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Abstract—We have developed a computational framework 

called GenoPro that allows us to process very large genomic 

files from multiple formats such as NGS, fasta, and GBK, 

extracting DNA, RNA and Protein  sub-sequences of any 

length,  limited by the storage size or operating system. 

GenoPro creates a data structure that contains sub-

sequences of any size used to develop new tools that allow us 

to understand not only our human genome but any life form's 

genome. 
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I.INTRODUCTION 

The Genome Project started in 1990 and completed in 

April 2003 sequenced the human genome producing files of 

about 3.2 Gigabytes. During the next 10 years a new 

sequencing method called Next Generation Sequencing (NGS) 

was created producing files of over 1.4 Terabytes. It is 

expected to produce files larger than 10 Terabytes in size. In 

addition there are many other current projects such as the 1000 

Genomes Project and the manufactures of the NGS machines 

sequence many genomes with data in the Petabytes. Just like 

in many other disciplines, Biology has very large amounts of 

Genomic data that needs to be studied. 

Out of the 3.2 billion nucleotides in the human genome 

over 95% is unknown and we call it dark matter[1]. The recent 

completed five-year project called Encyclopedia of DNA 

Elements (ENCODE) concluded that about 80 percent of the 

human genome is active and it is not just junk DNA as it was 

previously called. If ENCODE was presented in graphical 

form, the data it has generated so far would fill a poster 30 

kilometers long and 16 meters high[2]. There is a great 

amount of information and knowledge to be discovered from 

these results. 

In this modern age of genomics vast quantities of 

information are generated but are associated with uncertainty 

in significance. Biologists do not have the wherewithal to 

identify computationally the portions of the genome that are 

significant to biologic disease processes and the information 

science experts do not have enough knowledge of these 

biologic processes to accurately model how to extract the 

relevant information. This difficulty is present in a setting of 

ever increasing production of data. Therefore, any efforts 

between biologists/clinicians and computational experts to 

better understand genomic data will be of significant potential 

benefit to patient care and survival. It is our goal to provide a 

data structure that will allow scientists with little 

computational knowledge to find patterns and discover new 

information that can be proven in their biological labs. 

GenoPro will also help Computational Scientists develop 

sophisticated new tools to solve more complex tasks. 

II.PREVIOUS WORK 

One the major challenges in studying the vast amount of 

Genomic data available is to arrange it in a way that is easy to 

use by non-Computational Scientists, our goal has been to 

create a framework that will do that. 

Discovery and Annotation of Repeats, Signatures, and 

Patterns in Genomic Sequences[3] uses the new biobuckets 

sort method to produce indexed data files of extracted sub-

sequences of length up to 5 bases, to find Signatures among 

genomes.  

Finding Repeats and Signatures in Genomic Sequences[4] 

is able to find exact signatures between five strains of 

Pseudomonas Aeruginosas bacteria utilizing MPI Clusters, 

totaling 20 comparisons. Each set of genomes had pre-

processed indexes which we created using Suffix Arrays.  

Discovery and Annotation of Repeats, Signatures, and 

Patterns in Genomic Sequences[5] uses own framework can 

find exact Signature of any size from Genomes of any size.  

Discovery and Annotation of Repeats, Signatures, and 

Patterns in Genomic Sequences[6]. Creation of new 

Framework to extract sub-sequences of any size from 

Genomes of any size, applied to Signatures and Repeats.    

Applied Genomic Signatures and Patterns[7] shows how to 

find signatures of any length from input data files of any size.   

Discovering Unknown Genes[8] uses the GenoPro 

framework to processes raw Genomic Data of any size.    

III.METHODS 

Input Data Files: Our framework's algorithms have been 

implemented in Java using genomic data text files of multiple 



formats and sizes as input as seen in TABLES I-III. Some of 

these input files can be larger than one Terabyte in size. 

TABLE I.  FASTA GENOMIC DATA SAMPLE 

Fasta Format: >gi|88944472|ref|NW_921350.1| Homo sapiens 

chromosome 1 genomic contig, alternate assembly Hs_Celera 

211000035831330, whole genome shotgun sequence 

TCACCTGGGTGTGTGGGTGCCGTTCCAGGCTGTCAGAGCT

CGCGTGGGGGTGTGGGTGCTGCTCCAGGCT  

TABLE II.  NGS GENOMIC DATA SAMPLE 

NGS Format: 

@ERR030881.107 HWI-BRUNOP16X_0001:2:1:13663:1096#0/2  

CGGATTTCAGCTACTGCAAGCTCAGTACCACACAAGCTCG

ATGTG  

+  

HH;HHHHHGHHHHHHHHHHGHDHE 

TABLE III.  GBK GENOMIC DATA SAMPLE 

GBK Format: 

LOCUS NC_020912 6421010 bp DNA circular CON 11-JUN-2013  

DEFINITION Pseudomonas aeruginosa B136-33, complete genome. 

 

User Input Batch Files: The files described in TABLE IV 

are created by the users with any editor like notepad or VI and 

they can have any name. These batch files will contain the 

location and names of the input DNA, RNA or Protein files to 

be processed, the length of the subsequences to be extracted 

from these files, the amount of RAM needed to process each 

Genomic input file, and all necessary documentation 

information about the job being processed. It can contain 

unlimited amount of lines written in any sequence. 

Documentation lines start with one or more spaces or double 

slashes //. These lines will be ignored by our framework and 

are used to describe the job at hand.  

TABLE IV.  User Batch File 

  //===== Hospital ABC inv#4523 ===== 

  // data received on dd/mm/yy 

 

  /hs/brain_1.fastq 36 500,000,000 

  /hs/brain_1.fastq 200 900,000,000 

  /hs/brain_2.fastq 87 500,000,000 

  /hs/brain_2.fastq 100 750,000,000 

 

Our framework first accepts the previous User Input Batch 

File and then parses its contents to determine how to process 

each input data file. By examining each Genomic input data 

file, we determine the data type each file holds, such as fasta, 

fastq/ngs, or gbk, and then we process them accordingly. 

First we extract the DNA, RNA or Proteins from these 

files as shown in TABLE V. 

 

TABLE V.  EXTRACTED INPUT DATA 

TCACCTGGGTGTGTGGGTGCCGTTCCAGGC 

AGAGCTCGCGTGGGGGTGTGGGTGCTGCTG 

CTTCACCTGGGTGTGTGGGTGCCGTTCCAG 

AGAGCTCGCGTGGGGGTGTGGGTGCTGCTG 

 

Then we partition this data into sub-sequences of any user 

selected length.  

TABLE VI.  SUB-SEQUENCES OF LENGTH 15 

TCACCTGGGTGTGTG  

  CACCTGGGTGTGTGG 

     ACCTGGGTGTGTGGG 

        CCTGGGTGTGTGGGT 

           CTGGGTGTGTGGGTG 

              TGGGTGTGTGGGTGC  

                GGGTGTGTGGGTGCC  

                  GGTGTGTGGGTGCCG….. 

  

Validation: Using the following formula we validate the 

total amount of extracted sequences from each file, where 

SeqLen denotes the length of the user selected sequence and n 

the length of the original genomic sequence.  

SeqLen * ∑
n=1

n+1�SeqLen

SeqLen

In TABLE VII we show the small sequence “ACGTACG“ 

being partitioned into sub-sequences of length 2. When we 

apply the previous formula  to this small sequence we validate 

that the total amount of bases/bytes in the sub-sequence file 

corresponds to its source file, in this case the small sequence 

“ACGTACG“. 

TABLE VII.  SUB-SEQUENCES OF LENGTH 2 

ACGTACG  

AC             

  CG            

     GT          

        TA        

           AC       

              CG 

7 

2 

2 

2 

2 

2 

2 

 

As we produce these sub-sequences we create a new text 

file with their locations in the original input file. We name this 

new file using the genome's name, data format, and sub-

sequence length. If the genome's file name is example, of fasta 

data type and sub-sequences of length 2, its name will be 

sample_fa_2 

 

 

 

 



TABLE VIII.  SUB-SEQUENCES OUTPUT FILE SAMPLE_FA_2 

SUB-SEQUENCES 

AC  

CG 

GT 

TA 

AC 

CG 

Location 

0 

1 

2 

3 

4 

5 

 
Sorting: Our previous unsorted file becomes the input for 

the next step which sorts it contents alphabetically creating a 

new text file. We call this method “external sort” which 

allows us to sort files of any size, limited only by the size of 

the external storage devices used.  

The name for the new output file is the name of the input 

file plus a dot and the word “sorted". 

TABLE IX.  SORTED SUB-SEQUENCES OUTPUT FILE 

SAMPLE_FA_2.SORTED 

SUB-SEQUENCES 

 AC  

AC 

CG 

CG 

GT 

TA 

Location 

0 

4 

1 

5 

2 

3 

 
These sorted files can be in the thousands of gigabytes in 

size.  

Our external sort needs two additional external files, each 

with the maximum space equal to the original sub-sequences 

file. The following describes in detail our external sort 

algorithm used in our framework. 

In the initial user input file called “User Input Batch Files” 

and used to pass information to our framework, we pass the 

amount of RAM requested for each input data file. If the RAM 

size requested is 2 gigs, we find the length of each record in 

each input file and divide 2 gigs by the sub-sequence length 

finding the amount of records we can have in RAM at one 

time in each sorting step.  

The first process in our external sort, see Figure I, reads 

the amount of records that fit inside the reserved RAM, 

placing them into an Array List and then using the Java 

Collection.Sort, an in-place sort, we sort this Array List and 

proceed to write this sorted data into a new external file, see 

TABLE IX, named using the genome's name plus the sub-

sequence length, a period and the word sorted, from now on 

referred as the *.sorted file. This file will contain all the sorted 

data. This process is used only once. 

*.sorted
External
Storage

*.unsorted        sort 
External             in
Storage           RAM 

Copy

 

Figure I. First Step External Sort  

 

We now start repeating the following steps until we 

process the entire input file, see Figure II. 

1 - Clear the Array List and re-load it with the next batch 

of records from the input file and sort them. 

2 - Create an empty file called temp. At this time we have 

three files: the input file, the sorted file, and the temp file in 

addition to the sorted data in RAM. 

3 - Merge the data in RAM with the data in the *.source 

file into the temp file as follows: 

a) Read the first record from RAM and the first record in the 

sorted file, compare them and write the smallest record 

into the temp file. These records cannot be equal because 

the input file does not have duplicate records; if the sub-

sequences are equivalent the locations are different.  

b) Read the next record from the file of the record written to 

the temp file, compare the two records and write the 

smallest one to the temp file until one of the two files is 

totally processed. 

c) Add the remaining records of the other file to the temp 

file. 

d) Close both files. 

e) Rename the temp file with the name of *.sorted file. At 

this time the *.sorted file will contain the sorted records 

from the temp file and the temp file will not exist.  

f) Continue this process until the input file is totally 

processed. 

 



*.sorted
External
Storage

*.unsorted    sort 
External         in
Storage       RAM 

Merge

Temp

=

Continue

Rename
 

Figure II. Merge Step External Sort  

 

Validation: The unsorted input file must have the same 

amount of records of the sorted output file. 

The sorted output file must not have duplicate records. The 

record is made of two fields, the sub-sequence and its index. 

Indexes are unique therefore there should not be duplicate 

records. 

Reduction Step: This last step generates the final files that 

will be used to create multiple applications to be used for 

further research. 

In Figure III the *.sorted column represents the *.sorted 

External Storage column of Figure II. The *.sorted column 

represents a data files with two columns. The first column, 

called the key column, contains the sorted sub-sequences and 

the second column, called the values column, is the location, 

in the original DNA, RNA, or Protein file, where each sub-

sequence is found.  

The Reduced Sorted column in Figure II represents a file 

where we create unique entries/records placing in the first 

column, the key column, each unique sub-sequence, and in the 

second column, the values column, we merge all locations 

sorted in ascending order.  

The Reduced Sorted Counted column represents one of the 

three final data structures. At the beginning of each record in 

the values column we have added the total amount of locations 

for each unique sub-sequences found in the source input DNA, 

RNA or Protein file. 

*.sorted

aaaa 1003
aaaa 1143
aaaa 12

aaac 101
aaac 11
aaac 1
aaac 23

Reduced Sorted 

aaaa 12 1003 1143

aaac 1 11 23 101

aaaa 3 12 1003 1143

aaac 4 1 11 23 101

Reduced Sorted Counted

 

Figure III. Reduction Step 

 

Splitting File: In our final step we created two new files 

Sub-sequences/keys and Locations/Values, shown in Figure 

IV. These two files are very useful in developing additional 

applications to extend our research. 

 

aaaa 3 12 1003 1143

aaac 4 1 11 23 101

Reduced Sorted Counted

aaaa

aaac

3 12 1003 1143

4 1 11 23 101

Sub-sequences
key

Locations/Values

 

Figure IV. Splitting File Step 

 

Using the file containing the sub-sequences key we have 

developed an application called Signatures that allows us to 

find the differences (signatures) between any types of life 

forms using sub-sequences of any size. The Locations/Values 

file helps us to develop an application to find the distances 

between repeats of unique sub-sequences and predict where 

the repeats can be found. 

IV.RESULTS 

Our Framework converts raw data files into files 

containing large amount of well-organized information, which 

is very easy to use in the development of new applications that 

will further our research. We created several applications 

using our framework. We created several applications using 

our framework.  



Signatures: Computationally we performed exact 

comparisons of DNA, RNA and amino acid sequences of any 

length, using multiple biological life forms. Finding signatures 

in multiple genomes, bacteria or viruses is the process of 

discovering what sub-sequences exist in one sample but not in 

the other, which showed us the differences between samples. 

We selected many types of Genomes and extracted sub-

sequences of multiple lengths creating their corresponding 

data structures, then using our signatures application we 

compared each sample against the others finding their 

Signatures. 

Gene Prediction: By examining the dark matter areas in 

the above bacteria, we can predict the location of currently 

unknown genes. 

Disease Progress: We were able to compare sub-sequences 

from the same biological subjects at different times to track 

changes. 

Genomic Fingerprints Libraries: Using genomes of 

organisms that can potentially be used as biological weapons, 

we can create libraries of genetic fingerprints to be used in the 

rapid detection of bio-warfare threats and take corrective and 

immediate medical measures.  

Creating genetic fingerprints libraries of known bacteria, 

viruses, and tumors, which are currently cured with known 

treatments or medications, will allow us to search for those 

fingerprints in other genomes and apply the known cures to 

new diseases. These fingerprints can also be useful to identify 

the source of drug resistance. 

Predict Repeat Locations: Since we know the locations of 

all sequence repeats, we were able to mathematically predict 

the possible repeat locations in the above bacteria.  
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