
Step Towards Better Security: Attacks and Defenses
for Low Power Fitness Trackers

Mahmudur Rahman
Florida International University

Miami, Florida
Email: mrahm004@cs.fiu.edu

Bogdan Carbunar
Florida International University

Miami, Florida
Email: carbunar@cs.fiu.edu

Umut Topkara
IBM Research

Yorktown Heights, NY
Email: umut@us.ibm.com

Abstract—Wearable personal fitness trackers automatically
collect sensor data about the user throughout the day and
integrate this data into social network accounts. The increasing
popular interest in personal telemetry, also called the Quantified
Self or ‘‘lifelogging’’, has induced this flourishing new product
category. The makers of these trackers have to strike a balance
between many constraints including time to release, cost of
tracker hardware, battery life, features, mobility, usability, and
utility to end user. Unfortunately, such a constrained design
process usually puts security to the back seat, making the
collection, storage and transmission of personal fitness data in
the trackers that we purchase, vulnerable to security attacks.
We studied a popular product called Fitbit, which uses i) a
lightweight tracker that stores sensor data, ii) a base station for
communication, and doubles as charging dock, and iii) a backend
for long-term storage of historical data. We first describe how we
reverse engineered and identified security vulnerabilities in Fitbit,
and introduce FitBite, a tool that enables an attacker to launch
eavesdropping, injection and denial of service attacks against
Fitbit. Second, we devise FitLock, a general secure data storage
and communication solution, for use by makers of affordable
and lightweight personal trackers. FitLock exploits a time-space
trade-off to reduce the hardware and computation requirements
on the tracker into simple and cheap bitwise XOR and EQUAL
operations, and yet FitLock ends up with no additional storage
cost on the tracker.

I. INTRODUCTION

Wearable personal trackers which collect sensor data about
the wearer throughout the day, have long been used for patient
monitoring in healthcare. Holter Monitors [?], with large and
heavy enclosures, that use tapes for recording, have recently
evolved into affordable personal fitness trackers (e.g., [?]).
Fitness trackers have successfully penetrated the consumer
electronics market, thanks to advances in mobile and wearable
computing, as well as in sensor and wireless technologies.

Meanwhile, health centric social sensor networks have
emerged, with large numbers of users. Products like Fit-
bit [1], Garmin Forerunner[2], Wahoo [3], Jawbone UP [4],
RunKeeper [5] and RunMeter [?], require users to carry
wireless trackers that continuously record a wide range of
fitness and health parameters (e.g., steps count, heart rate,
sleep conditions). Trackers report recorded data to a providing
service, either directly (e.g., through cellular connection) or
through a specialized wireless base, that connects to the user’s
personal computer. The services that support these trackers
enable users to analyze their fitness trends with maps and

charts, as well as share with friends in their social networks.
All happening too quickly both for vendors and users

alike, this data-centric lifestyle, popularly referred to as the
Quantified Self or ‘‘lifelogging’’, is now producing massive
amounts of intimate personal data. For instance, BodyMedia
has created one of the worlds largest libraries of raw and real-
world human sensor data, with 500 trillion data points [6]. This
data is becoming the source of significant privacy and security
concerns: information about locations and times of user fitness
activities can be used to infer surprising information, including
the times when the user is not at home [7], and even company
organizational profiles [8].

In this paper we demonstrate vulnerabilities in the collec-
tion, storage and transmission of personal fitness data in a
popular tracker, Fitbit [1]. For instance, we show that the
privacy of users can be breached by capturing and modifying
the data stored on any tracker situated within a radius of
15 ft. We further prove the ability to inject arbitrary data
on social networking accounts belonging to nearby tracker
owners. This attack can enable malicious users to fraudulently
accumulate a variety of rewards and even health insurance
discounts. Health insurance companies have expressed interest
in providing discounts to customers that use trackers to prove
a healthy lifestyle [9].

We believe that, the vulnerabilities and the gaps that we
identified in the security of Fitbit are a symptom of the nature
of quickly introducing new wearable consumer devices to
the market. In an effort to help add security to new product
designs, we introduce FitLock, a solution that guarantees
secure sensor and fitness data storage, and transmission for
lightweight personal trackers. FitLock exploits a time-space
tradeoff to reduce the hardware and computation requirements
imposed on trackers, to fast bitwise XOR and EQUAL opera-
tions. FitLock however imposes no additional storage cost on
the tracker.

FitLock achieves security by making it impossible to read
the plaintext data outside of the backend server. This effect
could be trivially achieved by using public key encryption
on the tracker. However public key algorithms are known
to be computationally expensive, hence are not practical for
use in simple trackers. Furthermore, many fitness trackers
display instant summaries for users. Such data either has to
be computed with counters as the sensor is read, and stored

in the clear, or should be retrieved from the backend server
if the privacy requirements bar even summaries from being
stored in the clear.

Since the difficulty of adding security on a new product will
be shared by other vendors with good product ideas, we design
FitLock with generality in mind. By imposing small compu-
tation overheads on trackers, minimizing user interaction and
requiring only generic bases, FitLock’s approach may benefit
other products similar to Fitbit. Thus, the contributions of this
paper are the following:

• Reverse engineer the semantics of the Fitbit tracker
memory banks, command types and the tracker-to-social
network communication protocol [Section III-B].

• Build FitBite, a tool that exploits the design of Fitbit
design to prove the feasibility of a wide range of attacks
[Section IV].

• Devise FitLock, an efficient solution that imposes only
fast, bitwise XOR and EQUAL operations on tracker
devices. Show that FitLock is resilient even to powerful
probing attackers, capable of reading and altering the
memory of captured trackers [Section V].

• Evaluate FitLock through an implementation on a testbed
of Android devices. FitLock significantly reduces the
overhead imposed by a solution based on public key
cryptography. FitLock imposes only negligible (1.08%)
overhead on Fitbit [Section VII].

As a courtesy, we have contacted the Fitbit team and reported
our results. We are also making the source code of FitBite and
FitLock publicly available on the project website [10].

II. RELATED WORK

Tsubouchi et al. [8] have shown that Fitbit data can be used
to infer surprising information, in the form of working rela-
tions between tracker carrying co-workers. This information
could be used to surreptitiously learn the organizational profile
of a company. This work assumes access to the fitness data of
other users, a task that (part of) our paper undertakes.

Halperin et al. [11] demonstrated attacks on pacemakers
and implantable cardiac defibrillators (ICDs). They proposed
patient warnings, authentication and key exchange defenses.
The devices considered communicate over radio frequency
(RF) technologies, enabling the harvesting of induced RF
energy to power the implementation of the proposed de-
fenses. Rasmussen et al. [12] proposed a proximity based
access control solution for securing pacemakers and ICDs,
by verifying the distance from the communicating peer before
initiating wireless communication. Li et. al. [13] demonstrated
successful security attacks on a commercially deployed glu-
cose monitoring and insulin delivery system and provided
defenses against the proposed attacks. Our constraints are
different, as we consider an application domain with insuf-
ficient resources (and interest so far) to provide API support
even for efficient cryptographic operations such as modular
exponentiation, pseudo-random permutations (e.g., AES) or
one-way functions.

Fig. 1. Fitbit system components: trackers (one cradled on the base), the
base (arrow indicated), and a user laptop. The arrow pointing to the tracker
shows the switch button, allowing the user to display various fitness data.

Lim et al. [14] analyzed the security of a remote cardiac
monitoring system where the data originating from the sensors
is sent through a Body Area Network (BAN) gateway and a
wireless router to a final monitoring server. Muraleedharan
et al. [15] proposed DoS attacks including Sybil [16] and
wormhole [17] attacks, for a health monitoring system using
wireless sensor networks. They further proposed an energy-
efficient cognitive routing algorithm to address such attacks.

Barnickel et al. [18] targeted security and privacy issues for
HealthNet, a health monitoring and recording system. They
proposed a security and privacy aware architecture, relying
on data avoidance, data minimization, decentralized storage,
and the use of cryptography. Marti et al. [19] described the
requirements and implementation of the security mechanisms
for MobiHealth, a wireless mobile health care system. Mo-
biHealth relies on Bluetooth and ZigBee link layer security
for communication to the sensors and uses HTTPS mutual
authentication and encryption for connections to the backend.

III. BACKGROUND AND MODEL

We center our model on Fitbit [1], a popular health centric
social sensor network (see Figure 1). The Fitbit system consists
of user tracker devices, user USB base stations and an online
social network. Here we detail each component.
Fitbit tracker. The tracker is a wearable device that measures
the daily steps taken, distance traveled, floors climbed, calories
burned, and the duration and intensity of the user exercise. It
consists of four IC chips, (i) a MMA7341L 3-axis MEMS
accelerometer, (ii) a MEMS altimeter to count the number
of floors climbed, (iii) a MSP430F2618 low power TI MCU
consisting of 92 KB of flash and 96 KB of RAM and (iv)
a nRF24API 2.4 GHz RF chip supporting the ANT protocol
(1 Mbits/sec @15 ft transmission range). The user can switch
between displaying different real-time fitness information on
the tracker, using a dedicated hardware switch button (see the
arrow pointing to the switch in Figure 1). Each tracker has a
unique id, called the tracker public id (TPI).
The base. The base connects to the user’s main compute
center (e.g., PC, laptop) and is equipped with a wireless
communication chip that enables it to communicate with any

tracker within a range of 15 ft. It acts as a bridge between
trackers and the online social network. It sets up wireless
connections (over the ANT protocol) with trackers within
its transmission range, then relays commands issued by the
webserver. Figure 1 shows a snapshot of two trackers and a
base, connected to a laptop through a USB port.
The webserver. The online social network webserver, allows
users to create accounts from which they befriend and maintain
contact with other users. Upon purchase of a Fitbit tracker
and base, a user binds the tracker to her social network
account. Each social network account has a unique id, called
the user public id (UPI). When the base detects and sets
up a connection with the tracker, it automatically collects
and reports tracker stored information (step count, distance,
calories, sleep patterns) to the corresponding user’s social
network account. In the following, we use the term webserver
to denote the computing resources of the online social network.
Tracker-to-base communication: the ANT protocol. Track-
ers communicate to bases over ANT, a 2.4 GHz bidirectional
wireless Personal Area Network (PAN) ultra-low power con-
sumption communication technology, optimized for transfer-
ring low-data rate, low-latency data.
Data conversion. The tracker relies on the user’s walk and
run stride length values to convert the step count into the
distance covered. The tracker also extrapolates the user’s Basal
Metabolic Rate (BMR) [20] values and uses them to convert
the user’s daily activities into burned calories values.

A. Attacker Model

We consider external attackers that attempt to learn and
modify the fitness information reported by the trackers of
other users, as well as disrupt the Fitbit protocol. We assume
attackers are able to capture wireless communications in
their vicinity. Thus, the attackers can impersonate system
participants, sniff, inject and jam communications. Attackers
also control any number of bases, except the ones belonging to
honest users. We assume that the Fitbit service (e.g. the social
network servers) will not collude with attackers to facilitate
false data reports.

While the attacks we propose in this work do not require
physical access to victim trackers, we consider also attackers
that have access to trackers. Furthermore, we also consider
attackers that are able to perform JTAG and boundary scan
based attacks (e.g., [21]) to read/write information directly
from/to the memory board. We call such adversaries, JTAG
attackers.

B. Reverse Engineering Fitbit

We have reverse engineered the Fitbit communication proto-
col. This includes the message communication format among
the participating devices and the organization of the tracker
memory. We have partially relied on libfitbit [22], providing
information on open source fitness hardware. Furthermore, we
have exploited Fitbit’s lack of communication encryption to
implement a USB based filter driver that logs the data flowing
through the base.

Fig. 2. Fitbit Upload protocol. Enables the tracker to upload its collected
sensor data to the user’s social networking account on the Fitbit webserver.
The initial connection is established by the tracker, but subsequent commands
are issued by the webserver.

Tracker memory organization. A tracker has both read
banks, containing data to be read by the base and write banks,
containing data that can be written by the base. The read banks
store the daily user fitness records. The write banks store user
information specified in the “Device Settings” and “Profile
Settings” fields of the user’s Fitbit account. The tracker stores
current sensor readings (e.g., step and floor count values) in
a L1D cache. The tracker periodically commits these values
to the read bank. This enables the collection of a fine grained
user fitness history. The tracker can store 7 days worth of
minute-by-minute sensor readings [23].
The Fitbit communication protocol. The communication
between the webserver and the tracker through the base, is em-
bedded in XML blocks, that contain base64 encoded opcodes
– commands for the tracker. All opcodes are 7 bytes long
and vary according to the instruction type (e.g., TRQ-REQ,
READ-TRQ, WRITE, ERASE, CLEAR). In the following,
for brevity, we use the notation “HOME” to denote the URL
http://client.fitbit.com. The data flow between the tracker, base
and the webserver during the data upload operation, illustrated
in Figure 2, is divided into 4 phases, beginning at steps 2, 3,
5 and 7:

1) Upon receiving a beacon from the tracker, the base
establishes a connection with the tracker.

2) Phase 1: The base contacts the webserver at the URL
HOME/device/tracker/uploadData and sends basic client
and platform information.

3) Phase 2: The webserver sends the tracker id and the
opcode for retrieving tracker information (TRQ-REQ).

4) The base contacts the specified tracker, retrieves its infor-
mation TRQ-INFO (serial number, firmware version, etc.)

Fig. 3. Fitbit service logs: Proof of login credentials sent in cleartext in a
HTTP POST request sent from the base to the webserver.

and sends it to the webserver at HOME/device/tracker/
dumpData/lookupTracker.

5) Phase 3: Given the tracker’s serial number, the webserver
retrieves the associated tracker public id (TPI) and user
public id (UPI) values. The webserver sends to the base
the TPI/UPI values along with the opcodes for retrieving
fitness data from the tracker (READ-TRQ).

6) The base forwards the TPI and UPI values and the
opcodes to the tracker, retrieves the fitness data from the
tracker (TRQ-DATA) and sends it to the webserver at
HOME/device/tracker/dumpData/dumpData.

7) Phase 4: The webserver sends to the base, opcodes
to WRITE updates provided by the user in her Fitbit
social network account (device and profile settings, e.g.,
body and personal information, time zone, etc). The base
forwards the WRITE opcode and the updates to the
tracker, who overwrites the previous values on its write
memory banks.

8) The webserver sends opcodes to ERASE the fitness
data from the tracker. The base forwards the ERASE
request to the tracker, who then erases the contents of
the corresponding read memory banks.

9) The base forwards the response codes for the
executed opcodes from the tracker to the web-
server at the address HOME/device/tracker/dumpData/
clearDataConfigTracker.

10) The webserver replies to the base with the opcode to
CLOSE the tracker.

11) The base requests the tracker to SLEEP for 15 minutes,
before sending its next beacon.

IV. FITBITE: ATTACKING FITBIT

During the reverse engineering process, we discovered two
fundamental vulnerabilities, which we describe here. We then
detail the attacks we have deployed to exploit them.

A. Vulnerabilities

Cleartext login information. During the initial user login via
the Fitbit client software, user passwords are passed to the
webserver in cleartext (as part of POST data) and then stored
in log files on the base. Figure 3 shows a snippet of captured
data, with the cleartext authentication credentials emphasized.

Fig. 4. Outcome of Tracker Injection (TI) attack on Fitbit tracker: The daily
step count is unreasonably high (167,116 steps).

Cleartext HTTP data processing. No encryption or au-
thentication is used when the tracker uploads its data to the
webserver. All the requests issued by the webserver and the
answers provided by the tracker are sent in clear.

B. The FitBite Tool

We have built FitBite, a tool that exploits the above vul-
nerabilities to attack Fitbit. FitBite consists of two modules.
The Base Module (BM) is used to retrieve data from the
tracker, inject and upload fabricated values into the account
of the corresponding user on the webserver. The Tracker
Module (TM) is used to read and write the tracker data. FitBite
implements the following attacks.
Tracker Private Data Capture (TPDC). Use the TM module
to discover any tracker device within a radius of 15 ft and
capture the fitness information stored on the tracker. This
attack can be launched in public spaces, particularly those
frequented by Fitbit users (e.g., parks, sports venues, etc). This
attack is particularly damaging as Fitbit trackers store sensor
readings with a one per minute frequency. This enables the
attacker to collect up to 7 days of fitness data history.
Tracker Injection (TI) Attack. Use knowledge about the
format of communication packets, opcode instructions and
memory banks, to modify the fitness data stored on neigh-
boring trackers. FitBite allows the attacker to choose the data
fields to be modified. The TM module can simultaneously
modify multiple fitness records (memory banks). Thus, FitBite
allows the attacker to modify even the fitness history of
the victim. Figure 4 shows an example of a victim tracker,
displaying an unreasonable value for the (daily) number of
steps taken by its user.
User Account Injection (UAI) Attack. Hijack the data
reported by trackers in the vicinity of the attacker, through the
attacker’s corrupt USB base. Use the BM module to launch
a data injection attack: fabricate a data reply embedding the
desired fitness data (encoded in the base64 format). The BM
module sends the reply as an XML block in an HTTP request
to the webserver. The webserver does not authenticate the
request message and does not check for data consistency –
thus it accepts the data. Using this attack, we have successfully

Fig. 5. Snapshot of Fitbit user account data injection attack. In addition to
earning undeserved badges (e.g., the “Top Daily Step”), it enables insiders to
accumulate points and receive financial rewards through sites like Earndit [24].

injected unreasonable daily step counts, e.g., 12.58 million,
see Figure 5. The attack also proves that Fitbit does not check
for data consistency: the 12.58 million steps correspond to a
distance traveled of 0.02 miles.
Free Badges and Financial Rewards. By successful injection
of large values in their social networking accounts, FitBite
enables insiders to achieve special milestones and acquire
merit badges, without doing the required work. Figure 5 shows
how the injected value of 12.58 million steps, being greater
than 40,000, enables the account owner to acquire a “Top Daily
Step” badge.

Furthermore, Fitbit users are encouraged to link their social
networking accounts to systems that reward users for exercis-
ing. For instance, Earndit [24] provides gift cards and financial
prizes through accumulated points: 0.75 points for each “very
active” Fitbit minute and 0.10 points for a “fairly active”
minute. By keeping the BM module running and continuously
updating the tracker data (once each 15 minutes), we have
accumulated a variety of undeserved rewards, including 200
Earndit points, redeemable for a $20 gift card.
Battery Drain Attack. FitBite allows the attacker to contin-
uously query trackers in her vicinity, thus drain their batteries
at a faster rate. To understand the efficiency of this attack, we
have experimented with 3 operation modes. First, the daily
upload mode, where the tracker syncs with the USB base and
the Fitbit account once per day. Second, the 15 mins upload
mode, where the tracker is kept within 15 ft. from the base,
thus allowing it to be queried once every 15 minutes. Finally,
the attack mode, where FitBite’s TM module continuously (an
average of 4 times a minute) queries the victim tracker. To
avoid detection, the BM module uploads tracker data into the
webserver only once every 15 minutes. Figure 6 shows our
battery experiment results for the three modes: FitBite drains
the tracker battery around 21 times faster than the 1 day upload
mode and 5.63 times faster than the 15 mins upload mode.

C. Perspective

We have used a three pronged approach to hack Fitbit.
First, we have built a USB based filter driver, enabling us

Fig. 6. Battery drain for three operation modes. The attack mode drains the
battery around 21 times faster than the 1 day upload mode and 5.63 times
faster than the 15 mins upload mode.

to collect tracker information from the USB base. Second,
we have exploited Fitbit’s raw usage of ANT and its lack
of encryption (including passwords). Finally, we have used
reverse engineering efforts coupled with a trial and error
approach, to bypass the procedure binding the tracker to the
user’s social networking account.

V. EFFICIENT SECURITY

A. Solution Requirements

Our goal is to develop a health centric social sensor network
solution that satisfies the following requirements:

• Secure. Provide security assurances against the attackers
described in Section III-A.

• Lightweight tracker. Minimize the computation over-
head imposed on the low power trackers.

• Flexible sync. Allow trackers to sync with the social
network account of their users, from multiple bases.

• Generic base. Minimize the use of proprietary solutions
on bases.

• User friendly. Minimize user interaction.
One challenge thus is to provide a solution that is secure
against powerful adversaries, with minimal tracker and user
involvement.

B. FitLock Overview

We now propose FitLock, a secure and lightweight Fitbit
extension. We identified 3 basic procedures, for which we
provide a solution: RegisterBase, RecordData and Upload.

FitLock prevents trackers from synchronizing with the so-
cial network accounts of their users through unknown bases.
In fact, we consider such an operation to be insecure. Instead,
the RegisterBase procedure enables users to register trusted
bases with the webserver. Only registered bases can then later
be used for uploading tracker data.

The tracker periodically runs the RecordData procedure to
commit to memory intermediate sensor readings. Figure 7
illustrates the FitLock tracker storage organization: A one
time pad, OTP is written on the tracker (during RegisterBase
and Upload procedures). When RecordData is run, the tracker
computes a bitwise XOR between current sensor readings

Fig. 7. FitLock tracker “read memory” organization. (a) General organization,
showing the TPI, UPI and authentication tokens. mem denotes the area
available for storing sensor readings. (b) Zoom-in into mem. The cache
(shown part of mem) can store 2 sensor records, of which only the first
(the k-th overall) has been written. The subsequent mem space stores the
written records up to the k − 1-th instance. The remaining mem contains
unused OTP sequences.

and part of the OTP string. The Upload procedure allows
the tracker to sync its (OTP encoded) data to W , through
a registered base. After the sync completes, the Upload
procedure overwrites the tracker’s memory with a freshly
generated one time pad. A pair of single use authentication
tokens, AuthTokens[W] and AuthTokens[T] is used by the
webserver and the tracker to mutually authenticate during
RegisterBase and Upload runs. Thus, instead of expensive
cryptographic constructs, FitLock’s security relies on safe
synchronization through registered bases and on one time pads.
OTPs provide information theoretic security assurances.

C. FitLock Details

In the following, U denotes a user, T denotes her tracker,
B is a base and W is the Fitbit webserver. Let idU , idB , and
idT denote the public unique identities of U , B, and T . U has
an account with W , with the UPI idU and a password PU .

The protocol F for each procedure (Upload, Record-
Data, RegisterBase) running between participants Pi ∈
{U, T,B,W}, each with its own input arguments, is denoted
by F (P1(args1), .., Pn(argsn)).

We assume that any base can setup a secure connection with
the webserver, using standard protocols like OAuth and SSL,
and keying material (e.g., public key certificates) embedded
in the base. Being standard cryptography, for brevity, we omit
their presentation.

Without loss of generality, we describe the procedures
as if each user has one tracker. The webserver stores and
maintains a database Map that has an entry for each user:
[idU , idT , H(PU), Bases,AuthTokens,OTP]. PU is U ’s
password and H() is a cryptographic hash function. Bases
is a list of registered bases. OTP is a one time pad used to
encode tracker readings. AuthTokens is an array which holds
a copy of mutual authentication token pairs for the base to be
used in two of the procedures: Upload, and RegisterBase. Note
that OTP and AuthTokens are generated by W , and stored
by both T and W at the end of the Upload procedure, which
is also called by the RegisterBase procedure.

We begin with the RecordData procedure, that enables
tracker T to commit recorded sensor data to its local memory.
The pseudocode of RecordData is shown in Algorithm 1. The
organization of the tracker memory is shown in Figure 7.

Algorithm 1: RecordData pseudocode. The one time
pad encoding requires only simple bit wise xors and
pointer handling operations. The OTP is stored in mem
at position M. The cache C (initialized with OTP from
mem) is used to store sensor readings. Once C is full, it
is written over mem.

1

1.Object implementation Tracker;
2. mem : bit[]; #tracker memory
3. C : int; #index of cache
4. cache size : int; #size of cache
5. ptr : int; #moving index inside cache
7. M : int; #index to currentmemory

8. Operation int RecordData(A : sensordata)
9. xor mem[ptr], A;
10. ptr = ptr+ A.size;
11. if (ptr > C+ cache size) then;
12. mov mem[M], mem[C]; #copy cache to main mem
13. M = M+ cache size;
14. mov C, M, cache size; #copy OTP to cache
15. ptr = C #move ptr to start of cache
16. fi end

RecordData(T (sensor data)). T has available memory
mem and cache C. We model C as being part of mem for
simplicity, however, C is a L1C cache in Fitbit. M is the
current writing index in mem, denoting the beginning of the
yet unused bits of the one time pad OTP . Given sensor data
(A) as input, T xors it into the next available position in the
cache C (line 9). If all the space in C has been exhausted (line
11), copy C’s content over mem starting with index M (line
12). Then, overwrite the cache C with a yet unused chunk
from mem’s OTP (line 14). Then, prepare to write the next
sensor reading at the beginning of the cache (line 15).

RecordData does not impose a storage overhead on the
existing Fitbit solution: the result of the XOR is written into
the same amount of memory taken by the standard Fitbit
sensor readings. We note that the RecordData procedure above
is designed to apply to any sensor readings. In the case of
Fitbit, the sensor data consists of step and floor counts. Thus,
A stores the daily step (or floor) count values.

We now present the Upload protocol, that enables T to
automatically upload its data (sensor readings) to its user U ’s
social network account on W , through one of the bases added
with RegisterBase (see next).
Upload(T (idT , AuthTokens, data), B(),W (Map)). The
following process takes place, building upon the 11 step
Fitbit protocol (see Figure 2):

1) T sets up a connection to the base B in its vicinity
(following steps 1a and 1b in Figure 2). B sets up an
authentic, secure connection with W (extending step 2).
According to steps 3 and 4, T sends (idU , idT) to B,
which relays it to W as (idU , idT , idB).

2) W retrieves Map[idU], the Map entry corresponding to
idU : [idU , idT , H(PU), Bases,AuthTokens,OTP]. If
idB /∈ Bases (see RegisterBase), W aborts the protocol.
Otherwise, it includes in the TRQ-REQ message (step 5)
the server part of the mutual authentication token pair
AuthTokens[W]. The message is sent over the secure

Fig. 8. FitLock RegisterBase procedure. Green dotted lines represent
secure (e.g., SSL) connections. The user confirmation (step 3) prevents a
DoS attack: attacker impersonates T (in steps 2) and forces W to consume
AuthTokens[W]. A and W mutually authenticate in steps 4 and 5.

connection with B.
3) B forwards the AuthTokens[W] to T . T verifies the

equality of the bits received from B with its local copy of
the mutual authentication token. If the verification fails, T
aborts the protocol. Otherwise, it sends AuthTokens[T],
the tracker part of the mutual authentication token, as well
as data to B (step 6b), that forwards it over the secure
session to W .

4) W verifies that AuthTokens[T] matches the local copy.
If not, it aborts the protocol. Otherwise, W computes
data⊕OTP in order to decode the contents of the data
field. It then stores the result in U ’s social networking
account. Steps 7 proceed just like in Fitbit.

5) W creates new AuthTokens, and one time pad values
and writes them (through B) on T . The WRITE messages
rely on and replace the ERASE messages (steps 8). Steps
9-11 proceed as in Fitbit.

The RegisterBase procedure described next and illustrated in
Figure 8, enables U to bind a trusted base B to her tracker T
and her UPI on W . T can then use B for Upload (see above).
RegisterBase(U(IdU , PU), T (idT), B(idB),W (Map)). U ,
T , B and W execute the following sequence of steps:

1) U logs into her W account, using a secure connec-
tion from her browser, using her username and pass-
word, (idU , PU). W retrieves the entry for Map[idU] :
[idU , idT , H(PU), Bases,AuthTokens,OTP]. If no
such entry exists (the first RegisterBase run by U), W
creates one. Bases is an empty set, AuthTokens, and
OTP are reset to contain 0 bit values.

2) U brings T into RegisterBase mode, e.g. by long pressing
the switch. If T discovers no nearby base, it aborts the
protocol. T sends idT to B. B sets up a secure connection
to W , and sends idT and idB .

3) W notifies the user U through the browser, and asks to
confirm the registration of a new base. If U does not
confirm, W aborts the protocol.

4) W sends the server part of the mutual authentication
token AuthTokens[W] to B, which relays it to T .

5) T verifies that AuthTokens[W] matches the locally
stored copy. If the verification fails, T aborts the protocol.
Otherwise, T sends to W the tracker part of the mutual
authentication tokens, AuthTokens[T].

6) W verifies that the AuthTokens[T] received from T
matches its own copy. If the verification fails, W aborts
the protocol. Otherwise, W adds idB to Bases. W and T
(through B) engage in the Upload procedure, that creates
new AuthTokens values.

The first time U runs RegisterBase, there is no AuthTokens
mutual authentication token set shared by T and W . Then,
both T and W send 0 as the AuthTokens[] bits.

D. Data Consistency Verifications

As mentioned in Section III, there exists a strong relation-
ship between the different activity parameters tracked by Fitbit.
However, as demonstrated by the UAI attack in Section IV,
Fitbit does not verify the consistency of the data reported
by trackers. We propose to address this vulnerability through
the following additional verifications. The verifications are
performed by W , based on the data reported by tracker T .

• Verify that the number of steps between consecutive
records on T does not exceed a maximum value achiev-
able in that interval. The maximum step count can be
either generic, or personalized, computed over user data
during an initial interval when the tracker is unlikely to
be under attack.

• Use the initial, attack-free interval to train time series
forecasting tools (e.g., ARIMA, Artificial Neural Net-
works), predict future activity levels and raise red flags
when the recorded values significantly exceed predictions.
Ask the user to personally confirm flagged readings.

• Rely on the user’s walk/run stride length and BMR
values (see Section III) to verify the relations between the
number of steps (walking and running) and the distance
traversed and the calories burned by the user.

E. Analysis

During the RegisterBase procedure, standard authentication
and secure communications protocols are used between B and
W . A is authenticated to W through her password PU . A’s
confirmation (step 3) is required to prevent a DoS attack:
the attacker forces W to reveal AuthTokens[W] (step 4) by
impersonating T in steps 2. B is implicitly authenticated by the
user, who decides to run RegisterBase in its vicinity. W and T
authenticate each other through the one time use AuthTokens
pair. The security of the procedure relies thus on the the user
running this operation in attacker-free environments: at home,
work, or at a friend’s house (and base).

An attacker with physical access to a tracker but not to
the tracker’s memory cannot read the sensor data stored
on the device. This is because the attacker does not know
W ’s authentication value AuthTokens[W]. The chance of
guessing the l bits of AuthTokens[W] is 2−l, e.g., 1 in
a million for l = 20. By pressing the tracker’s switch, the
attacker can read the latest sensor readings. The readings are

however anonymized and contain also input from the attacker
(that has carried the tracker from the reception to the attack
spots). This attack can be prevented by requiring the user to
authenticate to her tracker. We have omitted the presentation of
a seamless authentication procedure based on a paired mobile
device, due to its standard form and space constraints.

A sniffing attacker has no advantage in the Upload proce-
dure (except detectable DoS attacks). The base B is authenti-
cated by T through W : W authenticates B through standard
SSL and verifies idB ∈ Bases and sends its one time use
AuthTokens[W]. T authenticates B by its knowledge of W ’s
AuthTokens[W] value. Thus, vicinity to a safe, registered
base provides a first level of security. The second level is
provided by the fact that the data reported by T has been
previously xored with a one time pad OTP . Thus, the data is
secure with information theoretic assurance.
Resilience to JTAG attacks. We consider now an at-
tacker powerful enough to steal the tracker, open the case,
and use JTAG attacks to read its memory. This includes
AuthTokens[W], AuthTokens[T] and either OTP (for
memory not yet written) or data ⊕ OTP (for previously
sampled sensor data). Thus, the attacker cannot read the sensor
history of the user: past values are stored xored with random
one time pad bits, no longer available on the tracker.

The attacker can attempt to inject fraudulent sensor data –
but only after the point in time when it cracked the tracker. If
corrupted, old data ⊕ OTP values will produce inconsistent
values, once decoded with the OTP bits only known by W .
Inconsistencies will be detected by the techniques described
in Section V-D. Even then, for this attack to be meaningful,
the attacker either (i) needs to subsequently return the tracker
to its owner, or (ii) bring the tracker in the vicinity of one of
the user’s trusted bases. Thus, FitLock significantly raises the
stakes even for a powerful JTAG attacker with physical access
to the victim tracker.
Other Requirements. FitLock is user friendly. The user is
explicitly involved only during infrequent RegisterBase proce-
dure runs. FitLock requires only a lightweight tracker, capable
of performing xor operations and equality tests. FitLock bases
need only be able to setup standard secure SSL connections
to W , and forward traffic between T and W . FitLock is
sync flexible, allowing users to add bases through which their
trackers can automatically sync with W . FitLock also does not
impose storage overhead on trackers: sensor data is XORed
into place with the memory’s one time pad.

VI. EVALUATION

We have contacted Fitbit and reported our results. While
interest for the security of users was expressed, Fitbit declined
our offer to collaborate in implementing FitLock on the Fitbit
platform. We have thus implemented FitLock in Android.

A. Experiment Setup

In the experiments, we have used both a Sony Ericsson
Xperia X11 mini smartphone with ANT+ support and a
Revision C4 BeagleBoard [25] as trackers, a Dell laptop
equipped with a 2.3GHz Intel Core i5 and 4GB of RAM to

Fig. 9. Snapshot of testbed for FitLock, consisting of BeagleBoard and
Xperia devices used as Fitbit trackers.

32 64 128 256 512 1024

Packet size (Bytes)

A
ve

ra
ge

 e
nc

ry
pt

io
n

tim
e

(m
s)

 o
n

X
pe

ria

0
1

2
3

4
5

RC4
Salsa20
AES

(a)

512 768 1024 2048 4096

Key size (Bytes)

R
S

A
 a

ve
ra

ge
 e

nc
ry

pt
io

n
tim

e
(m

s)

0
2

4
6

8
10

12
14

BeagleBoard
Xperia

(b)

Fig. 10. Encryption overhead: (a) AES, RC4, Salsa20 on Xperia. (b) RSA
encryption on Xperia and BeagleBoard.

connect the base, and a 2.4GHz Intel Core i5 Dell laptop with
4GB of RAM for the webserver (built on the Apache web
server 2.4).

We implemented a client-server Bluetooth [26] socket com-
munication protocol between the tracker (Xperia smartphone)
and the base using PyBluez [27] python library. We used Wi-
Fi for the connectivity between the base and the webserver.
Figure 9 illustrates our testbed. We report all values as
averages taken over at least 10 independent protocol runs.

B. FitCrypt

We have compared the performance of FitLock against
Fitbit and also FitCrypt, an alternative secure solution for
Fitbit. We have considered two versions of FitCrypt, one
using only symmetric encryption solutions to authenticate
participants and secure communications, and one relying only
on public key cryptography. While more efficient, the fun-
damental drawback of symmetric key crypto for FitCrypt is
that it needs to store the encryption key on the tracker. Thus,
this solution is not resilient to JTAG attacks: the attacker can
recover the secret key and decrypt both all previously captured
and all the future transmissions between the victim tracker and
W . We note that a hybrid solution can be devised, using PKC
for tracker to webserver communications and symmetric key
crypto for webserver to tracker communications.

C. Results

FitCrypt tinker: encryption overheads. We have experi-
mented with the use of symmetric and public key encryption

Fitbit FitCrypt FitLock

0

200

400

600

1 2 3 4 1 2 3 4 1 2 3 4
Phases

A
ve

ra
g

e
ex

ec
u

ti
o

n
 t

im
e

(m
s)

Communication overhead Tracker on Android Webserver on Laptop

Fig. 11. Comparison of end-to-end delay between the current Fitbit solution
and our proposed encrypted solution

algorithms on Xperia and Beagleboard devices. We have first
evaluated AES [28], RC4 [29] and the Salsa20 [30] stream
cipher, with a key size set to 128 bits and packet sizes
ranging from 32 to 1024 bytes (the Fitbit packet size is
at most 80 bytes). Figure 10(a) shows the execution time
of the three protocols on the Xperia smartphone. For small
packet sizes, Salsa20 performs the best. As the packet size
increases, RC4 performs slight better than Salsa20. Both RC4
and Salsa20 outperform AES for any packet size. Figure 10(b)
compares the encryption overhead of RSA when running on
the BeagleBoard and on the Xperia devices, for key sizes
ranging from 512 to 4096 bytes while the packet size was
set to 1024 bytes. The BeagleBoard performs better due to its
more powerful CPU.
End-to-end Upload comparison. We have implemented Fit-
Lock, FitCrypt (both symmetric key and public key versions)
and the Fitbit protocols in Android and compared their per-
formance using the Xperia X11 tracker. Figure 11 shows the
end-to-end time imposed by the Upload procedure of the
implemented solutions. The times shown for each solution
are divided into the 4 phases of the webserver-to-tracker
communication protocol described in Figure 2. We only show
the performance of the public key crypto FitCrypt, using
a standard 2048 bit modulus. The symmetric key version
performs better than the public key version, however, as
mentioned above it is not resilient to JTAG attacks.

The total time of Fitbit’s Update procedure is 1481ms. The
end-to-end (sum over all 4 phases) time of FitCrypt is 1894ms,
a 27.9% increase over Fitbit. In contrast, the end-to-end time
of FitLock is 1497 ms, thus introducing an overhead of 16ms
(just 1.08%) over Fitbit.

VII. CONCLUSIONS

In this paper, we show that the wealth of constraints
faced by the makers of wearable personal fitness trackers,
make the data they collect and communicate, vulnerable to
security attacks. Case in point, we reverse engineer Fitbit, a
popular fitness tracking solution. We introduce FitBite, a tool
for launching eavesdropping, injection and denial of service
attacks against Fitbit. We devise FitLock, a general, efficient

and secure extension for Fitbit. FitLock relies only on fast
bitwise XOR and EQUAL operations, and does not impose
a storage overhead on trackers and the webserver. FitLock
is resilient even to attackers able to probe the memory of
captured trackers and imposes only 1.6% end-to-end delay on
Fitbit.

VIII. ACKNOWLEDGEMENTS

We thank Madhusudan Banik for help on the FitLock
implementation.

REFERENCES
[1] Fitbit. http://fitbit.com/.
[2] Garmin Forerunner. http://sites.garmin.com/forerunner610/.
[3] Wahoo fitness. http://www.wahoofitness.com/.
[4] Jawbone. https://jawbone.com/.
[5] Runkeeper. http://runkeeper.com/.
[6] Jawbone takes a big bite out of health tech: acquires BodyMedia,

launches Up app platform. http://venturebeat.com/2013/04/30/jawbone-
takes-a-big-bite-out-of-health-tech-acquires-bodymedia-launches-up-
app-platform.

[7] Please Rob Me. http://www.http://pleaserobme.com/.
[8] Kota Tsubouchi, Ryoma Kawajiri, and Masamichi Shimosaka. Working-

relationship detection from fitbit sensor data. In Proceedings of the
2013 ACM conference on Pervasive and ubiquitous computing adjunct
publication, UbiComp ’13 Adjunct, pages 115–118, 2013.

[9] Cotton Delo. Insurance Giant WellPoint Commits to Facebook
With Fitness Tracker. AdAge digital, http://adage.com/article/digital/
wellpoint-commits-facebook-fitness-tracker/237774/, 2012.

[10] FitBite and FitLock: Attacks and defenses on Fitbit Tracker. http://users.
cis.fiu.edu/∼mrahm004/fitlock.

[11] D. Halperin, T. Heydt-Benjamin, B. Ransford, S. Clark, B. Defend,
W. Morgan, K. Fu, T. Kohno, and W. Maisel. Pacemakers and
implantable cardiac defibrillators: Software radio attacks and zero-power
defenses. In Proceedings of IEEE Symposium on Security and Privacy,
pages 129–142, 2008.

[12] K. B. Rasmussen, C. Castelluccia, T. S. Heydt-Benjamin, and S. Capkun.
Proximity-based access control for implantable medical devices. In ACM
Conference on Computer and Communications Security, pages 410–419,
2009.

[13] Chunxiao Li, A. Raghunathan, and N.K. Jha. Hijacking an insulin pump:
Security attacks and defenses for a diabetes therapy system. In 13th
IEEE International Conference on e-Health Networking Applications
and Services (Healthcom), pages 150–156, 2011.

[14] S. Lim, T.H. Oh, Y. Choi, and T. Lakshman. Security issues on
wireless body area network for remote healthcare monitoring. In 2010
IEEE International Conference on Sensor Networks, Ubiquitous, and
Trustworthy Computing (SUTC), pages 327–332, 2010.

[15] Rajani Muraleedharan and Lisa Ann Osadciw. Secure health monitoring
network against denial-of-service attacks using cognitive intelligence. In
CNSR, pages 165–170, 2008.

[16] J. Newsome, E. Shi, D. Song, and A.Perrig. The sybil attack in sensor
networks: Analysis and defenses. In Third International Symposium on
Information Processing in Sensor Networks(IPSN), 2004.

[17] C. Karlof and D.Wagner, editors. Secure Routing in Sensor Networks:
Attacks and Countermeasures, 2003.

[18] Johannes Barnickel, Hakan Karahan, and Ulrike Meyer. Security and
privacy for mobile electronic health monitoring and recording systems.
In the 2010 IEEE International Symposium on A World of Wireless,
Mobile and Multimedia Networks (WoWMoM), pages 1–6, 2010.

[19] Ramon Marti and Jaime Delgado. Security in a wireless mobile health
care system, 2007.

[20] A. J. Hulbert and P. L. Else. Basal Metabolic Rate: History, Composition,
Regulation, and Usefulness. Physiological and Biochemical Zoology,
77(6):869–876, 2004.

[21] Ing Breeuwsma. Forensic imaging of embedded systems using JTAG
(boundary-scan). Digital Investigation, 3, 2006.

[22] Libfitbit: Library for accessing and transfering data from the fitbit health
device. https://github.com/qdot/libfitbit.

[23] Fitbit Specs. http://www.fitbit.com/one/specs, Last retrieved on October
1st, 2013.

[24] Earndit: We reward you for exercising. http://earndit.com/.
[25] G. Coley. Beagleboard system reference manual. BeagleBoard.org,

December 2009.
[26] Bluetooth SIG. Specification of the bluetooth system, 2001.
[27] Pybluez. http://code.google.com/p/pybluez/.
[28] Federal Information Processing and Announcing The. Announcing the

advanced encryption standard (aes), 2001.
[29] Rc4. http://www.wisdom.weizmann.ac.il/∼itsik/RC4/rc4.html.
[30] Daniel J. Bernstein. The salsa20 family of stream ciphers. In New Stream

Cipher Designs, pages 84–97. Springer-Verlag Berlin, Heidelberg, 2008.

