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ABSTRACT
Online app search optimization (ASO) platforms that provide bulk
installs and fake reviews for paying app developers in order to fraud-
ulently boost their search rank in app stores, were shown to employ
diverse and complex strategies that successfully evade state-of-the-
art detection methods. In this paper we introduce RacketStore,
a platform to collect data from Android devices of participating
ASO providers and regular users, on their interactions with apps
which they install from the Google Play Store. We present measure-
ments from a study of 943 installs of RacketStore on 803 unique
devices controlled by ASO providers and regular users, that con-
sists of 58,362,249 data snapshots collected from these devices, the
12,341 apps installed on them and their 110,511,637 Google Play
reviews. We reveal significant differences between ASO providers
and regular users in terms of the number and types of user accounts
registered on their devices, the number of apps they review, and
the intervals between the installation times of apps and their re-
view times. We leverage these insights to introduce features that
model the usage of apps and devices, and show that they can train
supervised learning algorithms to detect paid app installs and fake
reviews with an F1-measure of 99.72% (AUC above 0.99), and de-
tect devices controlled by ASO providers with an F1-measure of
95.29% (AUC = 0.95). We discuss the costs associated with evading
detection by our classifiers and also the potential for app stores to
use our approach to detect ASO work with privacy.

CCS CONCEPTS
• Security and privacy → Social network security and pri-
vacy; Social aspects of security and privacy;
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1 INTRODUCTION
The global mobile application market is worth hundreds of billions
of USD and is expected to grow by more than 10% per year un-
til 2027 [22]. To stand out among millions of apps hosted in app
stores [8, 24] and get a share of this market, many app developers
resort to app search optimization (ASO) to increase the rank of their
apps during search. ASO platforms use a variety of techniques to
achieve this [83], including providing retention installs [12] and
posting fake reviews [3, 7]. Such activities can be illegal in coun-
tries like the US [1], Canada [14], Australia [77], are banned in
the EU [16], violate the terms of service of app stores [2, 11], and
influence users to install and purchase low quality apps and even
malware [46, 68, 80].

Identifying ASO-promoted apps and the accounts from which
they are promoted allows app stores to filter fake reviews and
ratings, generate more accurate install count and aggregate rating
values thus compute more accurate search ranks for apps, and
enable users to make better informed app-installation decisions.

A key to achieve this is to build an accurate understanding of
the behaviors and strategies employed by fraudulent app search
optimization (ASO) workers. In previous work, Farooqi et al. [38]
have shown that incentivized app install platforms (IIP) are able
to provide thousands of installs that successfully evade Google
defenses. Rahman et al. [67] have reported a variety of detection-
avoidance techniques employed by organizations that specialize
in retention installs and fake reviews. Such techniques include
crowdsourcing ASOwork to organic workers, who use their personal
devices to conceal ASO work among everyday activities.

Identifying organic ASO activities is an open problem due to the
ability of such workers to evade existing detection solutions, e.g.,
that leverage lockstep behaviors [32, 43, 51, 72, 73, 78, 85, 86, 89,
92, 93] or review bursts [27, 28, 35, 39, 40, 42, 44, 45, 50–53, 53, 57–
59, 65, 66, 84, 87, 88, 92].

In an effort to determine whether solutions can be developed
to detect these ASO strategies, in this paper we seek to measure
and compare the device and app usage of ASO workers and regular
users. Our work is partially motivated by Farooqi et al. [38]’s finding
that ASO workers lack interest in the apps that they promote. We
conjecture this also results in, e.g., workers posting reviews for
promoted apps soon after installing them, see Figure 1.

To enable such measurements, we develop RacketStore, a plat-
form to collect and analyze app and device-use data from consenting
ASO workers and regular users. The RacketStore mobile app peri-
odically collects data from the devices where it is installed, e.g., the
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Figure 1: On-device app interaction timelines for two ASO
workers (top) and one regular user (bottom). Worker time-
lines start with the app installation event (type 4 on y axis),
followed by several review posting events across several
days (type 3), with no interaction with the app. In contrast,
the regular user timeline shows frequent interaction with
the app, e.g., placing the app in the foreground (type 2 event),
but no review even after 5 days of monitoring.

foreground app and the list of installed apps with 5s granularity,
and the types and number of registered accounts, with 2 min granu-
larity. The RacketStore server aggregates this information with data
collected from the Play Store and VirusTotal [15]. RacketStore first
discloses the types of data it collects. RacketStore collects the data
only after receiving participant consent (§ 4.1 and Appendix D).

We present measurements from a study of ASO workers and
regular users recruited to keep the RacketStore app installed on
their devices for at least two days. In total, RacketStore was installed
943 times on 803 unique devices: 580 devices controlled by ASO
workers recruited from Facebook groups that specialize in ASO
work, and 223 devices of regular Android users recruited through
ads purchased in Instagram.We have collected 58,362,249 snapshots
from the participating devices, including their 12,341 apps installed
and in-use, and their 110,511,637 reviews from the Play Store.

We found that ASO work continues to be successful and evade
app store detection: The worker-controlled devices of participants
in our studies had 10,310 Gmail accounts registered on them and at
the time of writing, Google Play was still displaying 217,041 reviews
posted from them.

Measurements reveal that many participant ASO worker devices
have organic-indicative behaviors, i.e., similar to those of regu-
lar devices, in terms of their app churn (daily installed and unin-
stalled apps), permissions granted, the total number of installed
apps, stopped apps, or daily used apps. However, we found sig-
nificant differences between regular user and worker-controlled
devices in terms of their number and types of registered accounts,
the number of apps reviewed, and the intervals between the in-
stallation times of apps and their review times. This suggests that
the constraints associated with ASO work provide opportunities to
detect even organic workers.

To validate this, we leverage our findings and the RacketStore-
collected data to develop features that model the interaction of
a user with a device and the engagement of the user with the
apps installed on the device. We found that supervised learning
algorithms trained with these features distinguish between apps
installed for promotion purposes and those installed for personal
use, thus detect incentivized installs and fake reviews, with an F1-
measure of 99.72% and AUC over 0.99. Further, our classifiers detect
worker-controlled devices with an F1-measure of 95.29% and AUC
of 0.95.

We found that 69.1% of the worker devices that we analyzed
have organic-indicative behaviors, while the remaining devices
were seemingly used exclusively for app promotion activities. This
suggests that our device and app-engagement features can train
classifiers to accurately detect not only promotion-dedicated de-
vices but even elusive organic ASO efforts that hide low levels of
app promotion activities among regular, personal use of devices
and of the apps installed therein.

We note that to protect user privacy, the proposed classifiers can
execute directly on the user device (e.g., implemented into the Play
Store app). Locally-running classifiers can access sensitive app and
device usage data and do not need to report it remotely (§ 9).

In summary, we introduce the following contributions:
• RacketStore. We develop a platform to collect information
about the interaction of users with their Android devices
and the apps installed therein, with user consent. Racket-
Store was compatible with 298 device models from 28 An-
droid manufacturers [§ 3]. The RacketStore code is available
at [10].

• App andDeviceUseMeasurements. We presentmeasure-
ments from a study of the device and app use of regular users
and ground truth ASO workers, through a deployment of
RacketStore on 803 unique devices [§ 4]. We build datasets
of app and device usage, integrated with Google Play reviews
and VirusTotal analysis. We present findings from this data
in the context of feedback obtained from participants during
a follow-up discussion [§ 6].

• Fraud Detector and Classifier. We introduce novel fea-
tures that model the user interaction with devices and in-
stalled apps and use them to train classifiers to detect ASO
activities [§ 7] and worker-controlled devices [§ 8]. We re-
port differences in app and device-engagement for workers
and regular users that explain the accuracy of the classifiers.

2 SYSTEM MODEL
We consider the ecosystem depicted in Figure 2. In the following
we describe its main components.
TheApp Store andConsumers.We focus ourwork on theGoogle
Play app store [6]. Consumers use the pre-installed Play Store app to
search and install other apps on their Android devices. A consumer
can register multiple accounts on an Android device, including
Gmail and other services. The consumer is then able to post re-
views for an app, from all the Gmail accounts registered on the
device where the app was installed.
AppDevelopers. Developers upload their apps on the Play Store [6].
To monetize these apps while facing intense competition, they need



Figure 2: System model. Developers recruit ASO platforms
to promote their apps in app stores. ASO platforms leverage
in-house, dedicated workers, and organic workers accessed
through communication boards to install and review apps.

to achieve top-5 rank in keyword searches [25]. Some of the factors
with most impact on search rank are the number of installs and
reviews, and the aggregate rating of the app: 80% of consumers
check reviews and ratings before installing an app [34], and a 1-
star increase in aggregate rating was shown to increase app store
conversion by up to 280% [83].
ASO Organizations. Many developers hire specialized app search
optimization (ASO) organizations to improve the search rank of
their apps. While some ASO organizations are white hat [25], pro-
viding advice on e.g., app naming and keyword optimization, oth-
ers provide illegal, banned or discouraged services that include
installing an app on many devices and keeping it installed for pro-
longed intervals, a.k.a., retention installs, and writing fake reviews
with high ratings.

We consider the ASO organizations studied in [67], see Figure 2,
that employ combinations of (1) ASO admins who organize and co-
ordinate communities of workers, and act as intermediaries between
developers and workers, (2) professional workers who use multiple
devices and accounts dedicated to ASO work, and (3) organic work-
ers who blend product promotion with personal activities from
their devices and accounts. In the following we informally use the
terms organic device and account, to denote devices and accounts
used by organic workers.

Developers can either directly hire ASO organizations or post
jobs in online boards dedicated to ASO work, see next.
ASO Communication Boards. Communications between devel-
opers, admins and crowdsourced workers often occur through dedi-
cated online boards in e.g., Facebook, WhatsApp, Telegram [67], see
Figure 2. In this paper we recruited participants through Facebook
groups that we identified using Facebook’s search functionality
(using keywords that include reviews, google reviews, app reviews,
app installs, android promotion) to identify relevant groups.

We found 11 public and 5 closed groups that matched our criteria.
We became members of the public groups and sent requests to
closed groups which were all accepted. These groups had 86,718
members (Min = 354, Max = 26896, M = 2840.5, SD = 6787.96) in
total. We detail our recruitment process in § 4.

3 MEASUREMENTS INFRASTRUCTURE
We have built the RacketStore platform to measure and compare the
app and device usage of ASOworkers and regular users. RacketStore

consists of a mobile app to be installed by study participants on
their Android devices, a web app to collect and validate data from
the installed app, and database servers to store the data, see Figure 3.
In the following we describe the main components of RacketStore.
RacketStore Mobile App. We have developed the RacketStore
app in Android to help us investigate fraudulent and honest behav-
iors of Google services users. The app needs to be installed by study
participants on their devices. Upon first start-up, the app displays
the consent form (see Appendix C for excerpts) which the partici-
pant needs to approve. Then, to comply with the Google anti-abuse
policy [23], the app asks for explicit consent of our privacy policy
(Figure 18(a) in Appendix C) then shows an in-app disclosure of
the data being collected (Figure 18(b)). In the following we detail
the main components of the rest of the app.

The sign-in interface asks the participant to enter a unique
participant ID, a 6-digit code, that we send upon recruitment (§ 4)
through a different channel, i.e., e-mail or Facebook messenger.
This code serves the dual goal of preventing RacketStore use by
non-recruited users, and of allowing us to match data and send
payments to the correct participants. The passcode is given only
after the user has accepted to participate in our study and has
agreed to the data collection process. RacketStore does not collect
any information if the user has not entered the 6-digit passcode.
Upon sign-in, the app generates the install ID, a 10-digit random
identifier.

The initial data collector module operates once the app has
been installed and the user has used the sign-in interface to enter
the participant ID. It retrieves the list of other apps installed on
the device, and device information including Android API version,
device model, manufacturer, and Android ID [21].

Following the installation of the RacketStore app, the snapshot
collector module periodically collects information with two lev-
els of granularity, slow and fast. The slow snapshot collector is
triggered by an alarm every 2 minutes, and collects (1) identifiers:
Install ID, participant ID, and Android ID, (2) registered accounts,
the accounts registered on the device across different services, (3)
device status, i.e., save mode status (on/off), and (4) stopped apps,
the list of stopped apps. Starting with Android 3.1 all applications
upon installation are placed in a stopped state: the application will
only run after a manual launch of an activity, or an explicit intent
that addresses an activity, service or broadcast. The user can also
manually force stop an app.

The fast snapshot collector module further activates every 5s
and collects (1) identifiers, i.e., install ID and participant ID, (2) the
foreground app currently running on the device foreground, (3)
the device status, i.e., the screen status (on/off) and battery level,
and (4) app install/uninstall events, i.e., deltas between the current
and previously reported sets of installed apps. For each installed
app we collect the install time, the last update time, the required
permissions and the MD5 hash of the app apk file.

RacketStore requires participants to explicitly grant two per-
missions, PACKAGE_USAGE_STATS and GET_ACCOUNTS [9]. Partici-
pants can accept any subset of the requested permissions. If they
do not grant a permission, we do not collect the corresponding
data. RacketStore also uses install-time permissions (GET_TASKS,
RECEIVE_BOOT_COMPLETED, INTERNET, ACCESS_NETWORK_STATE, and



Figure 3: RacketStore architecture consists of a mobile app installed by participants and a back-end server that collects and
aggregates snapshots reported by deployed apps.

WAKE_LOCK) that are automatically grantedwhen the app is installed.
The RacketStore app was approved as compliant by the Play Store.
Data Buffer Module: Snapshot Processor. The data buffer mod-
ule (see Figure 3) leverages the device storage to process both types
of snapshots. The snapshot data is written to different accumulating
files depending on the snapshot type. When the slow snapshot accu-
mulation file reaches 8KB and the fast snapshot file reaches 100KB,
this module compresses the file and creates a new accumulation
file to store the following snapshots. We selected these threshold
values based on the observed battery and bandwidth consumption,
which we sought to minimize.

The slow snapshot alarm that fires every 2 minutes looks for any
existing compressed files in the mobile app’s directory and sends
them to our server. To enable resilient communications, upon file
reception, the server returns the crypto hash of the received data in
order for the mobile app to validate the transfer with its own hash
calculation. If the hashes are equal, the data buffer module deletes
the file.
Device Compatibility. The RacketStore app was targeted for de-
vices with Android version 9 (compile SDK and target SDK version
are Android Pie, API level 28) and is compatible with devices with
Android version at or above Lollipop (min SDK version = 5, API
level 21). In our deployment study (§ 4), RacketStore was compatible
with 298 unique device models from 28 Android device manufactur-
ers. The top 5 most popular Android manufacturers were Samsung,
Huawei, Oppo, Xiaomi, Vivo).
RacketStore Web App. We have built a web app that supports
RacketStore on the server side, see Figure 3. The Sign-in component
processes registration requests from the client app, interacts with
the Mongo database where the credentials are stored and sends the
response back to the client. The snapshot collector engine receives
the compressed snapshot files from the app, decompresses, and
inserts them into the database. The backend component consists
of two subsystems: (1) a review crawler that scraps reviews from

Google Play given an app name and a device model and (2) a Google
ID crawler that maps Gmail accounts to a unique Google ID (see
§ 5). The internal dashboard allows researchers to monitor the data
collection process, and test and validate the data sent from the app
to the server. Our stack is Linux-based and built on Python, PHP,
JavaScript, MongoDB, and MySQL. The recruitment website is an
informative website where we offer information to participants
about our study, ask for consent, and collect their emails to send
instructions on how to proceed (§ 4).
Security and Privacy Risks of RacketStore. RacketStore uses
TLS to encrypt all collected data while in-transit. We also securely
store all participant data on a server that is accessible from only 4
IP addresses in our campus. Further, RacketStore does not collect
any information if the user has not entered a 6-digit passcode. Each
study participant received a unique, random code. Participants can
deny access to any of the two permissions requested by RacketStore.

RacketStore minimizes collected Personal Identifiable Informa-
tion (PII) by only collecting PII that is needed for the study. Table 3
summarizes the participant PII that RacketStore collected, the rea-
sons for the collection and how long it was stored.

4 DATA COLLECTION
In order to collect app and device usage, we deployed RacketStore
with a group composed of both ASO workers and regular Google
Play users. In this section we detail our recruitment process and
discuss ethical considerations.
Recruitment of ASO Workers. We recruited ASO workers from
Facebook groups that we found to be dedicated to product promo-
tion (see § 2). Specifically, we posted calls to recruit participants
who would be able to install and provide reviews. Many group
members commented on our posts, expressed their interest, and
asked us to communicate with them over the Facebook inbox for
further details. We contacted such members over the Facebook



inbox. We shared with them the details of the recruitment instruc-
tions which we include in Appendix B. We asked them to reply if
they were interested and also to answer screening questions, i.e.,
confirm that they have posted paid reviews, specify how many
devices and accounts they have and on how many devices they can
install RacketStore.

We sent to each prospective participant, their participant ID (§ 3)
and a YouTube video that explains how to sign up for RacketStore.
We have received 672 installs from 549 unique worker-controlled
devices.
Recruitment of Regular Users. We have recruited regular An-
droid device users through commercial advertisements on Insta-
gram (see Figure 16 in Appendix B) that point to a landing page
that explains the study (see Figure 17(a) Appendix B). We chose
Instagram in order to minimize the exposure of Facebook groups
of ASO workers to our ads.

We posted the ads intermittently between December 17, 2019 and
April 15, 2020, spending a total of $79.23. Since cultural differences
could affect patterns in mobile device use [17, 82], we targeted reg-
ular users of similar demographic with the recruited ASO workers.
Concretely, we used Facebook’s audience creation functionality to
ensure that our ads were shown only to mobile devices of Insta-
gram users who are from the countries of the above workers, are
between 18 and 40 years old, speak English, and show interests
related to Google Play and Android applications as specified on
their Facebook profiles.

According to the Facebook Ads Manager, our ad was shown a
total of 136,022 times and reached 61,748 users. 2,471 of these users
clicked on the Instagram ad and made it to our landing page. The
landing page introduces our study, explains the payment method
(i.e., Paypal, Bitcoin or Litecoin), presents the consent form, and
allows visitors to either withdraw or sign up. To sign up, a visitor
needs to acknowledge and agree with the terms and conditions that
are included in the consent form explaining in detail the information
that we would collect from their phones (see § 4.1 for more details).
If the visitor consents, the landing page asks them to register in the
study by submitting their email address.

Of the consenting visitors, we have filtered out those who
claimed to have written paid reviews in Google Play (question
1 in the recruitment message, see Appendix B) and who claimed to
be administrators (question 6).

To each of the remaining 614 visitors, we sent an automatic
confirmation email along with the Google Play link to download
the RacketStore app (§ 3) and a six-digit unique participant ID
that the participant would need to type-in to the app. RacketStore
received 233 installs from these participants.
Participant Payments. We paid each participant who installed
RacketStore on a per device basis: $1 to install the app and $0.2
for each day on which the participant kept the app installed. The
process of registering in the study, providing consent and installing
RacketStore takes an average of 3 minutes. Participation does not
require any subsequent user interaction. We paid participants in
our follow-up study $5 for each 15 minutes of their time.

Overall, we recruited a ground truth set of 587 ASO workers
and 233 regular users. The participants used IP addresses from
Pakistan (420), India (210), Bangladesh (148), USA (10) and other
countries from Africa, Asia, South America and Europe (15). The

distribution of Worker (W) and Regular (R) participants for the
most represented countries was as follows: Pakistan (W: 364, R: 56),
India (W: 57, R: 153), Bangladesh (W: 143, R: 5) and USA (W: 8, R: 2).
We note that IP addresses can only provide an approximate measure
of geolocation [56]. The RacketStore app did not collect location
information from participant devices thus we cannot corroborate
this information.

4.1 Ethical Considerations
SomeASOwork is considered unethical according to several ethical
frameworks, and many ASO workers belong to low-paid vulnerable
groups. This is why our study took utmost care to follow the best
ethical practices for conducting sensitive research with vulnera-
ble populations [30]. We did not use any deception in our study.
Participation in this study was completely voluntary. We did not
ask any participant to write reviews for any app, including for the
RacketStore app. We included the consent form both in the land-
ing page for our study and in the RacketStore app (see excerpts
in Appendix C). The consent form explicitly mentions the iden-
tity of the researchers, the research objectives, the data that we
wanted to collect, and the potential impacts on participants, in-
cluding risks. Our team members were also available to explain
this to the participants if needed. Each participant needed to ex-
plicitly provide consent. The full study procedure was examined
and approved by the Institutional Review Board of our university
(IRB-19-0392@FIU).

In Appendix D we further discuss the privacy policy and per-
missions requested by the RacketStore app, our data protection
procedure, and participant compensation.

5 DATA
We now detail the data collected by RacketStore from 943 devices
between October 2019 and April 2020.
Snapshot Fingerprinting and Coalescing. We used a combina-
tion of the install ID, participant ID and Android ID collected by
RacketStore, along with its install interval to address repeat installs
and suspected incompatibilities of the RacketStore app, see Appen-
dix A. After this process, we identified 803 unique devices: 580
devices controlled by ASO workers and 223 devices controlled by
regular participants recruited through Instagram ads (§ 4).

We have then collected a total of 592,045 slow snapshots and
57,770,204 fast snapshots (§ 3).
Google Play Review Dataset. The review crawler of the Backend
component of RacketStore’s web app (see Figure 3) collects reviews
posted for apps installed on participant devices every 12 hours.
For each of these apps, we collected the most recent reviews by
querying Google Play for reviews sorted by timestamp. The first
time an app was processed, we collected reviews until hitting a
threshold of 100,000 reviews. In subsequent collection efforts, we
collected the most recent reviews until finding a previously col-
lected review. This procedure allowed us to collect reviews “live” as
soon as our RacketStore mobile application discovered a new app
on a participant’s device.

Further, we collected reviews posted by accounts registered on
participant devices. This process uses the Google ID crawler com-
ponent of the Backend API in RacketStore’s web app (Figure 3),



maps e-mail accounts to Google IDs. To achieve this, for each Gmail
account registered on a device, the ID crawler issues requests to
Gmail’s email search functionality. This is because we found that
responses of Gmail’s email search functionality embed the Google
ID. We then list all the apps installed on each device, that are hosted
on the Play Store. Then, for each such app, we search the Google
IDs corresponding to accounts registered on the device, among the
Google IDs collected by the above review crawler from the Play
Store for the app.

We collected 110,511,637 reviews from 12,341 apps installed on
participant devices. Each review includes metadata, e.g., the user’s
Google ID, posting timestamp (1s granularity) and rating.

We also collected 217,041 reviews posted by the 10,310 Gmail
addresses registered on the worker-controlled devices of the par-
ticipants in our studies, with participant consent (§ 4.1). We have
reported to the Google Vulnerability Reward Program (VRP, issue
ID: 156369357) the functionality that we used to collect this data.
More specifically, our finding that responses of Gmail’s email search
functionality embed the user’s Google ID. This allows a third party
with a Gmail address, to obtain the account’s Google ID, then de-
termine if the account has posted a review in the Play Store for any
app of interest. Google responded that this is “intended behavior”
and made the decision “not to track it as a security bug”. We notified
study participants about this data collection (§ 4.1).

6 DEVICE USAGE MEASUREMENTS
We use the data collected from the participant devices (§ 5) to
investigate differences between workers and regular users in terms
of the accounts registered and the apps installed on their devices.

We used the Kolmogorov–Smirnov (KS) test to compare the
distributions of the features, and non-parametric and parametric
ANOVA (Analysis of Variance) to check for significant differences in
themeans across groups. The reason for this is that after performing
the Shapiro test, we can not claim normality for any of the features
(p-value< 0.05). Similarly, after performing the Fligner-Killen test,
we found significant differences in the variances for all the features
(p-value< 0.05). Thus, we have also performed non-parametric
ANOVA since normality is not assumed. We report the result of the
three approaches.

6.1 Participant Engagement
Figure 4 shows the scatterplot of the average number of snapshots
per day vs. the number of active days over the participant devices.
Larger dots denote multiple overlapping devices. The average num-
ber of daily snapshots collected from regular devices is 9,430.71 (M
= 3,097.67, SD = 12,789.14, max = 63,452) and from worker devices
is 8,208.10 (M = 3,669, SD = 10,303.42, max = 55,281.38). The maxi-
mum number of snapshots per day is 55,281.38. We observe that
529 devices have reported at least 100 snapshots per day.

6.2 Registered Accounts
To post a review, a user needs to have a Gmail account. For one
app, a single review can be posted from any Gmail account. We
now investigate differences in the number and types of accounts
controlled by workers and regular users. We expect that workers
will have more Gmail accounts registered on their devices than

Figure 4: Scatterplot of average number of snapshots col-
lected per day vs active days over regular (green), andworker
(red) devices. Dot size indicates the number of overlapping
devices. Most devices report at least 100 snapshots per day.

Figure 5: Comparison of the number and types of accounts
registered on devices controlled by ASO workers and regu-
lar participants. Worker devices tend to have more Gmail
accounts, but fewer account types and non-Gmail accounts
than regular devices.

regular users since this impacts the number of reviews that they
can post.

Figure 5 (left) shows the number of Gmail accounts registered
on the 145 regular and 390 worker devices that have reported such
information. The other participants either did not grant this per-
mission or the server did not receive enough snapshots from their
devices. We found significant differences between regular user and
worker-controlled devices. Worker devices have an average of 28.87
accounts registered per device (M = 21, SD = 29.37); 13 worker
devices have more than 100 Gmail accounts registered, with a max-
imum of 163 accounts per device. In contrast, regular devices have
a maximum of 10 accounts registered (M = 2 , SD = 1.66). The KS
test, and parametric and non-parametric ANOVA found statisti-
cally significant differences between workers and regular users
(p-value< 0.05).

Figure 5 (center) shows the number of different account types
registered on participant devices. On average, regular devices have



Figure 6: Number of installed apps (left), installed and re-
viewed (center), and total number of reviews posted from all
accounts registered (right). We see dramatic differences be-
tweenworker and regular devices in the apps reviewed from
all their registered accounts.
registered accounts for 6 services (max = 19), mostly for different
social networks (Facebook, WhatsApp, Telegram, etc). In contrast,
worker devices have accounts mainly for Google services and other
services useful for ASO work, e.g., dualspace.daemon (to enable
installation of the same app multiple times) and freelancer (to find
work). Both KS and ANOVA analyses reveal significant differences
between workers and regular users (p−value< 0.05) in terms of
their numbers of non-Gmail accounts.

We have followed up with several participant workers. Six of
the ASO workers who replied claimed that they personally own
only 1-4 Google accounts. For instance, one worker said “I have
two accounts. One account is mine, another is my mom’s.” Four other
workers however claimed (and we verified) to control between 10
to 50 Gmail accounts, and one claimed to have “many accounts”.
Summary of Findings. We confirmed that participant ASO work-
ers have registered significantly more accounts on their devices
than regular users. Workers have however less diversity in the
online sites for which they registered accounts. Their accounts are
specialized for ASO work, focusing on Gmail and Dualspace that
enable them to install and review a single app multiple times.

6.3 Installed Apps
Wenow investigate the hypothesis (inspired from [38]) that workers
and regular users differ in the manner in which they interact with
installed apps.
Apps Installed andReviewed. Figure 6 compares the distribution
of the number of installed apps (left), the number of apps installed
and reviewed (center), and the total number of apps reviewed from
any account registered (right) for the 143 regular and 400 worker
devices that reported this data. We observe dramatic differences
between worker and regular devices in terms of the total number
of reviews posted from registered accounts: On average, a worker
device is responsible for a total of 208.91 reviews, while a regular
user device has only posted an average of 1.91 reviews. We found 11
worker-controlled devices each responsible for more than 1,000 to-
tal reviews. In contrast, the maximum number of total reviews from

Figure 7: Distribution of time between app install and app
review, for regular and worker devices. Each point is one re-
view. Unlike regular users, worker-controlled accounts post
many more reviews and tend to do it soon after installation.
13,376 of the reviews from worker accounts were posted af-
ter at most one day after installation.

a regular device is only 36. We found statistically significant differ-
ences between workers and regular users via KS and parametric
and non-parametric ANOVA (p-value< 0.05).

We observe an average of 65.45 and 77.56 apps installed on
regular and worker devices respectively. KS reported significant
differences in the distributions (p-value= 0.008), but ANOVA did
not find a statistically significant difference (p-value= 0.301). This
is expected since the number of installations is limited by the device
resources. However, on average, worker devices have posted re-
views for 40.51 of the currently installed apps, while regular devices
did it for an average of 0.7 apps.
Install-to-Review Time. The Android API reports the time of
each app’s last install. There are thus two cases. First, the time
when an app was installed on a participant device is before the
time when the participant reviewed the app. This is likely the case
where the collected review is from the currently installed version
of the app on that device. Second, the install time is after the review
time. This implies that the review we collected is from a previous
install of the app. For our analysis, we only consider the first case.

Figure 7 shows the distribution of the time between app install
and app review, for regular and worker devices. Each point is one
review. An app can be reviewed from multiple accounts registered
on the same device; each such review is a different point. To com-
pute the install-to-review time, we used the Android API to get the
installation time, and our review crawler to get the review times-
tamp. However the Android API only retains the last installation
time of an app in a device. We have not considered reviews whose
install-to-review times were negative, since they are the result of a
past install.

We observe substantial difference in the number of reviews
posted from accounts registered on worker vs. regular devices for
apps that provided an installation time: accounts on regular devices
only wrote 35 reviews, while those on worker devices posted 40,397
reviews. Both ANOVA and KS tests found statistically significant
differences between the two groups (p−value<0.05).

Further, workers tend to review apps much sooner after instal-
lation. 13,376 of the 40,397 reviews posted from the accounts reg-
istered on worker devices were posted after at most one day after
the app was installed. Workers register an average of 10.4 days of
waiting time between installation and review (M = 5.00 days, SD
= 13.72 days, max = 574 days). We have observed 25 cases with
waiting times longer than 100 days and 4 cases of reviews posted



Figure 8: Boxplot of stopped apps for regular and worker
devices.Worker devices tend to havemore stopped apps, but
we also observe substantial overlap with regular devices.

after more than 1,000 days from 2 workers and for 2 apps (Facebook
and Easypaisa). These rare cases of prolonged waiting times are
expected of apps used for personal purposes.

In contrast, only 4 out of the 35 reviews posted from the accounts
of regular users were posted after at most one day after install. Reg-
ular users also wait for 85.09 days to post a review on average
(M=21.92 days, SD=140.56 days, max=606.11 days) with only 12
users waiting less than 12 days to post a review. This longer waiting
time is consistent with a review activity that proceeds from a pre-
vious interaction to form a judgment, and is inconsistent with paid
promotion services. KS and ANOVA found statistically significant
differences (p−value<0.05).

We have observed 25 cases for worker devices having waiting
times longer than 100 days, and 4 cases of reviews posted after more
than 1,000 days (from 2 workers for Facebook and 2 for Easypaisa).
These rare cases of prolonged waiting times may be indicative of
apps used for personal purposes.
Stopped Apps. We have further studied the number of apps that
are stopped on the devices of regular and worker participants. A
freshly installed app is in a stopped state until the user opens it for
the first time. Android devices also allow users to stop apps, instead
of uninstalling them. Figure 8 shows that some worker devices have
significantly more stopped apps than regular devices. KS test and
ANOVA found statistically significant differences between workers
and regular users (p-value< 0.05). We conjecture that this occurs
because ASO workers (1) often do not open the apps that they
install in order to promote, and (2) even if they open them and need
to keep them installed, e.g., to provide retention installs (§ 2), they
prefer to stop apps that misbehave.

We followed up with several participants to clarify this point, i.e.,
whether they stop apps and why. Eight workers claimed to never
stop apps, which suggests reason #1 applies. One worker however
admitted reason #2 applies, i.e., “The quality of some apps was bad,
I stopped those apps”. Another claimed that limited storage is to
blame, “Sometimes the apps get hanged due to a lack of storage”.
Third-Party App Stores. We observed that some participant de-
vices had apps installed that were not available in Google Play. We
followed up with participants to ask if they install apps from other
app stores. The workers conjectured that Google does not host
such apps because they violate Google’s policy, e.g., “Google’s policy
prohibits the use of such apps, or because they are not secure.

One worker admitted to have installed apps from third-party
stores, i.e., “The client gives us a link, we go and install that app”.
Three other workers claimed to install apps from other app stores

Figure 9: App churn: Scatterplot of average number of daily
installs vs. average number of daily uninstalls (log scale) for
regular and worker-controlled devices. Each dot is one de-
vice. The app churn of most regular devices is less than 10
apps per day, while for many worker devices it is above 10
apps per day.

for personal reasons, e.g., to play games (Dream11) or avoid sub-
scription fees (Netflix, Hotstar) by installing modded apps 1:

“I use a modded version of the apps that are not in the Google Play
Store. You do not have to open an account to use these. For instance,
Netflix or Hotstar apps charge a subscription fee every month. But I
don’t have that much money so I install the modded version. By doing
this I get premium access for free. ”
App Churn: Install and Uninstall Events. Figure 9 shows the
average number of daily install events and daily uninstall events for
participant worker and regular devices, computed over all the days
when RacketStore was installed. Workers tend to install apps more
often compared to regular users. Concretely, worker devices had an
average of 15.94 daily installs (M = 6.41, SD = 27.37) while regular
devices had an average of 3.88 daily installs (M = 2.0, SD = 7.29).
KS test and ANOVA reported statistically significant differences
between the two groups (p-value< 0.05).

We recorded fewer daily uninstalls, suggesting that participant
devices tend to retain apps: worker devices recorded an average of
7.02 daily uninstalls (M = 2.73, SD = 15.69) and regular devices had
an average of 3.29 daily uninstalls (M = 1.8, SD = 6.87). The KS and
ANOVA tests reported significant differences at p-value<0.05. We
observe however that several worker devices have a low daily app
churn, while some regular devices have a higher daily app churn,
making them harder to distinguish based on this feature alone.
We note that the differences in app churn between workers and
regular participants could also be due to background differences:
ASO workers may be more technically skilled due to the nature
of their work. However, we were also surprised by the relatively
high app churn of regular users. One reason for this may be that
active Instagram users may be more technically skilled than regular
people.We did not investigate the technical expertise of participants
in our study.

1A mod app is a modified version of an original apk, not signed by the original devel-
opers. A modded app may have additional features, unlocked features, and unlimited
in-app currency.



Figure 10: Scatterplot of the average number of apps used
per day per device and the number of apps installed in a de-
vice, for regular and worker devices. We observe substantial
overlap between regular and worker devices.

Figure 11: Comparison of exclusive app permissions for reg-
ular and worker devices. Worker devices host apps with the
largest ratio of dangerous to total number of permissions.

Number of Apps Used Per Day. Figure 10 shows for each of the
141 regular and 399 worker devices in our studies (total of 540),
the average number of apps opened per day on the device vs. the
total number of apps installed on that device. We observe that
several worker devices have many more apps installed than regular
devices, and also have more apps used per day. Nevertheless, we
also observe substantial overlap in these features between regular
and worker devices, perhaps due to the fact that several of the
worker devices are organic. This suggests that the daily number
of used apps cannot accurately distinguish between worker and
regular devices.
App Permissions. We studied the distribution of permission re-
quirements for unique apps found on participant devices. Figure 11
shows the number of dangerous permissions vs. the total num-
ber of permissions for each app found exclusively on regular and
worker devices. We found that while some worker devices host apps
with the largest number of dangerous permissions, most installed
apps share a similar permission profile across all device types. This
suggests that the number of permissions requested by an app, in-
cluding the dangerous permissions, will be ineffective in detecting
promoted apps.

Figure 12: Comparison ofmalware occurrence in regular ver-
sus worker devices. Each point corresponds to a unique app
apk hash, with at least 7 VirusTotal flags. The color in the
legend refers to the number of VT engines that flagged the
app.Worker devices hostmore uniquemalwarewhich tends
to be present on more devices than for regular users.

We contacted workers to ask about their policy for granting
permissions to apps they promote. Five claimed to grant all per-
missions requested by the apps that they install. However, one
participant claimed selective granting, i.e., “Permissions are given
based on the client request. If the client does not ask, we do not give
all permissions”. Four other workers said that there are permissions
that they grant grudgingly, e.g., one claimed “I don’t like the location
permission because it violates my privacy”, while two others said
claimed to dislike permissions associated with personal data. Two
regular participants claimed not to grant all requested permissions.
One claimed to avoid granting location permissions, the other was
concerned about contacts, images and phone storage permissions.
Summary of Findings. In our study, workers posted reviews for
a significantly higher number of installed apps. Following app in-
stallation, participant workers waited significantly shorter times
to post reviews than regular users. While workers tend to install
more apps per day than regular users, their devices also had signif-
icantly more stopped apps. We conjecture that this happens due
to retention install requirements: workers need to keep promoted
apps installed, but want to avoid the clutter.

6.4 Investigation of Malware and Attitudes
We now investigate the potential and perceived impact of malware
installations on the workers who participated in our study. We
used the VirusTotal research license reports [79] to analyze the
presence of malware on the participant devices. VirusTotal uses
62 detection engines to process apk files. We used the snapshot
collector module (§3) to collect 18,079 distinct hashes corresponding
to 9,911 unique mobile app identifiers installed in 713 participant
devices (549 devices of workers and 164 devices of regular users).
The remaining 90 devices did not provide hash information either
because of permissions or API incompatibility problems. We col-
lected reports for these hashes in VirusTotal; 12,431 hashes were
available in VirusTotal. We did not collect details about the specific
malware families and types detected by the VirusTotal engines,
including information about potentially unwanted programs (PUP).



177 of these apps were flagged malicious by more than one
VirusTotal AV tool. We found at least one of these flagged apps
in 183 unique devices: 122 devices controlled by workers and 61
devices of regular users. We found 70 unique mobile app identifiers
with at least one VT engine flag, that received at least one review
from our participants: 64 of these apps were reviewed by workers,
and 9 apps were reviewed by regular users.

Since a single VT flag may be a false positive, we further com-
pared the occurrence of themostmaliciousmalware samples (flagged
by more than 7 VirusTotal engines) in regular user devices versus
worker devices. The 7 flag threshold exceeds the value 4 identified
in [64], and most of these samples were later removed from Google
Play. Figure 12 shows that malicious samples are more likely to
appear in several worker devices when compared to regular users.
Anti Virus (AV) Apps. To determine if participants had sufficient
security concerns to install anti-virus (AV) apps, we first identified
250 anti-virus (AV) apps from Google Play, by doing a search on the
app category in the website. We have joined these apps against the
apps installed in each of the participant devices that sent at least
one snapshot. We found only 19 devices that installed 15 AV apps: 8
worker devices, 7 regular user devices, and 4 unknown (i.e., either
Google testing our infrastructure or participants who managed to
bypass our invitation code).
Participant Feedback. We asked participants if they (1) are con-
cerned about installing malware apps on their devices, (2) have anti
virus software installed, and (3) are concerned about the privacy
of their device data, including contacts, login info, pictures, videos,
text messages, location. Two workers were not concerned about
malware or privacy leaks and did not have AV apps installed. One
worker said “I am confident on the ability of my phone to prevent
any mishap”.

Five workers reported being concerned about malware; four
claimed to use AV apps. One worker claimed that “I find a lot of
apps like this, which contain a lot of viruses.” However, he also
claimed to not be concerned about privacy leaks because “I have
5 devices, 3 mobile devices and 2 computers. 2 out of the 3 mobiles, I
use for apps testing and review, 1 mobile I use for my personal work.”
Summary of Findings. Worker-controlled devices have lower in-
stantaneous malware infection rate than regular devices. However,
malware installed by worker devices tends to be flagged by more
anti-virus engines.Workers hadmixed attitudes toward privacy and
installing malware and AV apps. This suggests potential vulnerabil-
ities and concerns among workers toward keeping apps installed
for longer intervals.

7 FAKE REVIEW DETECTION
In this section we investigate whether the app usage data collected
by RacketStore (§ 5), can identify apps installed to be promoted, thus
detect fake app installs and reviews. For this, we first introduce
app usage features (§ 7.1) then investigate their ability to train
supervised models to distinguish promotion-related vs. personal
app use (§ 7.2).

7.1 App Usage Features
We extracted the following features for each app installed on
participant devices: (1) the number of accounts registered on the

ML Algorithm Precision Recall F1

XGB 99.78% 99.67% 99.72%
RF 99.33% 99.23% 99.27%
LR 99.22% 99.00% 99.11%
KNN 96.88% 96.88% 96.88%
LVQ 90.99% 94.54% 92.73%

Table 1: Precision, recall, and F-1 measure of app usage clas-
sifier (CV k = 10) using Extreme Gradient Boosting (XGB),
Random Forrest (RF), Logistic Regression (LR), K-Nearest
Neighbors (KNN), and Learning Vector Quantization (LVQ).
XGB performed the best.

device that reviewed the app, before RacketStore was installed,
while it was installed, and after it was uninstalled, (2) the install-
to-review time (§ 6.3), (3) inter-review times, i.e., statistics over
the time difference between all consecutive reviews posted for the
app from accounts registered on the device, (4) whether app was
opened on multiple days, (5) the number of snapshots per day
when the app was the on-screen app, (6) the number of snapshots
collected per day from device, (7) inner retention, i.e., the duration
over which the app was installed on the device (while RacketStore
was installed), whether the app was installed before RacketStore
and was still installed when RacketStore was uninstalled, (8) the
number of normal and dangerous permissions requested, (9) the
number of permissions requested by the app that have been granted
and denied by the user, (10) the number of flags raised by VirusTotal
AV tools, and (11) the number of times the app was installed and
uninstalled while RacketStore was installed.

7.2 App Classification
We use these features and the datasets of § 5 to train an app classi-
fier that determines if an app has been installed for promotion or
personal use.
Training and Validation Datasets. We use the 178 worker and
88 regular devices from which we have received at least two days
of fast and slow snapshots. For the other devices we lack enough
data to extract good features.

We have set aside randomly selected 20% (i.e., 38) of the worker-
controlled devices and 42% (i.e., 37) of the regular devices. We
use these devices to select a set of train-and-validate apps with
suspicious and regular usage. Specifically, we label an app to be
suspicious if (1) it was advertised by workers for promotion on the
Facebook groups we infiltrated (§ 2), (2) it was installed on at least
five worker devices, and (3) was not installed on any regular devices.
The rationale for this selection is that co-installing apps that are not
popular and we know have been promoted, is likely the result of
ASO work. Further, we label an app to be non-suspicious or regular,
if (1) it was not installed on any worker-controlled device, (2) was
installed in at least one regular device, and (3) has received at least
15,000 reviews. We have identified 1,041 suspicious apps among
the ones installed on the above 38 worker-controlled devices, and
474 non-suspicious apps among those installed on the 37 training
regular devices.

We use these apps to build a train-and-validate app usage dataset
consisting of 2,994 suspicious instances and 345 non-suspicious
instances. An instance consists of an app A and a device D on



Figure 13: Top 10 most important features for the app classi-
fier, measured by mean decrease in Gini. The number of ac-
counts that have reviewed the app from the device and the
average time between install and review aremost important.

which A has been installed, features extracted from the use of A
on the device D (§ 7.1), and a class label (1 for promotion and 0 for
personal usage instance).
Classifier Performance. We evaluate the performance of super-
vised learning algorithms trained with the features introduced in
§ 7.1 on the train-and-validate app usage dataset. For this, we use
repeated 10-fold cross-validation (n=5) over the 2,994 suspicious
app usage instances and 345 regular usage instances. Table 1 shows
the precision, recall and F1-measure of tested algorithms. Extreme
Gradient Boosting (XGB) outperforms the other algorithms, achiev-
ing an F1-measure of 99.72%. KNN achieved best performance for
K = 5.

Figure 13 shows the top 10 most important features to classify
app usage, measured by the mean decrease in Gini [31]. A higher
decrease in Gini indicates higher variable importance. We observe
the importance of the number of accounts registered on the device
that have reviewed the app (§6.2) and the average time between
install and review (§6.3).
Performance Under Balanced Datasets. We also evaluate these
algorithms trained with balanced datasets of promotion and per-
sonal app use instances [90]. Experiments with undersampling the
majority class and oversampling the minority class obtain similar
performance (F-1 value of 98.76% and 99.22% respectively for XGB).
The AUC value is over 0.99 across all the algorithms except for
KNN where the AUC decreased to 0.90 and 0.92 in undersampling
and oversampling respectively. For XGB, the false positive rate is
1.94% when using oversampling.

8 ASO DEVICE DETECTION
We now investigate whether the device usage data collected by
RacketStore (§ 5) can be used to identify devices controlled by app
search optimization workers.

8.1 Device Usage Features
We introduce the following features that model the use of a device:
(1) the number of pre-installed and user-installed apps, (2) app
suspiciousness, i.e., the number of apps that were flagged by the
app classifier of § 7, over the total number of apps installed on
the device, (3) the number of apps that were stopped (§ 6.3), (4)
the average number of apps installed and uninstalled per day, (5)

ML Algorithm Precision Recall F1

XGB 96.81% 93.81% 95.29%
RF 93.95% 96.06% 94.99%
SVM 96.64% 89.03% 92.68%
KNN 94.29% 90.58% 92.40%
LVQ 96.40% 82.84% 89.11%

Table 2: Precision, recall, and F-1measure of device classifier
(CV k = 10) using Extreme Gradient Boosting (XGB), Ran-
dom Forrest (RF), K-Nearest Neighbors (KNN), Learning Vec-
tor Quantization (LVQ),and Support Vector Machines (SVM).
XGB performed the best.

the number of device-registered Gmail and non-Gmail accounts,
and the number of distinct account types, (6) the number of apps
installed on the device that have been reviewed from accounts
registered on the device, and (7) the total number of apps reviewed
by accounts registered on the device. For most features we use
both the user-installed apps and the pre-installed apps, since even
the use of pre-installed apps like the app store, e-mail, maps, and
browser apps can distinguish regular devices from those controlled
by workers.

8.2 Device Classification
We evaluate the ability of these features to train classifiers that dif-
ferentiate between devices controlled by workers and regular users.
For this, we use the 178 worker devices and the 88 regular devices
that have reported snapshots over at least 2 days. We prioritize
precision, since a low precision would lead the app market to take
wrong actions against many regular devices [90].

Table 2 compares the performance of five supervised learning al-
gorithms trained with the device usage features introduced in § 8.1.
KNN achieved best performance for K = 5. To balance the worker
and regular user device classes, we oversampled the minority class
using the SMOTE algorithm [33]. We use 10-fold cross-validation
over the data from the 178 worker and 88 regular devices. Extreme
Gradient Boosting (XGB) outperforms the other algorithms, achiev-
ing an F1-measure of 95.29% and AUC of 0.9455. The precision is
96.81% and the false positive rate is 1.41%.

When we undersample the majority class, XGB’s recall decreases
to 92.97% with an F-1 value of 95.18% and AUC of 0.9074. When us-
ing no sampling strategy the F-1 increases to 96.86%, at the expense
of the AUC (0.9083).

Figure 14 shows the top 10 most important features in classifying
devices as worker-controlled or regular, as measured by the mean
decrease in Gini. Four features stand out, confirming their ability to
detect worker-controlled devices, i.e., (1) the total number of apps
reviewed from accounts registered on the device, (2) the percent of
installed apps that were detected to have been used suspiciously by
the classifier of § 7, (3) the number of stopped apps on the device
and (4) the average number of reviews posted from an account
registered on the device.

Figure 15 shows the scatterplot of app suspiciousness vs. the total
number of reviewed apps for each of the 178 worker-controlled de-
vices. Out of these 178 devices, 123 devices have organic-indicative
behaviors, with at least one of the installed apps being predicted to



Figure 14: Top 10most important features for the device clas-
sifier,measured bymean decrease inGini. This suggests that
devices controlled by workers are distinguishable from reg-
ular devices on their total number of apps reviewed, percent-
age of apps used suspiciously, and number of stopped apps.

Figure 15: Scatterplot of 178 worker-controlled devices
(one dot per device): app suspiciousness vs. the number
of apps installed and reviewed from accounts registered
on the device. This reveals that classifiers can detect a
range ofworker-controlled devices that includes promotion-
dedicated devices and devices with organic-indicative usage.

be used for personal purposes. The remaining 55 devices seem to
have been used exclusively for app promotion purposes: all their
apps have promotion-indicative behaviors, their median number of
Gmail accounts is 31 (M = 37.18, max = 114), and have a median of
23 stopped apps (M = 66.23).

We have manually investigated the devices with high but under
100% app suspiciousness, and confirmed that such devices are likely
to have installed and used apps for personal purposes. Examples
include train ticketing apps used at similar times over multiple days,
photo gallery apps used in alternation with video players, Samsung
pre-installed messaging (com.samsung.android.messaging) and
call (com.samsung.android.incallui) apps, and music apps such
as Google Play Music being used every day.

However, the classifiers were able to accurately detect even
worker-controlled devices with low app suspiciousness, that may
belong to novice workers.

9 DISCUSSION AND LIMITATIONS
Who Should Deploy RacketStore? The classifiers proposed in
§ 7 and 8 need more information than what is made publicly avail-
able by app stores (e.g., via the Google APIs). Thus, the classifiers

can only be effective for RacketStore users. We also note that ASO
workers would likely be reluctant to install RacketStore without
proper incentives. Therefore, to scale RacketStore’s processing of
all the apps in an app store, the proposed classifiers should be
embedded by app store developers into their pre-installed apps,
e.g., the Google Play Store app or Digital Well Being app. Unlike
third-party apps, such clients have by default the permissions to
access the required data, and are known to access at least app usage
details [5, 49].
Privacy-Preserving Classifiers. We note that our classifiers need
access to sensitive data from user devices, which general users
may be reluctant to share. To address this problem, we propose a
privacy-preserving approach where our pre-trained models (§ 7
and § 8) execute on the user device on locally computed features to
detect ASO activities [4, 81]. This approach will only report ASO
suspicious activities but no private app and device-usage informa-
tion. A red flag can be raised if the user uninstalls or blocks this
pre-installed client (e.g., the Play Store app), and posts suspicious
reviews from accounts registered on such a non-consenting device.
Worker Strategy Evolution. ASO workers may attempt to de-
velop strategies to avoid detection by our classifiers. However, our
engagement-based features exploit the lack of genuine interest of
workers on promoted apps and introduce a tradeoff between de-
tectability and operational costs and exposure to malware. These
features include the number of accounts registered on the device,
the interval between app install and first review, and user interac-
tion with the app (opened, daily app usage) see § 7.1.

Workers may attempt to manipulate these features using per-
haps existing software. However, workers will still need to keep
promoted apps installed for longer intervals, wait more before re-
viewing them, and interact more with them. When promoted apps
are malicious, and workers use personal devices, this may increase
the exposure of their personal information to threats. In § 6.4 we
show that workers expressed awareness and concern about mal-
ware apps. Further, to avoid detection, workers will be forced to
register fewer accounts and post fewer reviews for promoted apps
from these accounts. This can significantly reduce the amount of
fraud posted, thus reduce worker profits from ASO activities.
Recruitment Bias. We contacted ASO workers using Facebook
groups dedicated to product promotion, and recruited only those
who responded, were English speakers, and were willing to partici-
pate after approving the consent form. Our Instagram recruitment
process reached 61,748 Instagram users who speak English, are of
restricted age, show interests related to Android applications, and
were willing to participate after approving the consent form.

To reduce the impact of cultural factors in our analysis, we
have attempted to recruit both workers and regular users from
roughly the same regions. While the distribution of workers and
regular users is not uniform for most countries of our participants,
96% of the worker devices and 92% of the regular devices seem
to be (according to the unreliable IP-based geolocation) from the
geographically close Pakistan, India and Bangladesh.

We do not claim that our results generalize to all workers and
regular users, including from the same and other countries. Further,
workers accessible through other recruitment channels, e.g., [13]
may have different behaviors and strategies. A larger scale recruit-
ment process may identify further types of ASO workers and more



diverse regular users. However, the data that we collected from 803
participant devices provides evidence on the ability of device and
app usage data to detect the devices controlled, and the reviews
posted by different types of workers.
Classifier Performance. Several machine learning algorithms
achieve an F1-measure that exceeds 99% for the app classification
problem (§ 7.2), while one algorithm achieved an F1-measure over
95% for the device classification problem (§ 8.2). The investigation
in § 6 provides an intuition for the ability of several features to
help classifiers distinguish between apps and devices used for per-
sonal purposes vs. ASO work. This suggests that these algorithms
did not overfit the data. Further, the success of these classifiers
suggests that standard ML algorithms are suitable and preferable
for these classification problems, where they can provide valuable
interpretation.

We acknowledge however that the relatively small and biased
data that we used to train the app and device classifiers (see recruit-
ment bias above) may lead to reduced applicability to data from
other ASO workers and regular users.
Influence of RacketStore on Participant Behaviors.
Knowledge of being monitored might have influenced participant
behaviors. We note however that all participants, including ASO
workers and regular users, installed the same version of RacketStore
and were provided with the same information before and during
the study. Further, our classifiers were able to distinguish between
apps and devices used by ASO workers and regular users, even if
ASO workers attempted to modify their behaviors during the study.

10 RELATEDWORK
Farooqi et al. [38] studied the market of incentivized app install
platforms (IIP) through a honey app that collects the device id, the
list of installed apps and events such as opening the app and in-app
interaction. We leverage Farooqi et al. [38]’s finding of a lack of
interest in the app among the workers that installed it for money.
RacketStore extends Farooqi et al. [38]’s work by collecting and
analyzing additional key data that notably includes the list of user
accounts registered on the participant device, the reviews posted
from those accounts, and the foreground app at 5s intervals. This
data enables us to claim a first success in identifying organic ASO
activities. Further, our study involved diverse types of ASO workers
that we recruited from Facebook groups, and regular users that we
recruited using Instagram ads.

Our work is particularly relevant in light of findings that some
ASO workers have evolved strategies [67, 94] to evade detection
by both app stores and academic solutions, e.g., [27, 28, 32, 32,
35, 39, 40, 42, 44, 45, 48, 50, 51, 51–53, 53, 57–59, 72, 73, 78, 84–
89, 92, 92, 93]. For instance, Zheng et al. [94] report the emergence
of organic workers who attempt to mimic the behavior of real users.
Rahman et al. [67] provide insights from studied ASO workers, that
confirm the existence of organic workers in the wild. In this paper
we provide measurements from devices of ASOworkers and regular
Android users. Our data suggests that the use of apps installed for
promotion differs from that of apps used for personal purposes.
Further, even organic workers tend to use their devices in a manner
that distinguishes them from regular users.

Related efforts also include extensive work to detect malware
Android apps, e.g., [29, 41, 54, 60, 61, 69–71, 95]. Notably, Yang et
al. [91] differentiate malware from benign apps based on the con-
texts that trigger security-sensitive behaviors. RacketStore detects
ASO-promoted apps and devices of workers based on the context
of the user interaction with them. While we seek to detect worker
interactions with apps, we note that ASO work has been shown to
be used to promote malware apps and improve their search rank,
thus increase their consumer appeal [68].

Our study of the fraud market for Google services is related to
other exploration of fraud markets [55, 74–76]. For instance, Dou et
al. [37] developed a honeypot app and collect data to detect fraudu-
lent bot-generated downloads. Mirian et al. [55] explore the market
for Gmail account hijacking by creating synthetic but realistic vic-
tim personas and hiring services to hack into such accounts, while
DeBlasio et al. [36] characterize the search engine fraud ecosys-
tem using ground truth data internal to the Bing search engine.
Stringhini et al. [74] studied Twitter followermarkets by purchasing
followers from different merchants and used such ground truth to
discover patterns and detect market-controlled accounts in the wild.
In this paper we leverage our finding of an abundant fraud market
for Google services (i.e., review groups with tens of thousands of
members) to recruit hundreds of worker-controlled devices, study
their usage, and propose solutions to detect and distinguish them
from devices used for personal purposes.

11 CONCLUSIONS
In this paper we have developed RacketStore, the first platform to
collect detailed app and device usage information from the devices
of app search optimization workers and regular users of Google
Play services. We have presented empirical data from RacketStore
installs on 803 devices and from interviews with some of their own-
ers. We have developed a classifier to identify apps installed solely
to be promoted and we have shown that on our data, it achieves
an F1-measure that exceeds 99%. We have shown that features that
model the user interaction with a device can be used to detect even
organic devices with low levels of ASO work hidden among per-
sonal activities. Our techniques are resilient to worker strategy
modifications, that would impose high overhead on the operation
of their devices and the usage of the apps that they promote.
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A SNAPSHOT FINGERPRINTING
To properly analyze the data collected from participating devices,
we needed to map each collected device snapshot to a single device.
As mentioned in § 3, the first snapshot from a device includes (1)
the 10-digit install ID computed by RacketStore upon installation,
(2) the 6-digit participant ID, uniquely generated by us and assigned
to each participant, and (3) the Android ID. We expected that the
combination of the participant ID, install ID and Android ID will
be enough to provide this mapping.

However, we found that the same device can be responsible for
multiple install events of RacketStore, i.e., where a different com-
bination of install ID, participant ID and Android ID is reported
in different snapshots from the same device. For instance, we en-
countered cases of different ASO workers, with different assigned
participant ids, who shared some devices. This can occur for in-
stance if the workers are employed by the same organization, thus
have access to a common set of devices or (2) the same workers
pretending to be a different worker. Such workers can install Racket-
Store at different times believing this to be a repeat campaign. We
also observed workers who repeatedly install and uninstall Racket-
Store, in order to get paid multiple times for the installation. Further,
for some installs, due to suspected incompatibilities (there are over
24,000 types of device models), the collected snapshots did not in-
clude the Android ID and device information. We note that we did
not collect device IMEI since it requires an additional dangerous
permission which we wanted to avoid.

Figure 16: Ad shown to audience on Instagram Feed, Ex-
plore, and Stories. Upon clicking, users are sent to the web-
site where the study is explained, see Figure 17.

To address this problem, we used the following process to fin-
gerprint snapshots. Specifically, we first grouped all the collected
device snapshots into n candidate devices, based on their install ID.
We then compared the

(n
2
)
pairs of candidates to identify and coa-

lesce candidate devices with different install IDs that are actually
the same device. First, for each install ID x , we compute the Racket-
Store install interval [Tf , tl ] where tf and tl are the first and last
timestamp recorded in our database from snapshots that belong to
x . We then declare as different devices, install pairs (x,y) that have
overlapping installation intervals. We then coalesced candidate de-
vice pairs that do not overlap on installation intervals based on their
Android ID (if present): if the pairs have the same Android ID the
two installs belong to the same device, otherwise they are different
devices. To validate this approach, we have computed the Jaccard
similarity between candidate device pairs, i.e., (1) their sets of tuples
(a, t) where a is an app and t is the install time registered by the
Android API for app a, and (2) their sets of registered accounts.
Candidate device pairs with different Android IDs had a Jaccard
similarity for installed apps of at most 0.5625. Candidate device
pairs with Jaccard similarity above 0.53 for registered accounts, had
low similarity for installed apps.

B RECRUITMENT MATERIAL
Figure 16 shows a snapshot of the ad we have shown to audience
on Instagram Feed, Explore, and Stories to recruit regular users.
Upon clicking, users are sent to a website, shown in Figure 17(a)
where we explain the study. Figure 17(b) shows the registration
page, displayed to the user only after the user has clicked Sign Me
Up and read the content on a web-page that shows the following
recruiting message. This message is also shown to recruited ASO
workers on a one-on-one basis over messenger apps.

“We are researchers from a US university, looking for people who
write paid reviews in Google Play, and are willing to participate in
a user study. We are conducting this study as part of an effort to
increase our understanding of how app search optimizationworkers

https://doi.org/10.1145/2991079.2991099
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(a)

(b)

Figure 17: Screenshots of the user study web page. (a) User
study landing page. (b) Registration page shown only after
user has consented to participate.We ask users to enter their
email addresses to contact them with next steps.

interact with Google Play apps.
If you agree to participate in the study, we will ask you to install
an app from Google Play and keep it installed for at least two days.
We will pay you $1 when you install the app. We will then pay you
20 cents for each day when you keep the app installed, on a weekly
basis. That is, we will pay you $1.40 per week, for just keeping the
app installed. We may also ask you to use the app to write reviews.
If this happens, we will pay you additional money, at a rate that we
will negotiate.
Please note that we will guard the information that you provide
and that we collect, with the utmost secrecy. We will never reveal
to anyone any information that may be linked to you, including
the fact that you participated in our study
Your participation is completely voluntary and you may choose to
withdraw at any time. If you agree to participate, please reply to this
message. Also, please send us answers to the following questions:

1. Have you ever written paid reviews in Google Play?
2. How many user accounts do you control in Google Play?
3. How many mobile devices do you own or can access?
4. On how many devices can you install our app?
5. For how many days can you keep our app installed?
6. Are you an administrator or do you post reviews yourself?
7. How many ASO jobs are you currently working on?”
Figure 18 shows screenshots of information shown to partici-

pants by the RacketStore app upon installation. They include the
privacy policy that discloses how RacketStore accesses, collects,

(a) (b)

Figure 18: RacketStore mobile app: screenshots of the first
two screens shown upon installation. (a) A privacy policy
that comprehensively discloses how RacketStore accesses,
collects, and uses user data. (b) In-app disclosure to summa-
rize data being collected. RacketStore does not access or col-
lect any personal or sensitive data until the user consents.
and uses user data (Figure 18(a)) and the in-app disclosure that
summarizes the data collected (Figure 18(b)).

C CONSENT FORM EXCERPTS
The consent form that we presented to each participant includes
the following information:

Procedures. If you agree to be in the study, we will ask you to do
the following things:

1. You will need to click on “I Approve” checkbox at the end of
this form. 2. We will send you a link for the RacketStore app in
Google Play and you will install it. 3. You will need to keep the
app installed as long as you desire to participate in the study, but
preferably for at least two days.

Please be assured that your participation in this study is confi-
dential. We will not make your answers public, and we will store
them securely (under password protection) in the computers of the
researchers.

Risks And/Or Discomforts. Risks of participating in this study do
not exceed those that you would encounter in a regular interaction
with other prospective employers. Findings from this study may be
used by providers like Google to attempt to detect and eliminate
fraud. However, we will never share your data with anyone, for any
reason. In fact, we will only store and publish aggregate information
from multiple participants that we recruit. Aggregates will not
be useful to someone to, e.g., de-anonymize you or any of the
participants.

Use of Your Information. We automatically collect certain infor-
mation that includes device and app usage information, your IP
address, device characteristics, storage, information about installed



and used apps, and other technical information. We also collect
public information hosted on the Google Play Store for the reviews
that you posted. We collect such information periodically as part of
a research study that aims to help us understand how you use your
apps and device in order to detect review manipulation or fraud. If
you wish to change our access or permissions, you may do so in
your device’s settings.

Mobile Device Access. We request access or permission to certain
features from your mobile device, including your mobile device’s
storage, battery level, foreground app, accounts registered, and apps
installed in the device.

Mobile Device Data. We automatically collect device informa-
tion (such as your mobile device ID, model and manufacturer) and
version information.

Confidentiality. The records of this study will be kept private and
will be protected to the fullest extent provided by law. In any sort
of report we might publish, we will not include any information
that will make it possible to identify a subject. Research records
will be stored securely and only the researcher team will have
access to the records. However, your records may be reviewed for
audit purposes by authorized University or other agents who will
be bound by the same provisions of confidentiality. Those agents
will be unable to recover your identity as we do not collect any
personally identifiable information.

Compensation. You will receive a payment of $1 for installing
the app. You will then receive 20 cents for each day when you keep
the app installed, on a weekly basis. That is, you will be paid $1.40
per week, for just keeping the app installed.

Right to Decline or Withdraw. Your participation in this study is
voluntary. You are free to participate in the study or withdraw your
consent at any time during the study. Your withdrawal or lack of
participation will not affect any benefits to which you are otherwise
entitled.

D ADDITIONAL ETHICAL CONSIDERATIONS
Privacy Policy. We included RacketStore’s privacy policy both in
its Google Play profile page, and inside the app, right after the main
layout that summarizes the study. The privacy policy explains the
data collection process in terms of the information being collected,
including that we collect the data periodically and that we collect
the reviews posted from the accounts registered on the device (see
Figure 18(a) in Appendix C). The in-app disclosure (Figure 18(b))
further summarizes the privacy policy. In addition to the consent
form, participants also had to give explicit consent to the in-app
disclosure. The RacketStore app only collected data if the user
provided explicit consent. Therefore, all consenting participants
were aware of all the data that we collected.
Requested Permissions. RacketStore explicitly requests two An-
droid permissions, PACKAGE_USAGE_STATS and GET_ACCOUNTS, which
participant need to explicitly grant. If any permission is not granted,
RacketStore does not collect the corresponding information.
Data Protection. We used GDPR [63] recommended pseudonymi-
sation for data processing and statistics, and other generally ac-
cepted good practices for privacy preservation. At the completion
of the study, we deleted all PII. We also only generated aggregated

PII Collector Reasons Deletion

Accounts RacketStore Classification After use
Accounts RacketStore Review collection After use
Email Website Recruitment After use

IP address Backend Statistics Not stored
Device ID RacketStore Snap. fingerprint After use

Payment Info Author Payment Not stored
Table 3: Personally Identifiable information (PII) thatwe col-
lected, howwe collected it, the reasons, and time of deletion.

statistics. No PII of our participants was disclosed outside of the
research team.
Collected PII. Table 3 summarizes the PII we collected, how we
collected it, the reasons, and how long it was stored. It shows
that the PII we collected consists of user accounts registered on
participant devices, e-mail address, the device IP address and IDs.
The RacketStore app collected the accounts and device IDs; the
backend server collected the device IP address and the recruitment
website collected the participant e-mail address.

We needed registered accounts for the device classification task.
We needed the participant e-mail account in order to contact them
with details of the main study and for the follow-up study. We used
device IP addresses to help us recruit regular users from the same
regions with the ASO worker participants. Further, we needed the
device IDs to help us fingerprint snapshots, i.e., group collected
snapshots by the device that reported them.

We have deleted all accounts, device IDs and IP addresses after
use. We have deleted participant e-mail addresses after the study.
Risk To Benefits Assessment. The consent form informed par-
ticipants on the risks associated with the research. We presented
risks in relations to the participant regular interactions. We did
not store PII after the completion of the study, and only published
aggregate data. We believe that participation risks are reasonable
in relation to benefits. We informed participants that benefits for
participation include helping us understand and model app search
optimization, and also raising their awareness to security and pri-
vacy risks that stem from installing malware, granting requested
permissions, and account/password management strategies.
ASO Legality and Stigma. There are no direct local legal policies
to criminalize black hat app search optimization in many countries
of the Global South. For example, in Bangladesh, there is not di-
rect law to prevent such activities. The law closest to this issue
is a recently passed ICT Act that prohibits the dissemination of
incorrect information over the Internet [19]. However, this law has
mostly been applied to control the dissemination of politically mo-
tivated, unfounded information over social media (see [18, 20, 26],
for example). However, ASO work has never been addressed by law
enforcing agencies. A similar situation is also present in many other
countries in the Global South including India and Pakistan. Hence,
the job of our participants was not illegal or unethical according to
their own law of the land.

We also asked several participants questions on the legal aspects
of their work, Do you need to be careful about anything? What are
your common fear or risks?. Participants claimed that they are not
afraid, for instance, one worker said that “What we’re doing is a
legal and right job. So no need to be afraid”.



Moreover, ASO work is not stigmatized in most countries in
the Global South. HCI scholars in post-colonial computing argue
that many ideas that western scholars hold around how computers
are used in non-western contexts are often biased by their own
experiences in the West [47]. We argue that the stigma around
ASO is a similar case: While in many parts of the West, ASO work
might occur as a crime, a job that needs to be hidden, that is not
true in countries like Bangladesh, India, Pakistan, or Vietnam. Most
local citizens do not understand the technical details of ASO, mak-
ing it hard for them to judge the work, while in fact, any work
with computers and the Internet is considered prestigious in many
communities [62]. These arguments further suggest that the use of
deception is not required in studies such as the ones we conducted

in this work, when recruiting participants from countries in the
Global South.
Compensation and Professional Security. The compensation
of the participants was determined according to the fair market rate.
We made sure that the rate is not so low that the participants were
exploited, and also not so high that they were coerced. There might
also be a larger concern about the overall impact of our research on
ASO work, in general, that might impact their profession. Previous
work explains why studying the ASO workers does not impact
their livelihood [67]. Nonetheless, we disclosed and explained this
possibility to our participants, and we did not hear any concern
from any of them.
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