server. We have collected 100 genuine video/inertial sensor
samples from 10 different users. We have used these samples
to create two test datasets, each containing video/inertial
sensor samples fabricated according to attacks against Movee.
Our cross-validation tests conducted on these test datasets
show that the accuracy of Movee in differentiating fraudu-
lent and genuine videos is 92% for one attack and 84% for
the other. Moreover, our implementation shows that the
liveness analysis of Movee is efficient. The server, running
on a slightly outdated Dell laptop, takes an average of 1.3s
to analyze a 6s video.

2. SYSTEM MODEL
The system consists of a service provider (e.g., Vine [10]),

that offers an interface for subscribers to upload videos they
shot on their mobile devices. We assume subscribers own
mobile devices equipped with a camera and inertial sensors
(i.e., accelerometers). Devices also have Internet connectiv-
ity, which, for the purpose of this work may be intermittent.
Each user is required to install an application on her mobile
device, which we henceforth denote as the “client”.

The client is used to capture videos that are later posted
to the provider hosted user account. The client simultane-
ously captures and uploads the video and the inertial sensor
streams from the device. The provider verifies the authen-
ticity of the video by checking the consistency of the two
streams. The verification is performed using limited infor-
mation: the two streams are from independent sources, but
have been captured at the same time on the same device.

In the remainder of the paper we use accelerometer and
inertial sensor interchangeably.

2.1 Attacker Model
We assume that the service provider is honest. Users

however can be malicious. As shown in the following, the
user can tamper with/copy video streams and inertial sen-
sor data. We assume that the inertial sensor and the data
extracted from the inertial sensor are genuine and have not
been tampered with. The goal of attackers is to fraudulently
claim ownership/creation of videos they upload. A malicious
user can launch several types of attacks on the video stream:

Video Motion
Analysis

Inertial Sensor
Analysis

Similarity
Computation

Classification

Video Frames Accelerometer Data

Mobile Device

AccelerometerCamera

Figure 1: Movee uses four modules to verify a video
stream: Both i) Video Motion Analysis (VMA), and
ii) Inertial Sensor Motion Analysis (IMA), produce
movement estimations during capture, iii) Similarity
Computation extracts features, which iv) Classifica-
tion uses to make the final decision.

Copy-Paste attack. The attacker copies a video taken by
another user and uploads it as her own.
Replay attack. The attacker points the camera of the
device to a replay of a video.
Projection attack. The attacker points and moves the
camera of the device over a static photo or a projected image.
Random movement attack. Copy an existing video, then
move the device in random directions, allowing the capture
of inertial sensor data. Associate the video with the cap-
tured sensor stream and upload to the provider.
Direction sync attack. This is a sophisticated attack that
improves on the random movement attack. Specifically, the
attacker uses the device to emulate the movement observed
in the video, e.g., if the image moves to the right, the user
moves the device to the right.

3. MOVEE: SYSTEM OVERVIEW
We introduce Movee, a system that verifies the authentic-

ity of a video taken with a mobile device. Movee performs
a liveness analysis based on the consistency of the inferred
motion from the simultaneously and independently captured
streams from the camera and the inertial sensors. If the data
from the inertial sensor corroborates the data from the cam-
era, the system concludes that the video was genuine: it has
been taken by the user pointing the camera to a real scene.

The Movee client is intended to be installed in mobile
devices as part of special purpose video capture apps. When

Figure 2: The Video Motion Analysis module pro-
cesses each consecutive video frame and finds the
motion vector by computing the amount of displace-
ment that common image components have shifted
between two frames.

the user wants to capture a visual, be it a video or a photo,
two things happen simultaneously: i) the camera turns on
and starts capturing video frames, ii) the inertial sensors are
turned on and start collecting a stream of data concurrent
with the camera.

Figure 1 shows a diagram of Movee. Movee infers the di-
rection of motion and the magnitude of motion from two
different types of sensor data. The data from the camera
sensor is stored in periodically captured image frames. The
data from the inertial sensor in most mobile devices comes
in the form of periodically captured acceleration magnitudes
on 3 main axes as measured by the accelerometer. The Video
Motion Analysis (VMA) module uses an efficient image pro-
cessing method to infer a motion vector over the timeline of
the video from frame-by-frame progress. The Inertial Sen-
sor Motion Analysis (IMA) module, converts the raw inertial
sensor readings into a motion vector over the same timeline.
Subsequently, the Similarity Computation (SC) module ex-
tracts features which represent agreements and differences
between the two motion data (from the VMA and IMAmod-
ules) for the same time period. The final decision of whether
the captured video is genuine is made in the Classification
module. The Classification module uses trained classifiers
on the data produced by the SC module to find out whether
the inertial sensor data corroborates the video sensor data.

In the rest of this section, we describe the details of the
four main modules of Movee.

3.1 Video Motion Analysis (VMA)
The Video Motion Analysis (VMA) module takes as input

the captured video stream and outputs an estimate for the
direction and magnitude of movement of the camera. The
output of VMA is then used by the Similarity Computation
module of Movee (see Figure 1).

It is possible to manually find the movement of the camera
when given two consecutive photos taken with it: print the
photos on transparency films and then shift one sheet on
the other and keep comparing the two prints until they line
up with minimal difference. The amount that the edges of
one sheet overhang the other represents the offset between
the photos (see Figure 2). The common optical mice [6] use
this simple principle to determine pointer movement from a
stream of images taken with a low resolution optical sensor
mounted to their bottom side. The movement inferred from
this analysis will be limited to only two axes, i) horizontal
along the X axis, and ii) vertical along the Y axis.

VMA uses the shift and compare principle as well, by ap-
plying it on all consecutive frames of the video. The result

is a frame-by-frame displacement vector. However, it would
have been prohibitively expensive to compute the differences
between two frames for all possible pixel shifts, especially
considering how large each frame is. Phase Correlation [23]
allows us to find the shift that minimizes the difference by
carrying the computation into the frequency domain.

Phase correlation is an image processing technique that
computes the spatial shift between two similar images (or
sub-images). It is based on the Fourier shift property: a
shift in the spatial domain of two images results in a lin-
ear phase difference in the frequency domain of the Fourier
Transform (FT) [24]. It performs an element-wise multipli-
cation of the transform images, then computes the inverse
Fourier transform (IFT) of the result, and then finds the
shift that corresponds to the maximum amplitude, to yield
the resultant displacement. The maximum amplitude can
be defined in the two-dimensional surface with delta func-
tions (colloquially referred to as peaks) at the positions cor-
responding to spatial shifts between the two images. Phase
correlation enables us to avoid the exhaustive search among
all possible pixel shifts of one of the video frames over the
next frame in order to find the one shift amount that results
in minimal difference between the two frames. Instead, we
find the location of the peak point in the Phase Correlation.

VMA first retrieves the frame per second (fps) rate of the
stream and each available frame. In a pre-processing step,
it applies a Hamming window [40] filter to eliminate noise
from each frame. For each pair of consecutive frames, VMA
applies the phase correlation method to obtain linear shifts
between images in both X and Y directions. It then com-
putes the cumulative shift along the X and Y axes by adding
up the linear shifts for all consecutive frames retrieved from
that video. Let V Sx,i and V Sy,i denote the cumulative video
shifts of the i-th frame on the X and Y axes. We use (Sec-
tion 3.4) V Sx,i and V Sy,i as feature descriptors.

3.2 Inertial Sensor Motion Analysis (IMA)
The Inertial Sensor Motion Analysis (IMA) module (see

Figure 1) relies on the accelerometer sensor widely available
in mobile devices. The IMA processes the data from the
accelerometer in order to produce a motion direction and
magnitude which is then compared in the Similarity Com-
putation module with the output from the VMA module.

The inertial sensor coordinate system is defined relative to
the screen of the phone in its default orientation. The X axis
is horizontal and points to the right, the Y axis is vertical
and points up and the Z axis points towards the outside of
the front face of the screen (coordinates behind the screen
have negative Z values). Let {(Ax,i, Ay,i, Az,i)|i = 1..m]}
denote the accelerometer trace, recorded every T seconds,
where (Ax,i, Ay,i, Az,i) is the i-th sample, containing ac-
celerometer readings on the three axes.
Filtering. In a pre-processing step, IMA uses a combina-
tion of low-pass and high-pass filters to remove the effects of
gravity from the recorded raw acceleration values. Specifi-
cally, for the low-pass filter, let Ga,i be the filtered gravity
value on the a axis (a ∈ {X, Y, Z}) in the i-th sample and let
Ga,i+1 be the gravity value to be filtered in the current, i+1-
th sample. Aa,i+1 is the acceleration reading on the a axis
for the i+1-th sample. Then, Ga,i+1 = αGa,i+(1−α)Aa,i+1,
∀a ∈ {x, y, z}. We have experimented with values of α rang-
ing between 0.6 and 0.95. In our experiments we have used
the value we found to perform best, α = 0.8.

0 20 40 60 80

1
0

8
6

4
2

0
−

2

Time Index

A
c
c
e

le
re

ti
o

n
 V

a
lu

e
s
 a

lo
n

g
 3

 a
xe

s

X Axis

Y Axis

Z Axis

(a)

0 20 40 60 80

2
1

0
−

1
−

2

Time Index

F
ilt

e
re

d
 A

c
c
e

le
re

ti
o

n
 V

a
lu

e
s
 a

lo
n

g
 3

 a
xe

s

X Axis

Y Axis

Z Axis

(b)

Figure 3: (a) Raw Accelerometer Data. (b) Filtered Accelerometer Data. The Y axis is the dominant axis
here for the direction and orientation of the mobile device.

Subsequently, IMA passes the result through a high-pass
filter, FAa,i+1 = Aa,i+1 − Ga,i+1, where FAa,i+1 denotes
the filtered acceleration value on the a axis, ∀a ∈ {x, y, z},
for the i + 1-th sample. Figure 3(b) shows the effects of
filtering for the sample raw acceleration of Figure 3(a)).
Inferring distance from acceleration data. Given ac-
celeration data on each axis, Aa,1, ..Aa,m, a ∈ {X, Y, Z},
captured every T seconds, IMA computes the position (rela-
tive to the starting point) using a double integral. We adopt
the trapezoidal rule [27], used for approximating the definite

integral
∫ d

c
f(x)dx, representing the area below the curve

where c,d are end points of integration. The integration
step is first applied to obtain velocity (vela,i = vela,i−1 +
Aa,i+Aa,i−1

2
∗T). In a second application, the integration re-

trieves the position (posa,i = posa,i−1 +
vela,i+vela,i−1

2
∗ T).

vela,i and posa,i, i = 1..m, denote the velocity and posi-
tion at the i-th sample on the axis a. The resulting po-
sition shifts are combined to obtain the cumulative shift,
ASx,i, ASy,i, ASz,i, along each axis. ASx,i, ASy,i, ASz,i are
then used as feature descriptors (see Section 3.4).

3.3 Similarity Computation (SC)
The Similarity Computation (SC) module compares the

two motion sequences computed by the VMA and the IMA
modules. It returns a set of features that summarize the
nature of the similarity between the two sequences. The
features are then used by the Classification module (see Sec-
tion 3.4) to decide whether the two motion sequences cor-
roborate each other, thereby concluding whether the video
is genuine or not. The video motion and inertial sensor
streams encode the same user hand movement, which are
processed by the VMA and IMA modules respectively (see
Figure 1) to each yield a motion stream.

To compute their similarity, we use a well-known sequence
similarity measurement method from speech and pattern
recognition, called Dynamic Time Warping (DTW). Similar
to the well-known string edit distance, DTW is a dynamic
programming solution to find the minimum cost set of op-
erations that converts one sequence to the other.

In this subsection, we describe how we adapted the DTW
algorithm to the practical issues in comparing the two mo-
tion sequences from the VMA and IMA modules. The two
sequences differ in their number of samples, and have dif-

ferent magnitudes due to the nature of their source sensors.
The VMA sequence length is proportional to the number
of video frames, whereas the IMA sequence length is pro-
portional to the product of the sample rate of the inertial
sensor and the length of the recording interval. We per-
form a stretching step to make sure that the VMA and IMA
sequences are of same length.

Furthermore, the motion sequence that the VMA infers
from the video stream does not take into account the dis-
tance of objects into the camera. This may result in the
same motion being registered as faster when the objects are
close to the camera, and slower when the objects are far. We
perform a calibration step to compute a coefficient to match
the average speed of the motion the video stream to that of
the inertial sensor stream.

In the rest of this subsection, we first briefly detail the
DTW algorithm, then present the stretching and calibra-
tion processes. We provide justification to the use of these
methods with observed improvements in the resulting accu-
racy that the system gains after processing the features in
the Classification module.

3.3.1 Dynamic Time Warping (DTW)

Given two time-dependent vectors, Dynamic Time Warp-
ing (DTW) [34] is dynamic programming algorithm for find-
ing an optimal set of operations that minimize the cost of
converting one vector to the other.

Let F be a feature space. Let X = (x1, x2, .., xn) and
Y = (y1, y2, .., ym), n,m ∈ N, be time-dependent vectors,
xi, yj ∈ F , i = 1..n, j = 1..m. An (n,m)-warping path of
X and Y is a sequence P (X,Y) = (p1, .., pL), where pl =
(i, j) ∈ [1 : n]× [1 : m], ∀l ∈ [1 : L]. A warping path satisfies
(i) boundary conditions, p1 = (1, 1) and pL = (N,M), (ii)
a monotonicity condition, ni ≤ ni+1 and mj ≤ mj+1, i =
1..n− 1, j = 1..m− 1, and (iii) a step size condition, pl+1 −
pl ∈ (1, 0), (0, 1), (1, 1) for l ∈ [1 : L− 1].

DTW computes the (n,m)-warping path of X and Y as
follows. Start with an empty path P (X,Y). Assume it
has already aligned X and Y up to the xi and yj in Y ,
i < n, j < m. To align xi+1 and yj+1, DTW has the option
to perform one of the following three moves, illustrated in
Figure 4. First, a diagonal move, where it matches xi+1 to
yj+1. It then adds (i+1, j+1) to P (X,Y). In the next step

Time Index

M
o

ti
o

n
 D

is
ta

n
c
e

0 20 40 60 80

0
5

1
0

1
5

2
0

2
5

3
0

3
5

Video

Sensor

(a)

Time Index

M
o
ti
o
n
 D

is
ta

n
c
e

0 20 40 60 80

0
5

1
0

1
5

2
0

2
5

3
0

3
5

Video

Sensor

(b)

Time Index

M
o
ti
o
n
 D

is
ta

n
c
e

0 20 40 60 80

0
5

1
0

1
5

2
0

2
5

3
0

Video

Sensor

(c)
Figure 5: Example alignment of video and inertial motion streams extracted from the same experiment: (a)
when using only DTW. (b) when stretching the shorter vector and applying DTW. (c) after stretching and

calibration and applying DTW. Stretching helps achieve a significant alignment improvement.

Figure 4: Illustration of DTW alignment for two
time-dependent sequences. The red dots show the
optimal warping path. A diagonal move is a match
between the two sequences. An expansion dupli-
cates one point of one sequence and a contraction

eliminates one of the points.

it aligns xi+2 with yj+2. Second, an expansion move, where
it repeats xi to match yj+1. It adds (i, j+1) to P (X,Y) and
continues the next for xi+1 and yj+2, and (iii) a contraction
move, where it drops xi+1, and continues with the next step,
to align xi+2 with yj+1. Given a cost function for each move
type, c(i, j), i = 1..n, j = 1..m, the cost of a warping path

P (X,Y) is defined as cp(X,Y) =
∑L

l=1
c(pl). The goal of

DTW is to find a warping path p∗, of minimal cost among
all possible warping paths.

Movee uses a variation of the DTW algorithm: the Vari-
able Penalty Dynamic Time Warping (VPdtw) [20]. The
process of expanding and contracting the time axis of a
sensor stream can produce a very high quality alignment
to a video stream. However, excessive numbers of expan-
sions and/or contractions can often result in matches at ran-
dom parts of the streams and appear artificial rather than
catching the genuine common movement patterns. Penal-
ized dynamic time warping uses a penalty to constrain the
use of expansions and/or contractions. This penalty is in-
curred whenever a non-diagonal (i.e., expansion or contrac-
tion) move is taken (see Figure 4).

Let L denote the length of the longer sequence between
the video and inertial sensor sequences for each sample. We

extract several characteristics of the computed DTW align-
ment as feature descriptors, to be used by the Classification
module (see Section 3.4). First, the normalized penalty cost,
defined as the penalty cost divided by L. Second, the ra-
tio of overlap points, which is the number of overlap points
between the two streams, divided by L. Third, the ratio of
diagonal moves, the number of diagonal moves divided by L.
Fourth, the ratio of expansion moves, the number of expan-
sion moves divided by L. Finally, the ratio of contractions
moves, the number of contraction moves divided by L. The
normalization to L ensures that the values are independent
of the sample length.

3.3.2 Stretching

The sensor and video streams are sampled at different
rates, thus the two vectors are of different length. The
stretching step extends the shorter sequence (length s) to
the length of the longer sequence (l). We use linear interpo-
lation to compute l− s new points for the shorter sequence.
In Section 6.4 we show that depending on the attack type,
the use of stretching improves the accuracy of Movee in dif-
ferentiation fraudulent from genuine videos by a rate of 8-
10%. This result is illustrated in Figure 5(b), where the use
of stretching significantly improves the ability of the DTW
procedure to align the video and inertial sensor movement
streams when compared to Figure 5(a).

3.3.3 Calibration

An artifact of the method used in the Video Motion Anal-
ysis module is that the same motion pattern can be regis-
tered as faster when the objects in the view are close to the
camera, and slower when the objects are far. In order to
compensate for this artifact, we calibrate the speed of the
video motion vector with a coefficient to match that of the
speed of the inertial sensor motion vector.

The goal is to compute a calibration factor CF, that is
used to multiply all the points in the video stream. We
have explored several calibration methods, including mean
based and linear curve fitting. We provide details however
only on the two methods that performed the best in our
experiments, truncated mean and polynomial curve fitting.
Truncated mean. The truncated mean computes the mean
after discarding the high and low ends of the probability dis-
tribution (see Figure 6(b)). We apply this concept as follows:

Time Index

M
o

tio
n

 D
is

ta
n

ce

0 20 40 60 80

0
5

1
0

1
5

2
0

2
5

Video

Sensor

(a)

Time Index

M
o
ti
o
n
 D

is
ta

n
c
e

0 20 40 60 80

0
5

1
0

1
5

2
0

2
5

Video

Sensor

(b)

Time Index

M
o

ti
o

n
 D

is
ta

n
c
e

0 20 40 60 80

0
5

1
0

1
5

2
0

Video
Sensor

(c)
Figure 6: The Video Motion Analysis module has a limited ability to determine the average speed of the
device motion. For this reason, we use the average speed calculated from the inertial sensor motion vector
to calibrate that of the video motion vector. This figure shows the effect of calibration in the similarity
computation. (a) No calibration. (b) Truncated Mean Calibration. (c) Curve Fitting Calibration.

For each pair of points in the sensor and video vectors, com-
pute their ratio and add it to a ratio vector. Compute the
truncated mean of the ratio vector, discarding 12.5% from
both the low and the high ends of the distribution.
Polynomial curve fitting. Polynomial curve fitting [21]
constructs the polynomial that has the best fit to a series of
data points (see Figure 6(c)). To compute the coefficients
that best fit the curve to the given data, the least squares
method [21] is used which minimizes the error between the
data and the fitted polynomial [21]. Let SPs denote the av-
erage value over the points on the fitted curve for the sensor
stream and let SPv denote the average value of the points
on the curve of the video stream. Compute the calibration
factor as CF = SPs

SPv
.

Figures 6(b) and 6(c) show sample calibration outputs
for these two methods, when compared to the uncalibrated
version shown in Figure 6(a).

3.3.4 Example Alignment

To illustrate the need for the DTW, stretch and calibra-
tion steps previously described, we provide here experimen-
tal results of their use on a genuine sample of video and iner-
tial sensor streams, captured using Movee (see Section 4 for
implementation details). Figure 5(a) shows the alignment
between the video and inertial sensor streams when only
DTW is used. Figure 5(b) shows the resulting alignment
when DTW and stretching are applied. Finally, Figure 5(c)
shows the alignment achieved when DTW is applied along
with stretching and calibration. The experiment shows that
stretching is vital to achieve a good alignment, while cali-
bration further improves the quality of the alignment.

3.4 Classification
The Similarity Computation module produces 14 features

that represent the nature of the similarity between the mo-
tion information inferred from the video stream and the one
observed from the inertial sensor data. The features are: (1)
the movement direction of the target from the center of the
screen (see Section 4), (2-5) the cumulative shift of the video
and accelerometer on the x and (y) axes (4 descriptors), (6)
the video motion direction, (7) the sensor motion direction,
(8) the DTW distance after stretching and calibration steps,
(9) the calibration factor, CF , (10) the normalized penalty

Figure 7: Movee in action: Target icon (bullseye)
at the bottom of the screen shows the direction in
which the user needs to move the camera.

cost, (11) the ratio of overlap points, (12) the ratio of diag-
onal moves, (13) the ratio of expansion moves and (14) the
ratio of contractions moves.

The Classification module runs trained classifiers over these
features to determine whether there is sufficient evidence
that the video stream is genuine. Section 6.2 describes the
classifiers used in our experiments.

4. MOVEE IMPLEMENTATION
We have implemented a Movee client using Android and a

server component using C++ and PHP.We used the OpenCV
(Open Source Computer Vision) library [5] for the video mo-
tion analysis. The client allows users to capture movies and
simultaneously provide proofs of liveness. Figure 7 shows
a snapshot of Movee. When the user starts the client, she
is presented with an initial screen that instruct her to hold
the device firmly before pressing the start button. This is
done to prevent initial accelerometer reading errors. Fur-
thermore, once the user presses the start button, a target
appears (bullseye). The user is instructed to move the cam-
era in the direction of the target. Once the camera super-
imposes on the target, the target will change to a new place
on the screen, and the user needs to continue to follow it. A
progress bar indicates the elapsed time.

The target disappears after the first 6 seconds. This de-
notes the verification step. During the verification step,
the Movee client captures the video stream and logs the
accelerometer data. Following the verification period, the
user can continue capturing the intended scenes. The Movee
client only captures the data during the verification interval,
which it sends to our server. We were inspired by Vine [10]
to choose the verification interval to be 6s. Vine is an ap-
plication that allows users to create and post (on Twitter,
Facebook) video clips. This choice has the additional ad-
vantage that it keeps the size of the video file small (around
150 KB in the Samsung Admire Phone), thus reducing com-
munication overheads. While the verification step can be
performed on the client, we chose to impose a communica-
tion overhead for the improved liveness analysis performance
of a more powerful server.

We have used a Samsung Admire smartphone running An-
droid OS Gingerbread 2.3 with an 800MHz CPU to test the
client side and a Dell laptop equipped with a 2.4GHz Intel
Core i5 processor and 4GB of RAM for the server.

5. APPLICATIONS
Citizen journalism. The recent emergence of video shar-
ing sites, e.g., [13, 10] has paved the way toward citizen
journalism: people that witness events of public importance
(e.g., public protests, natural and man-made disasters, me-
teorite landings) are now able to post their records of the
events and share them with the community at large. The
popularity of such sites, the rapid interest in certain videos
and the intrinsic fame they bring to their creators raise im-
portant authenticity questions. People may upload fraudu-
lent videos (e.g., created from old footage or from movies),
in order to deceive, bias public opinion or simply cheat their
way to fame. Movee can be used in conjunction with trusted
location and time verification solutions (e.g., [17]) to verify
claims made by video uploaders.
Smarter cities, Mobile 311. Mobile 311 apps by munici-
palities and metropolitan governments [4, 2] tap into crowd-
sourced reporting of potholes and open manholes for city
maintenance, and to avoid possible hazards. To gauge the
correctness and severity of a case, the systems require multi-
ple users to report the same case before dispatching a crew.
The shortcoming is that, the system is set to wait for mul-
tiple complaints to come in before action, and may even be
accused of malpractice due to inaction even in the presence
of information. Movee can act as the required witness to
the genuine-ness of the reported case, and can eliminate the
need to wait for multiple reports.
Prototype verification. Kickstarter [3] requires that real
prototypes are used in the promotion videos of campaigns.
Movee can be used by participants to verify the liveness of
footage provided as evidence.

6. EVALUATION
We first describe our data collection process and the ex-

perimental setup. Second, we evaluate the overhead of the
liveness analysis on the server and then study the ability of
Movee to detect the attacks introduced in Section 2.1.

6.1 Data Collection
We have used the implemented Movee application to col-

lect video and accelerometer samples. We used the 3D ac-

celerometers, available in most recent smartphones and tablets,
to acquire motion acceleration data. The Samsung Admire
smartphones (Android OS Gingerbread 2.3 with 800MHz
CPU), on which we collected the data, sample accelerome-
ter readings at 16.67Hz [8] mode.
Motion direction inference. Given the video shift val-
ues computed by the VMA module, V Sx,i and V Sy,i the
motion direction of the video is determined. For instance,
if V Sx,i < 0 and |V Sx,i| ≫ |V Sy,i|, the motion direction is
to the right. A similar process is used to determine move-
ment in the other directions. Furthermore, the IMA module
maps the accelerometer values on its coordinate system. We
exemplify the sensor motion direction decision using the fol-
lowing example (that we extended for all other directions
and device orientation combinations). If the device is in
landscape orientation and ASy,i < 0, ASy,i ≫ ASx,i and
ASy,i ≫ ASz,i.
Data collection. We have collected data from 10 users 1.
Each user was asked to use Movee, following the instructions
shown on the screen: move the device in one direction, for 6
seconds. We have collected 10 well defined (6s long) samples
from each user; the total of 100 samples are stored in a “gen-
uine” dataset. We have created two test datasets. The first
dataset, that we call the “random” dataset, contains 50 gen-
uine samples and 50 fraudulent samples created according
to the Random attack. Each fraudulent “random” sample is
created from one genuine sample, by coupling its video with
the inertial sensor data of another, randomly chosen sample.
The second dataset, called the “direction sync” set, contains
the other 50 genuine samples and 50 fraudulent samples cre-
ated according to the Direction Sync attack: Each fraudu-
lent sample couples the video of one genuine sample with
the inertial sensor data of another genuine sample, with the
same direction of movement. This is effectively modeling
the scenario of one user taking the video and another user
(the attacker) emulating the movement in the video.

6.2 Experiment Setup
The Classification module (see Section 3.4) runs trained

classifiers to determine whether there is sufficient evidence
that a video stream is genuine. We have used three classi-
fiers, Multilayer Perceptron (MLP) [26], Decision Tree (C4.5)
and Random Forest (RF) [16].

We have applied 10-fold cross-validation tests [30] to as-
sess how the results of the statistical analysis will generalize
to an independent data set. We have used the Weka version
3.7.9 data mining suite [11] to perform the experiments, with
default settings: For the backpropagation algorithm of the
MLP classifier, we set the learning rate to 0.3 and the mo-
mentum rate to 0.2.

6.3 Metrics
We briefly define the metrics we use to evaluate the accu-

racy of Movee. We borrow several metrics from biometrics.
The Receiver Operating Characteristic (ROC) curve [43] is
a visual characterization of the trade-off between the False
Accept Rate (FAR) and the False Reject Rate (FRR). The
Equal Error Rate (EER) [41] is the rate at which both accept
and reject errors are equal. A lower EER denotes a more
accurate solution. The area under the ROC curve (AUC)

1Of the 10 users, 7 are males and 3 females, aged 23-32,
occupation ranging from biology to fashion design, housewife
and software, civil and electrical engineering

VMA IMA SC Classification (J48)

Movee Modules

A
ve

ra
g

e
 e

xe
c
u

ti
o

n
 t

im
e

 (
m

s
)

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0 VMA

IMA

Stretching

Calibration

DTW+Penalization

Classification

Figure 8: Movee (per-module) server side overhead:
video processing is the most expensive. The total
cost is however under 1.3s.

is equal to the probability that a classifier will rank a ran-
domly chosen genuine sample higher than a randomly chosen
fraudulent one. An area of 1 represents a perfect test; an
area of 0.5 represents a worthless test.

6.4 Experimental Results

6.4.1 Movee server overhead

Figure 8 shows the overhead (divided into modules) of
the liveness analysis on the server, running on the above
described Dell laptop, for 6s videos. The values are an aver-
age over 10 experiment runs. It shows that the VMA is the
most time consuming module, slightly exceeding 1s. The
IMA and Classification components (running the J48 classi-
fier) impose the smallest overheads, together being 110ms.
MLP takes an average of 940 ms and Random Forest an av-
erage of 140 ms. The overhead of the SC module is around
150ms, with the smallest cost imposed by the stretching step
and the highest cost by the penalty based DTW.

6.4.2 Attack detection analysis

It is straightforward to see that Movee prevents the“Copy-
Paste” and“Replay”attacks of Section 2.1: no sensor stream
exists. Movee does not detect the “Projection”, as the video
and sensor streams are indeed captured in the same user
hand movement. However, a human observer can immedi-
ately detect that the movie is of a poster. In the following,
we study the ability of Movee to detect the last, but more
complex “Random” and “Direction Sync” attacks. For this,
we explore the accuracy of Movee in detecting fraudulent
samples, on both random and direction sync data sets, us-
ing the above mentioned classifiers. The results are shown
in Figure 9. For the random data set, the multilayer percep-
tron neural networks (MLP) provides the highest accuracy,
92% whereas the Random Forest (RF) and the C4.5/J48 De-
cision Tree exhibit accuracy of 91% and 90% consequently.

Figure 10(a) shows the ROC curve and the computed EER
value for MLP and the random dataset. The EER value of
MLP is as small as 0.08.

Finally, we evaluated the impact of each step of the SC
module on the accuracy of Movee, for both test datasets. For
each dataset, we measured the accuracy of the three classi-

MLP RF J48

Classifier

A
c
c
u
ra

c
y
 (

%
)

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0 Mixed Dataset

Hard Dataset

Figure 9: Movee accuracy, on random and direction
sync data sets, when different classifiers are used.
MLP outperforms the random forest and J48 classi-
fiers on the random dataset (92%) while J48 outper-
forms the random forest and MLP on the direction
sync dataset (84%).

fiers when (i) no alignment phase was applied, (ii) when
stretching and DTW were applied, (iii) for stretching, cali-
bration and DTW, and (iv) for stretching, calibration and
penalty based DTW. Figure 10(b) shows the results for the
random dataset, and Figure 10(c) shows the results for the
direction sync dataset. The stretching and DTW steps con-
tribute the most to the accuracy of Movee: almost 12% for
all three classifiers on the random attack and almost 8% for
the direction sync attack. For the direction sync attack, the
Penalization step brings the most accuracy improvement, al-
most 11% for all three classifiers. Note that MLP exhibits
the best performance for the random attack; C4.5 achieves
the best performance for the direction sync attack. When
all processing steps are applied, C4.5 should be chosen: it
outperforms MLP and RF’s accuracy by 6% for the direction
sync attack, while it lags only 2% behind MLP’s accuracy
for the random attack.

6.5 Limitations
We have not experimented with very short videos (less

than 6s) or with videos shot in unusual circumstances: in-
volving very high accelerometer activity, e.g., running, or
when the user is in a moving vehicle. Due to the lack of
gyroscope sensors in the Samsung Admire device, we have
not integrated gyroscope readings to verify camera rotation
movements.

Furthermore, we have not experimented with doctored
video and accelerometer streams. For instance, given an
input video, the attacker can use the work of Davison et
al. [22] to recover the 3D trajectory of the camera. Then,
given root access (e.g., using [9, 7], create a corresponding
accelerometer sample and feed it to Movee, e.g., using a so-
lution similar to [12]. We defer the task of providing trust
for the integrity of the mobile app, as well as the trust for
the integrity of the device’s connection to its camera and
accelerometer sensors to the providers of Movee. Establish-
ing the integrity of a mobile platform and mobile apps is
currently an active area of research [38, 1, 39].

Finally, we have not experimented with “green screen” at-
tacks, where the attacker captures a video with a portion

(a)

Alignment Phases

C
la

s
s
if
ie

r
A

c
c
u

ra
c
y

NO Align S+DTW S+C+DTW S+C+DTW+P

68

72

76

80

84

88

92
MLP

RF

J48

(b)

Alignment Phases

C
la

s
s
if
ie

r
A

c
c
u

ra
c
y

NO Align S+DTW S+C+DTW S+C+DTW+P

56

60

64

68

72

76

80

84

88
MLP

RF

J48

(c)

Figure 10: (a) ROC curve on random dataset for Movee when the MLP classifier is used. The EER of MLP
is as low as 0.08. (b) The impact of the SC steps on the Movee accuracy, for the three classifiers, for the
random attack, and (c) for the direction sync attack. Stretching+DTW provide the highest improvement
(10%) for the random attack. The penalization brings an 11% improvement for the direction sync attack.

of the scene being a green screen. Following the video cap-
ture, the attacker overlays additional video footage or static
images on the green section. We note however that Movee
raises the bar here: an attacker needs to invest in additional
equipment to thwart the defenses of Movee. The quality
of the equipment determines the (in)ability of a human ob-
server to detect the attack.

7. RELATED WORK
The combination of video and accelerometer data has been

studied by Hong et. al. [28] in order to improve the compute-
intense motion estimation in video encoding. They have
shown that the use of accelerometer data improves the speed
of the encoding process by a factor of 2-3. Moiz et. al. [33]
introduced and developed a wearable, multi-modality, mo-
tion capture platform, and used its inertial and ultrasonic
sensors to estimate position. The focus of our work is differ-
ent, on verifying liveness of a video through the consistency
of its video and accelerometer data.

Indyk et al. [29] studied the problem of finding pirated
video on the Internet. They propose to extract a small num-
ber of pertinent features (temporal fingerprints) based on
the shot boundaries of a video sequence, and match them
against a database of videos. We note our work is on an or-
thogonal problem, of verifying the liveness of a video claimed
to have been taken by a mobile device user. As such, these
two problems can complement each other.

A flavor of liveness analysis similar to the one we proposed,
is used to verify biometric liveness. Kollreider et al. [31]
study the problem of verifying the actual presence of a live
face in contrast to a photograph (playback attack) for face
recognition based biometrics. They introduce a lightweight
optical flow approach that estimates face motion estimation
on the structure tensor and a few input frames. Park et. al.
[36] introduce a liveness detection method for distinguishing
a two-dimensional object from a three-dimensional object.
The approach proposed uses video sequence images and does
not require additional hardware or user interaction. Their
work has direct application to face recognition biometrics: it
can identify the use of a flat picture. Further work is needed
to understand the vulnerability of this approach to photo

movement and photo bending/3D printing attacks.
Multi-modal approaches relying on different sensor sets [25,

19, 18] have been proposed, to exploit the static and dy-
namic relationship between voice and face information from
speaking faces for biometric authentication. Chetty [18] pro-
posed liveness checking techniques for multimodal biomet-
ric authentication systems. Their techniques fuse acoustic
and visual speech features and measure the degree of syn-
chronization between the lips and the voice extracted from
speaking face video sequences.

Accelerometers have been used to provide biometric in-
formation, in the form of gait or gesture recognition. Man-
tyjarvi et al. [32] proposed several solutions that achieve
low EER (equal error rates) for identifying users of mobile
devices from gait signal acquired with three-dimensional ac-
celerometers, when the device was worn on the belt, at the
back. Pylvänäinen [37] used 3D accelerometers and hidden
Markov models to identify gestures performed using a mo-
bile device.
Summary. Our work introduces novel techniques for com-
bining video and inertial sensor data to verify the liveness
of a video stream. Movee verifies that the video has indeed
been shot as claimed by the user, using her mobile device.
We note that Movee does not require additional equipment,
but requires the user to install and shoot the video using
Movee’s client application.

8. CONCLUSIONS
In this paper we have introduced the concept of “liveness”

analysis, of verifying that a video has been shot on a claimed
mobile device. We have proposed Movee, a system that re-
lies on the accelerometer sensors ubiquitously deployed on
most recent mobile devices to verify the ownership of a si-
multaneously captured video stream. We have implemented
Movee, and, through extensive experiments, we have shown
that (i) it is efficient in differentiating fraudulent and gen-
uine videos and (ii) imposes reasonable overheads on the
server. In future work we intend to integrate more sensors
(e.g., gyroscope), as well as the use of MonoSLAM [22] as
an alternative VMA implementation to improve accuracy.

9. ACKNOWLEDGMENTS
We thank the shepherd and the anonymous reviewers for

their excellent feedback.

10. REFERENCES
[1] Arxan: Protecting the App Economy.

http://www.arxan.com/.

[2] Chicago Works. http://www.chicagoworksapp.com/.

[3] Kickstarter. http://www.kickstarter.com/.

[4] NYC 311: Pothole or Other Street Surface Complaint.
http://www.nyc.gov/apps/311/allServices.htm?

requestType=topService&serviceName=Pothole+or+

Other+Street+Surface+Complaint.

[5] Open Source Computer Vision. http://opencv.org/.

[6] Optical mouse.
https://en.wikipedia.org/wiki/Optical_mouse.

[7] Root and Me. https://play.google.com/store/
apps/details?id=com.iamjake.root&hl=en.

[8] Sensor Delay. http://developer.android.com/
reference/android/hardware/SensorManager.html.

[9] Unlock Root. http://www.unlockroot.com/.

[10] Vine. http://vine.co/.

[11] Weka. http://www.cs.waikato.ac.nz/ml/weka/.

[12] XPrivacy 1.9.5: The ultimate privacy manager.
http://forum.xda-developers.com/showthread.

php?t=2320783.

[13] YouTube. http://www.youtube.com.

[14] A. Ali, F. Deravi, and S. Hoque. Liveness detection
using gaze collinearity. In Emerging Security
Technologies (EST), pages 62–65, 2012.

[15] A. Anjos and S. Marcel. Counter-measures to photo
attacks in face recognition: A public database and a
baseline. In Biometrics (IJCB), pages 1–7, 2011.

[16] L. Breiman. Random forests. Machine Learning,
45:5–32, 2001.

[17] S. Capkun, K. B. Rasmussen, M. Cagalj, and M. B.
Srivastava. Secure location verification with hidden
and mobile base stations. IEEE Trans. Mob. Comput.,
7(4):470–483, 2008.

[18] G. Chetty. Biometric liveness detection based on cross
modal fusion. In Information Fusion, 2009. FUSION
’09. 12th International Conference on, pages
2255–2262, July.

[19] G. Chetty and M. Wagner. Multi-level liveness
verification for face-voice biometric authentication. In
Biometric Symposium, 2006.

[20] D. Clifford and G. Stone. Variable penalty dynamic
time warping code for aligning mass spectrometry
chromatograms in r. Journal of Statistical Software,
47(8):1–17, 4 2012.

[21] I. Coope. Circle fitting by linear and nonlinear least
squares. Journal of Optimization Theory and
Applications, 76:381–388, 1993.

[22] A. J. Davison, I. D. Reid, N. D. Molton, and
O. Stasse. Monoslam: Real-time single camera slam.
IEEE Trans. Pattern Anal. Mach. Intell.,
29(6):1052–1067, June 2007.

[23] E. De Castro and C. Morandi. Registration of
translated and rotated images using finite fourier
transforms. IEEE Trans. Pattern Anal. Mach. Intell.,
9(5):700–703, May 1987.

[24] J. B. J. Fourier and A. Freeman. The Analytical
Theory of Heat. Cambridge University Press, 2009.

[25] R. Frischholz and U. Dieckmann. Bioid: A multimodal
biometric identification system. IEEE Computer,
33(2):64–68, 2000.

[26] S. I. Gallant. Perceptron-based learning algorithms.
Trans. Neur. Netw., 1(2):179–191, June 1990.

[27] B. F. Hildebrand. Introduction to numerical analysis:
2nd edition. Dover Publications, Inc., 1987.

[28] G. Hong, A. Rahmati, Y. Wang, and L. Zhong.
Sensecoding: accelerometer-assisted motion estimation
for efficient video encoding. MM ’08, pages 749–752.
ACM, 2008.

[29] P. Indyk, G. Iyengar, , and N. Shivakumar. Finding
pirated video sequences on the internet. Technical
report, Stanford University, 1999.

[30] R. Kohavi. A study of cross-validation and bootstrap
for accuracy estimation and model selection. pages
1137–1143, 1995.

[31] K. Kollreider, H. Fronthaler, and J. Bigün.
Non-intrusive liveness detection by face images. Image
Vision Comput., 27(3):233–244, 2009.

[32] J. Mantyjarvi, M. Lindholm, E. Vildjiounaite, S.-M.
Makela, and H. Ailisto. Identifying users of portable
devices from gait pattern with accelerometers. In
ICASSP ’05, volume 2, pages ii/973–ii/976 Vol. 2,
March.

[33] F. Moiz, D. Leon-Salas, and Y. Lee. A wearable
motion tracker. BodyNets ’10, pages 214–219.

[34] M. MÃijller. Dynamic time warping. In Information
Retrieval for Music and Motion, pages 69–84. Springer
Berlin Heidelberg, 2007.

[35] G. Pan, L. Sun, Z. Wu, and S. Lao. Eyeblink-based
anti-spoofing in face recognition from a generic
webcamera. In ICCV 2007., pages 1–8.

[36] G.-t. Park, H. Wang, and Y.-s. Moon. Liveness
detection method and apparatus of video image,
August 2007.

[37] T. Pylvänäinen. Accelerometer based gesture
recognition using continuous hmms. IbPRIA’05, pages
639–646. Springer-Verlag, 2005.

[38] A. Shabtai, Y. Fledel, and Y. Elovici. Securing
android-powered mobile devices using selinux. Security
Privacy, IEEE, 8(3):36–44, 2010.

[39] J. Six. Application Security for the Android Platform:
Processes, Permissions, and Other Safeguards.
O’Reilly, 2011.

[40] J. O. Smith. Spectral Audio Signal Processing. W3K
Publishing, 2011. online book.

[41] N. P. H. Thian and S. Bengio. Evidences of equal
error rate reduction in biometric authentication
fusion, 2004.

[42] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford.
Captcha: Using hard ai problems for security. In In
Proceedings of EUROCRYPT, pages 294–311.
Springer-Verlag, 2003.

[43] Wikipedia. http://en.wikipedia.org/wiki/
Receiver_operating_characteristic.

