
Processing Very Large Genomic Files

Michael Robinson

School of Computer Information Science

Florida International University

Miami, Florida, USA

michael.robinson@cs.fiu.edu

Abstract—We have developed a computational framework

called GenoPro that allows us to process very large genomic

files from multiple formats such as NGS, fasta, and GBK,

extracting DNA, RNA and Protein sub-sequences of any

length, limited by the storage size or operating system.

GenoPro creates a data structure that contains sub-

sequences of any size used to develop new tools that allow us

to understand not only our human genome but any life form's

genome.

Keywords – Gigabytes, Terabytes, Genome, Sub-Sequence.

I.INTRODUCTION

The Genome Project started in 1990 and completed in

April 2003 sequenced the human genome producing files of

about 3.2 Gigabytes. During the next 10 years a new

sequencing method called Next Generation Sequencing (NGS)

was created producing files of over 1.4 Terabytes. It is

expected to produce files larger than 10 Terabytes in size. In

addition there are many other current projects such as the 1000

Genomes Project and the manufactures of the NGS machines

sequence many genomes with data in the Petabytes. Just like

in many other disciplines, Biology has very large amounts of

Genomic data that needs to be studied.

Out of the 3.2 billion nucleotides in the human genome

over 95% is unknown and we call it dark matter[1]. The recent

completed five-year project called Encyclopedia of DNA

Elements (ENCODE) concluded that about 80 percent of the

human genome is active and it is not just junk DNA as it was

previously called. If ENCODE was presented in graphical

form, the data it has generated so far would fill a poster 30

kilometers long and 16 meters high[2]. There is a great

amount of information and knowledge to be discovered from

these results.

In this modern age of genomics vast quantities of

information are generated but are associated with uncertainty

in significance. Biologists do not have the wherewithal to

identify computationally the portions of the genome that are

significant to biologic disease processes and the information

science experts do not have enough knowledge of these

biologic processes to accurately model how to extract the

relevant information. This difficulty is present in a setting of

ever increasing production of data. Therefore, any efforts

between biologists/clinicians and computational experts to

better understand genomic data will be of significant potential

benefit to patient care and survival. It is our goal to provide a

data structure that will allow scientists with little

computational knowledge to find patterns and discover new

information that can be proven in their biological labs.

GenoPro will also help Computational Scientists develop

sophisticated new tools to solve more complex tasks.

II.PREVIOUS WORK

One the major challenges in studying the vast amount of

Genomic data available is to arrange it in a way that is easy to

use by non-Computational Scientists, our goal has been to

create a framework that will do that.

Discovery and Annotation of Repeats, Signatures, and

Patterns in Genomic Sequences[3] uses the new biobuckets

sort method to produce indexed data files of extracted sub-

sequences of length up to 5 bases, to find Signatures among

genomes.

Finding Repeats and Signatures in Genomic Sequences[4]

is able to find exact signatures between five strains of

Pseudomonas Aeruginosas bacteria utilizing MPI Clusters,

totaling 20 comparisons. Each set of genomes had pre-

processed indexes which we created using Suffix Arrays.

Discovery and Annotation of Repeats, Signatures, and

Patterns in Genomic Sequences[5] uses own framework can

find exact Signature of any size from Genomes of any size.

Discovery and Annotation of Repeats, Signatures, and

Patterns in Genomic Sequences[6]. Creation of new

Framework to extract sub-sequences of any size from

Genomes of any size, applied to Signatures and Repeats.

Applied Genomic Signatures and Patterns[7] shows how to

find signatures of any length from input data files of any size.

Discovering Unknown Genes[8] uses the GenoPro

framework to processes raw Genomic Data of any size.

III.METHODS

Input Data Files: Our framework's algorithms have been

implemented in Java using genomic data text files of multiple

formats and sizes as input as seen in TABLES I-III. Some of

these input files can be larger than one Terabyte in size.

TABLE I. FASTA GENOMIC DATA SAMPLE

Fasta Format: >gi|88944472|ref|NW_921350.1| Homo sapiens

chromosome 1 genomic contig, alternate assembly Hs_Celera

211000035831330, whole genome shotgun sequence

TCACCTGGGTGTGTGGGTGCCGTTCCAGGCTGTCAGAGCT

CGCGTGGGGGTGTGGGTGCTGCTCCAGGCT

TABLE II. NGS GENOMIC DATA SAMPLE

NGS Format:

@ERR030881.107 HWI-BRUNOP16X_0001:2:1:13663:1096#0/2

CGGATTTCAGCTACTGCAAGCTCAGTACCACACAAGCTCG

ATGTG

+

HH;HHHHHGHHHHHHHHHHGHDHE

TABLE III. GBK GENOMIC DATA SAMPLE

GBK Format:

LOCUS NC_020912 6421010 bp DNA circular CON 11-JUN-2013

DEFINITION Pseudomonas aeruginosa B136-33, complete genome.

User Input Batch Files: The files described in TABLE IV

are created by the users with any editor like notepad or VI and

they can have any name. These batch files will contain the

location and names of the input DNA, RNA or Protein files to

be processed, the length of the subsequences to be extracted

from these files, the amount of RAM needed to process each

Genomic input file, and all necessary documentation

information about the job being processed. It can contain

unlimited amount of lines written in any sequence.

Documentation lines start with one or more spaces or double

slashes //. These lines will be ignored by our framework and

are used to describe the job at hand.

TABLE IV. User Batch File

 //===== Hospital ABC inv#4523 =====

 // data received on dd/mm/yy

 /hs/brain_1.fastq 36 500,000,000

 /hs/brain_1.fastq 200 900,000,000

 /hs/brain_2.fastq 87 500,000,000

 /hs/brain_2.fastq 100 750,000,000

Our framework first accepts the previous User Input Batch

File and then parses its contents to determine how to process

each input data file. By examining each Genomic input data

file, we determine the data type each file holds, such as fasta,

fastq/ngs, or gbk, and then we process them accordingly.

First we extract the DNA, RNA or Proteins from these

files as shown in TABLE V.

TABLE V. EXTRACTED INPUT DATA

TCACCTGGGTGTGTGGGTGCCGTTCCAGGC

AGAGCTCGCGTGGGGGTGTGGGTGCTGCTG

CTTCACCTGGGTGTGTGGGTGCCGTTCCAG

AGAGCTCGCGTGGGGGTGTGGGTGCTGCTG

Then we partition this data into sub-sequences of any user

selected length.

TABLE VI. SUB-SEQUENCES OF LENGTH 15

TCACCTGGGTGTGTG

 CACCTGGGTGTGTGG

 ACCTGGGTGTGTGGG

 CCTGGGTGTGTGGGT

 CTGGGTGTGTGGGTG

 TGGGTGTGTGGGTGC

 GGGTGTGTGGGTGCC

 GGTGTGTGGGTGCCG…..

Validation: Using the following formula we validate the

total amount of extracted sequences from each file, where

SeqLen denotes the length of the user selected sequence and n

the length of the original genomic sequence.

SeqLen * ∑
n=1

n+1�SeqLen

SeqLen

In TABLE VII we show the small sequence “ACGTACG“

being partitioned into sub-sequences of length 2. When we

apply the previous formula to this small sequence we validate

that the total amount of bases/bytes in the sub-sequence file

corresponds to its source file, in this case the small sequence

“ACGTACG“.

TABLE VII. SUB-SEQUENCES OF LENGTH 2

ACGTACG

AC

 CG

 GT

 TA

 AC

 CG

7

2

2

2

2

2

2

As we produce these sub-sequences we create a new text

file with their locations in the original input file. We name this

new file using the genome's name, data format, and sub-

sequence length. If the genome's file name is example, of fasta

data type and sub-sequences of length 2, its name will be

sample_fa_2

TABLE VIII. SUB-SEQUENCES OUTPUT FILE SAMPLE_FA_2

SUB-SEQUENCES

AC

CG

GT

TA

AC

CG

Location

0

1

2

3

4

5

Sorting: Our previous unsorted file becomes the input for

the next step which sorts it contents alphabetically creating a

new text file. We call this method “external sort” which

allows us to sort files of any size, limited only by the size of

the external storage devices used.

The name for the new output file is the name of the input

file plus a dot and the word “sorted".

TABLE IX. SORTED SUB-SEQUENCES OUTPUT FILE

SAMPLE_FA_2.SORTED

SUB-SEQUENCES

 AC

AC

CG

CG

GT

TA

Location

0

4

1

5

2

3

These sorted files can be in the thousands of gigabytes in

size.

Our external sort needs two additional external files, each

with the maximum space equal to the original sub-sequences

file. The following describes in detail our external sort

algorithm used in our framework.

In the initial user input file called “User Input Batch Files”

and used to pass information to our framework, we pass the

amount of RAM requested for each input data file. If the RAM

size requested is 2 gigs, we find the length of each record in

each input file and divide 2 gigs by the sub-sequence length

finding the amount of records we can have in RAM at one

time in each sorting step.

The first process in our external sort, see Figure I, reads

the amount of records that fit inside the reserved RAM,

placing them into an Array List and then using the Java

Collection.Sort, an in-place sort, we sort this Array List and

proceed to write this sorted data into a new external file, see

TABLE IX, named using the genome's name plus the sub-

sequence length, a period and the word sorted, from now on

referred as the *.sorted file. This file will contain all the sorted

data. This process is used only once.

*.sorted
External
Storage

*.unsorted sort
External in
Storage RAM

Copy

Figure I. First Step External Sort

We now start repeating the following steps until we

process the entire input file, see Figure II.

1 - Clear the Array List and re-load it with the next batch

of records from the input file and sort them.

2 - Create an empty file called temp. At this time we have

three files: the input file, the sorted file, and the temp file in

addition to the sorted data in RAM.

3 - Merge the data in RAM with the data in the *.source

file into the temp file as follows:

a) Read the first record from RAM and the first record in the

sorted file, compare them and write the smallest record

into the temp file. These records cannot be equal because

the input file does not have duplicate records; if the sub-

sequences are equivalent the locations are different.

b) Read the next record from the file of the record written to

the temp file, compare the two records and write the

smallest one to the temp file until one of the two files is

totally processed.

c) Add the remaining records of the other file to the temp

file.

d) Close both files.

e) Rename the temp file with the name of *.sorted file. At

this time the *.sorted file will contain the sorted records

from the temp file and the temp file will not exist.

f) Continue this process until the input file is totally

processed.

*.sorted
External
Storage

*.unsorted sort
External in
Storage RAM

Merge

Temp

=

Continue

Rename

Figure II. Merge Step External Sort

Validation: The unsorted input file must have the same

amount of records of the sorted output file.

The sorted output file must not have duplicate records. The

record is made of two fields, the sub-sequence and its index.

Indexes are unique therefore there should not be duplicate

records.

Reduction Step: This last step generates the final files that

will be used to create multiple applications to be used for

further research.

In Figure III the *.sorted column represents the *.sorted

External Storage column of Figure II. The *.sorted column

represents a data files with two columns. The first column,

called the key column, contains the sorted sub-sequences and

the second column, called the values column, is the location,

in the original DNA, RNA, or Protein file, where each sub-

sequence is found.

The Reduced Sorted column in Figure II represents a file

where we create unique entries/records placing in the first

column, the key column, each unique sub-sequence, and in the

second column, the values column, we merge all locations

sorted in ascending order.

The Reduced Sorted Counted column represents one of the

three final data structures. At the beginning of each record in

the values column we have added the total amount of locations

for each unique sub-sequences found in the source input DNA,

RNA or Protein file.

*.sorted

aaaa 1003
aaaa 1143
aaaa 12

aaac 101
aaac 11
aaac 1
aaac 23

Reduced Sorted

aaaa 12 1003 1143

aaac 1 11 23 101

aaaa 3 12 1003 1143

aaac 4 1 11 23 101

Reduced Sorted Counted

Figure III. Reduction Step

Splitting File: In our final step we created two new files

Sub-sequences/keys and Locations/Values, shown in Figure

IV. These two files are very useful in developing additional

applications to extend our research.

aaaa 3 12 1003 1143

aaac 4 1 11 23 101

Reduced Sorted Counted

aaaa

aaac

3 12 1003 1143

4 1 11 23 101

Sub-sequences
key

Locations/Values

Figure IV. Splitting File Step

Using the file containing the sub-sequences key we have

developed an application called Signatures that allows us to

find the differences (signatures) between any types of life

forms using sub-sequences of any size. The Locations/Values

file helps us to develop an application to find the distances

between repeats of unique sub-sequences and predict where

the repeats can be found.

IV.RESULTS

Our Framework converts raw data files into files

containing large amount of well-organized information, which

is very easy to use in the development of new applications that

will further our research. We created several applications

using our framework. We created several applications using

our framework.

Signatures: Computationally we performed exact

comparisons of DNA, RNA and amino acid sequences of any

length, using multiple biological life forms. Finding signatures

in multiple genomes, bacteria or viruses is the process of

discovering what sub-sequences exist in one sample but not in

the other, which showed us the differences between samples.

We selected many types of Genomes and extracted sub-

sequences of multiple lengths creating their corresponding

data structures, then using our signatures application we

compared each sample against the others finding their

Signatures.

Gene Prediction: By examining the dark matter areas in

the above bacteria, we can predict the location of currently

unknown genes.

Disease Progress: We were able to compare sub-sequences

from the same biological subjects at different times to track

changes.

Genomic Fingerprints Libraries: Using genomes of

organisms that can potentially be used as biological weapons,

we can create libraries of genetic fingerprints to be used in the

rapid detection of bio-warfare threats and take corrective and

immediate medical measures.

Creating genetic fingerprints libraries of known bacteria,

viruses, and tumors, which are currently cured with known

treatments or medications, will allow us to search for those

fingerprints in other genomes and apply the known cures to

new diseases. These fingerprints can also be useful to identify

the source of drug resistance.

Predict Repeat Locations: Since we know the locations of

all sequence repeats, we were able to mathematically predict

the possible repeat locations in the above bacteria.

V.REFERENCES

[1] B. Franklin Pugh, Bryan Venters. The Origins of Genomic Dark Matter,
2013

[2] Malcolm Ritter, Associated Press DNA research may offer clues into
disease, 2012

[3] Michael Robinson, Discovery and Annotation of Repeats, Signatures,
and Patterns in Genomic Sequences. Michael Robinson et al. 5th
International Symposium on Bioinformatics Research and Applications
(ISBRA09), Nova Southeastern University, Ft. Lauderdale, Florida,
USA. May 2009.

[4] Michael Robinson, Guangyuan Liu, Camilo Silva, Masoud Sadjadi,
Hector Duran4 and Giri Narasimhan. Finding Repeats and Signatures in
Genomic Sequences. ISBRA May 2009.

[5] Michael Robinson, S.S.Iyengar and Puneeth Iyengar Discovery and

Annotation of Repeats, Signatures, and Patterns in Genomic Sequences.

SBEC 2013 29th Southern Biomedical Engineering Conference. 2013

[6] Michael Robinson. Discovery and Annotation of Repeats, Signatures,

and Patterns in Genomic Sequences Journal “unpublished”

[7] Michael Robinson. Applied Genomic Signatures and Patterns.

“unpublished”

[8] Michael Robinson. Discovering Unknown Genes. “unpublished”

