
1

Towards De-Anonymization of Google Play
Search Rank Fraud

Mizanur Rahman, Nestor Hernandez, Bogdan Carbunar, Duen Horng Chau

F

Abstract—Search rank fraud, the fraudulent promotion of products
hosted on peer-review sites, is driven by expert workers recruited online,
often from crowdsourcing sites. In this paper we introduce the fraud de-
anonymization problem, that goes beyond fraud detection, to unmask
the human masterminds responsible for posting search rank fraud in
peer-review sites. We collect and study data from crowdsourced search
rank fraud jobs, and survey the capabilities and behaviors of 58 search
rank fraud workers recruited from 6 crowdsourcing sites. We collect
a gold standard dataset of Google Play user accounts attributed to
23 crowdsourced workers and analyze their fraudulent behaviors in
the wild. We propose DOLOS, a fraud de-anonymization system that
leverages traits and behaviors we extract from our studies, to attribute
detected fraud to crowdsourcing site workers, thus to real identities and
bank accounts. We introduce MCDense, a min-cut dense component
detection algorithm to uncover groups of user accounts controlled by
different workers, and use stylometry and supervised learning to attribute
them to crowdsourcing site profiles.

DOLOS correctly identified the owners of 95% of fraud worker-
controlled communities, and uncovered fraud workers who promoted as
many as 97.5% of fraud apps we collected from Google Play. When
evaluated on 13,087 apps (820,760 reviews), which we monitored over
more than 6 months, DOLOS identified 1,056 apps with suspicious
reviewer groups. We report orthogonal evidence of their fraud, including
fraud duplicates and fraud re-posts. DOLOS significantly outperformed
adapted dense subgraph detection and loopy belief propagation com-
petitors, on two new coverage scores that measure the quality of de-
tected community partitions.

Index Terms—Search rank fraud, Peer-review system

1 INTRODUCTION

The developers of top ranking products in peer-review sites
like Google Play, Amazon, or Yelp receive higher rewards,
that include direct payments and ad-based revenues. Statis-
tics maintained by peer-review sites concerning user activ-
ities for a product (e.g., reviews, ratings, likes, followers,
app install counts) are known to play an essential part in
the product’s ranking [1], [2], [3]. This has created a black
market for search rank fraud, mediated by an abundance of
crowdsourcing sites, e.g., [4], [5], [6], [7], [8]. Specifically,
crowdsourcing fraud workers create or purchase hundreds
of user accounts in the peer-review site, then post activities

• Mizanur Rahman, Nestor Hernandez and Bogdan Carbunar are with FIU.
Email: {mrahm031, nhern121, carbunar}@cs.fiu.edu

• Duen Horng Chau is with Georgia Tech. Email: polo@gatech.edu
• A preliminary version of this article appears in ACM Hypertext 2018.

Fig. 1. Anonymized snapshots of profiles of search rank fraud workers
from Upwork (top 2) and Freelancer (bottom). Workers control hundreds
of user accounts and earn thousands of dollars through hundreds of
work hours. Our goal is to de-anonymize fraud, i.e., attribute fraud de-
tected for products in online systems, to the crowdsourcing site accounts
of the workers (such as these) who posted it.

for the products of developers who hire them, from the
accounts they control, see Figure 1.

Discouraging search rank fraud is essential to ensure
trust in peer-review sites and the products that they host.
Previous work in this area has focused on fraud detec-
tion [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21]. Most peer-review sites filter out detected
fraudulent activities [22], [23], [24]. However, a study with
58 fraud workers that we recruited from 6 crowdsourcing
sites revealed that workers with years of search rank fraud
expertise are actively contributing to such jobs, and are able
to post hundreds of reviews for a single product at prices
ranging from a few cents to $10 per review. This suggests
that fraud detection alone is unable to prevent large scale
search rank fraud.

In this paper we propose a new approach to discourage
search rank fraud. We introduce the fraud de-anonymization
problem, that aims to attribute detected search rank fraud in
a peer-review site, to the crowdsourcing site fraud workers
who posted it. Further, to understand and model search
rank fraud behaviors, we have developed a questionnaire
and used it to survey 58 fraud workers recruited from 6
crowdsourcing sites. We have collected data from search

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2975170, IEEE
Transactions on Knowledge and Data Engineering

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on February 27,2020 at 02:41:50 UTC from IEEE Xplore. Restrictions apply.

2

rank fraud jobs and worker accounts in Upwork. We have
collected a gold standard dataset of 956 user accounts in
Google Play, attributed to 23 crowdsourced workers. We
have developed a guilt-by-association process to expand
this dataset with another 1,308 user accounts, for a total
of 2,664 fraud worker-attributed accounts. We analyze the
activities performed from these accounts in the wild. We
observe and report several adversary traits, including the
existence of an expert core of fraud workers, who can control
hundreds of user accounts and post tens of daily reviews
for a single product, can change their behaviors to avoid
detection (e.g., to throttle their daily review activities and
dilute them over long time intervals), can be rehired to
promote the same product at later times, and that products
can be fraudulently promoted by multiple workers.

We leverage the identified traits to introduce DOLOS1

a system that cracks down fraud by unmasking the hu-
man masterminds responsible for posting significant fraud.
DOLOS integrates search rank fraud detection with fraud
attribution to reveal the lurking organized activities that
power the fraud, and pinpoint their human command cen-
ters. DOLOS detects then attributes fraudulent user accounts
in the online service, to the crowdsourcing site accounts
of the workers who control them. We devise MCDense, a
min-cut dense component detection algorithm that analyzes
common activity relationships between user accounts to
uncover groups of accounts, each group controlled by a
different search rank fraud worker. We then use stylometry
and supervised learning to attribute MCDense detected
groups to the crowdsourcing workers who control them.

DOLOS correctly attributed 95% of the reviews of 640
apps (that received significant, ground truth search rank
fraud) to their authors. For 97.5% of the apps, DOLOS
correctly de-anonymized at least one of the workers who
authored their fake reviews. DOLOS achieved 90% precision
and 89% recall when attributing the above 2,664 fraudu-
lent accounts to the workers who control them. Further,
MCDense significantly outperformed an adapted densest
subgraph solution.

We have evaluated DOLOS on 13,087 Google Play apps
(and their 820,760 reviews) that we monitored over more
than 6 months. DOLOS discovered that 1,056 of these apps
have suspicious reviewer groups. Upon close inspection we
found that (1) 29.9% of their reviews were duplicates and (2)
73% of the apps that had at least one MCDense-discovered
clique, received reviews from the expert core fraud workers
mentioned above. We also report cases of fraud re-posters,
accounts who re-post their reviews, hours to days after
Google Play filters them out (up to 37 times in one case).

To evaluate MCDense, we introduce two coverage
scores, p-coverage and p-SCC, that measure the quality of
detected community partitions. We adapt dense subgraph
detection [25] and loopy believe propagation [18] solutions
to the fraud de-anonymization problem. We show that MC-
Dense consistently and significantly outperforms DSG on
both coverage scores. While LBP can be used to accurately
detect fraud, it cannot determine if all the accounts detected
as fraudulent are controlled by a single or multiple workers.

1. DOLOS is a concrete block used to protect harbor walls from
erosive ocean waves.

Fig. 2. System and adversary model. Developers upload products, on
which users post activities. Adversarial developers crowdsource search
rank fraud. Unlike fraud detection solutions, DOLOS unmasks the hu-
man workers responsible for posting search rank fraud.

In summary, we introduce the following contributions:
• Fraud de-anonymization problem formulation. Intro-

duce a new approach to combat and discourage search
rank fraud in peer-review sites.

• Study and model search rank fraud. Survey 58 fraud
workers from 6 crowdsourcing websites on fraud post-
ing capabilities and behaviors. Collect search rank
fraud jobs posted on Upwork and analyze common
bidding and winning behaviors between workers. Col-
lect gold standard fraud worker-attributed Google Play
user accounts and study their behaviors in the real
world. Extract and present fraud worker behaviors
traits.

• DOLOS. Exploit extracted insights to develop the first
fraud de-anonymization system. Devise MCDense, a
min-cut dense component detection algorithm to iden-
tify accounts controlled by the same worker. Use sty-
lometry to attribute detected components to the profiles
of known crowdsourcing workers.

• Evaluation. Evaluate DOLOS extensively on Google
Play data. Identify orthogonal evidence of fraud from
detected suspicious products. Develop novel commu-
nity coverage scores. Show that MCDense significantly
outperforms adapted dense subgraph and loopy be-
lieve propagation solutions, on the developed scores.

• Open source. The DOLOS and MCDense code is avail-
able for download online [26].

2 SYSTEM AND ADVERSARY MODEL

We consider an ecosystem that consists of peer-review sites
and crowdsourcing sites. Peer-review sites host accounts for
developers, products and users, see Figure 2. Developers
use their accounts to upload products. Users post activities
for products, e.g., reviews, ratings, likes, installs. Product
accounts display these activities and statistics, while user
accounts list the products on which users posted activities.

Users register mobile devices to their accounts, then
install apps on them. Users can only review apps that they
have previously installed. Reviews have a star rating (1-5)
and a text component.

The survival of mobile apps in Google Play is contingent
on their search rank. Higher ranked apps are installed
more frequently and generate more revenue, either through
ads or direct payments. While Google keeps their ranking

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on February 27,2020 at 02:41:50 UTC from IEEE Xplore. Restrictions apply.

3

Fig. 3. Statistics over 44 fraud workers: minimum, average and maximum for (a) number of reviews that a worker can write for an app, (b) price
demanded per review, (c) years of experience, (d) number of apps reviewed in the past 7 days. Workers report to be able to write hundreds of
reviews for a single app, have years of experience and are currently active. Prices range from 56 cents to $10 per review.

algorithm secret, popular belief (e.g., [3]) holds that large
numbers of positive reviews help new apps achieve higher
search rank.

Crowdsourcing sites host accounts for workers and em-
ployers. Worker accounts have unique identifiers and bank
account numbers used to deposit the money that they
earn. Employers post jobs, while workers bid on jobs, and,
following negotiation steps, are assigned or win the jobs.

We consider product developers who hire workers from
crowdsourcing sites, to perform search rank fraud, see
Figure 1. In this paper we focus on workers who control
multiple user accounts in the online system, which they use
to post fake activities, e.g., review, rate, install. We study
such workers in § 4.

3 THE FRAUD DE-ANONYMIZATION PROBLEM

Let W = {W1, ..,Wn} be the set of crowdsourcing worker
accounts. Let U = {U1, .., Um} be the set of user accounts
and let A = {A1, .., Aa} be the set of products hosted by
the online service, respectively. We define the fraud de-
anonymization problem as follows:
Fraud De-Anonymization Problem. Given a product A ∈
A, return the subset of fraud workers inW who control user
accounts in U that posted activities for A.

Unlike standard de-anonymization, which refers to the
adversarial process of identifying users from data where
their Personally Identifiable Information (PII) has been
removed, the fraud de-anonymization problem seeks to
attribute detected search rank fraud to the humans who
posted it.

A solution to this problem will enable peer-review sites
to (1) put a face to the humans who post fraud for the
products that they host, i.e., identify their banking infor-
mation and use it to pursue fraud workers, and (2) provide
proof of fraud to customers, e.g., through links to the crowd-
sourcing accounts responsible for fraud posted on products
they browse, see Figure 1. Thus, fraud de-anonymization
may provide counter-incentives both for the crowdsourcing
workers who participate in fraud jobs, and for the product
developers who recruit fraud workers.

4 A STUDY OF SEARCH RANK FRAUD

We now describe our efforts to understand and model fraud
workers. Succinctly, we have (1) performed a user study
with fraud workers recruited from several crowdsourcing
sites, (2) collected and analyzed search rank fraud data from
Upwork, (3) collected a gold standard set of user accounts,

attributed to a worker identified from a crowdsourcing site
and (4) analyzed the behaviors exhibited by these user
accounts. We have developed our protocols to interact with
participants and collect data in an IRB-approved manner
(Approval #: IRB-15-0219@FIU and IRB-18-0077@FIU). In
the following we describe each contribution.

4.1 Motivation: Fraud Worker Capabilities

To evaluate the magnitude of the problem, we have first con-
tacted 44 workers from several crowdsourcing sites includ-
ing Zeerk (12), Peopleperhour (9), Freelancer (8), Upwork
(6) and Facebook groups (9), who advertised search rank
fraud capabilities for app markets. We asked them (1) how
many reviews they can write for one app, (2) how much they
charge for one review, (3) how many apps they reviewed in
the past 7 days, and (4) for how long they been active in
promoting apps.

Figure 3 shows statistics over the answers, organized
by crowdsourcing site. It suggests significant profits for
fraud workers, who claim to be able to write hundreds
of reviews per app (e.g., an average of 250 reviews by
Freelancer workers) and charge from a few cents ($0.56
on average from Zeerk.com workers) to $10 per review
(Freelancer.com). Workers have varied degrees of expertise
in terms of years of experience and recent participation
in fraud jobs. For instance, in recently emerged Facebook
groups, that either directly sell reviews or exchange reviews,
workers have less than 2.5 years experience, but are very
active, with more than 7 jobs in the past 7 days on average,
and are economical ($1.3 on average per review). Further,
workers from Peopleperhour and Upwork have more than
2.5 years experience and more than 3 recent jobs on average.

Subsequently, we have developed a more detailed ques-
tionnaire to better understand search rank fraud behav-
iors and delivered it to 14 fraud freelancers that we re-
cruited from Fiverr. We paid each participant $10, for a
job that takes approx. 10 minutes. The IPs from which the
questionnaire was accessed revealed that the participants
were from Bangladesh (5 participants), USA (2), Egypt (2),
Netherlands, UK, Pakistan, India and Germany (1). The
participants declared to be male, 18 - 28 years old, with di-
verse education levels: less than high school (1 participant),
high school (2), associate degree (3), in college (5), bachelor
degree or more (3).

The participants admitted an array of fraud expertise
(fake reviews and ratings in Google Play, iTunes, Amazon,
Facebook and Twitter, fake installs in Google Play and
iTunes, fake likes and followers in Facebook and Instagram,

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on February 27,2020 at 02:41:50 UTC from IEEE Xplore. Restrictions apply.

4

65

76

10
7

1 1 1
0

20

40

60

80

1 2 3 4 5 6 12
Number of workers winning the job

N
u

m
b

e
r

o
f

fr
a

u
d

 A
S

O
 j
o

b
s

Fig. 4. Distribution of winning workers for search rank fraud jobs: de-
velopers hire multiple workers. More jobs are assigned to 2 or more
workers than to 1. This reveals the need for DOLOS to detect fraudulent
communities and attribute them to different fraud workers.

influential tweets in Twitter). With a focus on search rank
fraud targeting Google Play apps, we found a mix of (1)
inexperienced and experienced fraud workers: 4 out of 14
had been active less than 2 months and 6 workers had
been active for more than 1 year, and (2) active and inactive
workers: 4 had not worked in the past month, 9 had worked
on 1-5 fraud jobs in the past month, and 1 worked on more
than 10 jobs; 8 workers were currently active on 1-5 fraud
jobs, and 1 on more than 5.

Further, we observed varying search rank fraud capa-
bilities when it comes to the magnitude of the fraud on a
per-app level. For instance, 1 worker wrote at most 1 review
per app, 2 wrote 2-5 reviews, 7 workers said that they wrote
between 5 to 50 reviews per app, while 1 wrote 51 to 100
reviews. 1 worker performed less than 10 installs per job, 3
had 11 to 100 installs, 3 had 101 to 1,000 installs per job,
while 1 worker said that he performed more than 1,000
installs for a single app. 8 workers claimed access to more
than 10 mobile devices, with 1 having more than 50.

Of the 14 fraud workers surveyed, 3 admitted to working
in teams that had more than 10 members, and to sharing the
user accounts that they control, with others. 10 workers said
that they control more than 5 Google Play accounts and 1
worker had more than 100 accounts. Later in this section we
show that this is realistic, as other 23 workers we recruited,
were able to reveal between 22 and 86 Google Play accounts
that they control. Further, 4 workers said that they never
abandon an account, 5 said that they use each account until
they are unable to login, and 4 said that they use it for at
most 1 year. This is confirmed by our empirical observation
of the persistence of fraud (see end of section 4.3).

4.2 A Study of Search Rank Fraud Jobs

We identified and collected data from 161 search rank fraud
jobs in Upwork that request workers to post reviews on, or
install Google Play and iTunes apps. We have collected the
533 workers who have bid on these jobs. We call the bidding
workers that are awarded a job, winners. To achieve this, we
have developed a Python crawler to collect data both from
crowdsourcing sites and from Google Play.

Figure 4 shows the distribution of the number of winners
per search rank fraud job. One job of the 161, was awarded
to 12 workers; more jobs were awarded to 2 workers than

(a) (b)
Fig. 5. (a) Worker co-bid graph: Nodes are Upwork workers. An edge
connects two workers who co-bid on search rank fraud jobs. We see a
tight co-bid community of workers; some co-bid on 37 jobs. (b) Worker
Co-win graph with an “expert core” of 8 workers (red), each winning
8-15 jobs. Edges connect workers who won at least one job together.
Any two workers collaborated infrequently, up to 4 jobs.

0

50

100

150

200

0 5 10 15 20
Worker index

N
u

m
b
e

r
o

f
a

c
c
o

u
n

ts

Collected

Revealed

Fig. 6. Attributed, fraud worker-controlled accounts. The numbers of
Google Play accounts revealed by the workers are shown in red. Each
worker has revealed 22-86 accounts. Guilt-by-association accounts are
shown in orange. We have collected a total of 2,664 accounts (red +
orange). One worker controls (at least) 217 accounts.

to only 1. This indicates that hiring multiple workers is con-
sidered beneficial by adversarial developers, and suggests
the need to attribute detected organized fraud activities to
human masterminds (see next section).

In order to understand the extent to which crowdsourced
workers participate in common on search rank fraud jobs,
we introduce the concepts of co-bid and co-win graphs. In
the co-bid graph, nodes are workers who bid on fraud jobs;
edges connect workers who bid together on at least one job.
The edge weights denote the number of jobs on which the
endpoint workers have bid together. In the co-win graph,
the weight of an edge is the number of fraud jobs won by
both endpoint workers.

Out of the 56 workers who won the 161 jobs, only
40 had won a job along with another bidder. Figure 5(a)
shows the co-bid graph of these 40 winners, who form
a tight community. Figure 5(b) plots the co-win graph of
the 40 winners. We observe an “expert core” of 8 workers
who each won between 8 to 15 jobs. Further, we observe
infrequent collaborations between any pair of workers: any
two workers collaborated on at most 4 jobs.

4.3 Fraud Worker Profile Collection (FPC)

We have collected a first gold standard dataset of attributed,
fraud worker controlled accounts in Google Play. For this,
we have identified and contacted 100 Upwork, Fiverr and
Freelancer workers with significant bidding activity on

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on February 27,2020 at 02:41:50 UTC from IEEE Xplore. Restrictions apply.

5

TABLE 1
Account attribution performance on gold standard fraud

worker-controlled dataset, with several supervised learning algorithms
(parameters d = 300, t = 100, γ = 80, and w = 5 set through a grid

search). SVM performed best.

Algorithm Precision Recall F-measure

RF 95.5% 91.6% 93.5%
SVM 98.5% 98.3% 98.5%
k-NN 97.1% 96.4% 96.7%
MLP 98.6% 98.1% 98.4%

search rank fraud jobs targeting Google Play apps. Figure 6
shows the number of accounts (bottom, red segments) re-
vealed by each of 23 most responsive of these workers: be-
tween 22 and 86 Google Play accounts revealed per worker,
for a total of 956 user accounts. We call this dataset “gold
standard”, because it is not ground truth: we do not have
complete confidence that the workers do indeed control all
of the accounts 2. However, this is a first effort to collect
attributed fraud data that balances the need to involve the
fraud workers in this process, with the need to satisfy ethical
and site terms-of-service constraints.
Fraud app dataset. To expand this data, we collected first a
subset of 640 apps that received the highest ratio of reviews
from accounts controlled by the above 23 expert core work-
ers to the total number of reviews. We have monitored the
apps over a 6 months interval, collecting their new reviews
once every 2 days. The 640 apps had between 7 to 3,889
reviews. Half of these apps had at least 51% of their reviews
written from accounts controlled by the 23 fraud workers.
In the following we refer to these, as the fraud apps.
Union fraud graph. We have collected the account data
of the 38,123 unique reviewers (956 of which are the seed
accounts revealed by the 23 fraud workers) of the fraud
apps, enabling us to build their union fraud graph: a node
corresponds to an account that reviewed one of these apps
(including worker controlled and honest ones), and the
weight of an edge denotes the number of apps reviewed in
common by the accounts that correspond to the end nodes.
We have removed duplicates: an account that reviewed mul-
tiple fraud apps has only one node in the graph. The union
fraud graph has 19,375,550 edges and 162 disconnected
components, of which the largest has 37,566 nodes.
Guilt-by-association. We have labeled each node of the
union fraud graph with the ID of the worker controlling it
or with “unknown” if no such information exists. For each
unknown node U , we decide if U is controlled by one of the
workers, based on how well U is associated with accounts
controlled by the worker. However, U may be connected to
the accounts of multiple workers (Trait 3, § 4.5).

To address this problem, we leveraged Trait 4 (see
§ 4.5) to observe that random walks that start from nodes
controlled by the same fraud workers are likely to share
significant context, likely different from the context of nodes
controlled by other workers, or that are honest. We have
pre-processed the union fraud graph to convert it into a
non-weighted graph: replace an edge between nodes ui and
uj with weight wij , by wij non-weighted edges between
ui and uj . We then used the DeepWalk algorithm [27] to

2. We have however verified that the workers knew the Gmail
address associated with each account

perform γ random walks starting from each node v in this
graph, where a walk samples uniformly from the neighbors
of the last vertex visited until it reaches the maximum walk
length (t). The pre-processing of the union graph ensures
that the probability of DeepWalk at node ui to choose node
uj as next hop, is proportional to wij . DeepWalk also takes
as input a window size w, the number of neighbors used as
the context in each iteration of its SkipGram [27] component.
Deepwalk returns a d-dimensional representation in Rd for
each of the nodes. We then used this representation as
predictor features for the “ownership” of the account U , i.e.,
the worker who controls it.

Table 1 highlights precision, recall, and F-measure
achieved by different supervised learning algorithms. We
observe that SVM reaches 98.5% F-measure which suggests
DeepWalk’s ability to provide useful features and assist
in our guilt-by-association process. We then applied the
trained model to the remaining and unlabeled accounts in
the union fraud graph obtaining new guilt-by-association
accounts for each of the 23 workers. Figure 6 shows the
number of seed and guilt-by-association accounts uncov-
ered for each of the 23 workers. We have collected 1, 708
additional accounts, for a total of 2,664 accounts.
Persistence of fraud. After more than 1 year following the
collection of the 2,664 fraud worker-controlled accounts, we
have re-accessed the accounts. We found that 67 accounts
had been deleted and 529 accounts were inactive, i.e., all
information about apps installed, reviewed, +1’d was re-
moved. 2,068 accounts were active. This is consistent with
the findings from our worker survey, where 4 out of 14
surveyed workers said that they never abandon an account,
5 said that they use each account until they are unable to
login, and 4 said that they use it for at most 1 year. This
further suggests the limited ability of Google Play to identify
and block worker-controlled accounts.

4.4 Analysis of Fraud Behaviors

We study the activities performed from the accounts con-
trolled by the above 23 fraud workers, in Google Play. For
this, we have selected the 2,835 apps that have received at
least 10 reviews from the 2,664 accounts controlled by the
23 workers. We perform our analysis on these apps.
Active intervals. First, we study the active interval length of
a worker for an app: the time interval between the first and
last reviews posted from accounts controlled by the worker,
for the app. Figure 7(a) shows the per-worker distribution
of active interval durations, for the above 2,835 apps. We
observe several apps (e.g., shown with red and blue circles)
that were targeted by each of several workers, over long
time intervals (e.g., 1-2 years). We posit that workers may
be rehired several times over the years, to perform search
rank fraud. We revisit this hypothesis shortly.
Daily review capabilities. Second, we study the number
of reviews that a worker has been able to post in a single
day for a single app, from all the user accounts it controls.
Figure 7(b) shows the distribution of the number of daily
reviews posted by each of 23 fraud workers, per each app
they target. It shows that several workers had days when
they were able to post more than 38 reviews per day for one
app. The second worker posted 78 reviews in a day for one

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on February 27,2020 at 02:41:50 UTC from IEEE Xplore. Restrictions apply.

6

(a)

0
5

10
15
20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Worker ID

R
e
v
ie

w
s
 p

e
r

a
p

p
 p

e
r

d
a
y

(b)
Fig. 7. (a) Per-fraud worker distribution of active intervals. Each point denotes the length of the active interval of the corresponding worker for a
Google Play app that he has targeted. The red dots correspond to a Google Play app, while the blue dots correspond to another app. Each of these
apps was targeted by 4 of the 23 workers. (b) Distributions of number of daily reviews posted by each worker per app. Workers 2, 12, 43 and 18
provide an average of 38 to 78 daily reviews per each app they have targeted.

app! These results corroborate the findings of our worker
survey described in § 4.1.
Active intervals vs. reviews per active day. We found,
using 3,369 (app, fraud worker) data points, that the fraud
workers who post a high number of reviews on average per
active day (e.g., 18-34), tend to target apps only for a short
time span (small active interval length), i.e., over 1-2 days.
However, these points account for only 1.6% of the data.
75% of the data points plotted correspond to active intervals
of up to 250 days. 64% of these points correspond to (app,
fraud worker) pairs where the worker wrote an average of
1 - 3 reviews per active day, 18% to 4 - 7 reviews per day
and 18% to 18-34 reviews per day. 25% (858) of the data
points correspond to active intervals of between 250 and
887 days. 72.12% of the points correspond to (app, fraud
worker) pairs where the worker wrote an average of 1 - 3
reviews per active day.

We further observed that search rank fraud workers
often “dilute” their reviews over a large number of days,
instead of posting large number of reviews over only a few
days. We believe that this is due to job requirements, which
have evolved to avoid obvious defenses employed by peer-
review systems, e.g., through detection of review spikes.

4.5 Empirical Adversary Traits

We summarize now several search rank fraud worker traits
suggested by our studies:
• Trait 1: Fraud workers control multiple user accounts

which they use to perpetrate search rank fraud.
• Trait 2: While workers have diverse search rank fraud

capabilities, crowdsourcing sites have an “expert core”
of successful workers. Many fraud workers are willing
to contribute, but few have the expertise or reputation
to win such jobs.

• Trait 3: Search rank fraud jobs often recruit multiple
workers. Thus, targeted products may receive fake
reviews from multiple workers. This suggests that in
addition to identifying fraudulent reviews, we need to
further attribute them to their authors.

• Trait 4: Any two fraud workers collaborate infrequently,
when compared to the number of search rank fraud jobs
on which they have participated, see Figure 5(b).

• Trait 5: Fraud workers and the people who hire them
evolve their strategies, to avoid detection.

• Trait 6: Fraud workers may be rehired by the same
product developer to promote the same product, sev-
eral times over the years.

• Trait 7: Fraud workers, including experts, are willing
to reveal information about their behaviors, perhaps to
convince prospective employers of their expertise.

DOLOS exploits these traits to detect and attribute groups of
fraudulent user accounts to the fraud workers who control
them. We do not claim that the sample data from which
the traits are extracted is representative. However, in the
evaluation section we show that DOLOS can accurately de-
anonymize fraud workers.

5 FRAUD DE-ANONYMIZATION SYSTEM

5.1 Solution Overview

We introduce DOLOS, the first fraud de-anonymization sys-
tem that integrates activities on both crowdsourcing sites
and online services. As illustrated in Figure 8, DOLOS per-
forms two tasks: (Task 1) proactively identify new fraud
workers and builds their profiles in crowdsourcing sites,
and (Task 2) process product and user accounts in online
systems to attribute detected fraud to these profiles. The
FPC module described in the previous section performs
Task 1. In the following, we focus on Task 2, which we break
into two sub-problems:
• Fraud-Component Detection Problem. Given a prod-

uct A ∈ A, return a set of components CA =
{C1, .., Ck}, where any Cj=1..k consists of a subset of
the user accounts who posted an activity for A, s.t.,
those accounts are either controlled by a single worker
inW , or are honest.

• Component Attribution Problem. GivenW and a com-
ponent C ∈ CA, return the identity of the worker inW
who controls all the accounts in the component, or ⊥ if
the accounts are not controlled by a worker.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on February 27,2020 at 02:41:50 UTC from IEEE Xplore. Restrictions apply.

7

Fig. 8. DOLOS system architecture. The Fraud Component Detection
(FCD) module partitions the co-activity graphs of apps into loosely
inter-connected, dense components. The Component Attribution (CA)
module attributes FCD detected components to worker profiles collected
by the worker Profile Collector (FPC).

Algorithm 1 MCDense: Min-Cut based Dense compo-
nent detection. We set η to 5 and tau to 0.5.

Input: G = (U , Ew): input graph
n := |U|

Output: C := ∅: set of node components
1. MCDense(G){
2. if (nodeCount(G) < η) return;
3. (G1, G2) := weightMinCut(G);
4. if ((ρ(G1) > ρ(G) & ρ(G2) > ρ(G))

& (ρ(G) < τ)){
5. MCDense(G1); MCDense(G2);
6. else
7. C := C ∪ G;
8. return;
9. end if

DOLOS’s FCD and CA modules respectively, provide solu-
tions to these sub-problems. In the following, we detail the
FCD and CA modules.

5.2 Fraud Component Detection (FCD) Module
In order to identify communities, each controlled by a
different fraud worker, we leverage the adversary Trait 4,
that the accounts controlled by one worker are likely to have
reviewed significantly more products in common than with
the accounts controlled by another worker. We introduce
MCDense, an algorithm that takes as input the co-activity
graph of a product A, and outputs its fraud components, sets
of user accounts, each potentially controlled by a different
worker. We define the co-activity graph of a product A
as G = (U , Ew), with a node for each user account that
posted an activity for A (see Figure 9 for an illustration).
Two nodes ui, uj ∈ U are connected by a weighted edge
e(ui, uj , wij) ∈ Ew, where the weight wij is the number of
products on which ui and uj posted activities in common.

MCDense, see Algorithm 1, detects densely connected
subgraphs, each subgraph minimally connected to the other
subgraphs. Given a graph G = (U , Ew), its triangle density
is ρ(G) = t(V)

(|V |
3)

, where t(V) is the number of triangles

formed by the edges in Ew.This definition differs from
Tsourakakis [25] in the DSG algorithm (see § 6.4.1). Thus,
unlike ρD that can be larger than 1, ρ ∈ [0, 1].

(a) (b)

Fig. 9. Co-review graph of user accounts reviewing a popular horo-
scope app in Google Play (name hidden for privacy). Nodes are ac-
counts. 4 Upwork workers each revealed to control the accounts of
the same color. Two accounts are connected if they post reviews for
the same apps. Node sizes are a function of the account connectivity.
(b) DOLOS found these 4 tightly connected groups of accounts, and
correctly attributed 3 groups to the workers controlling them.

MCDense recursively divides the co-activity graph into
two minimally connected subgraphs: the sum of the weights
of the edges crossing the two subgraphs, is minimized. If
both subgraphs are more densely connected than the initial
graph (line 4) and the density of the initial graph is below
a threshold τ , MCDense treats each subgraph as being
controlled by different workers: it calls itself recursively for
each subgraph (lines 5,6). Otherwise, MCDense considers
the undivided graph to be controlled by a single worker,
and adds it to the set of identified components (line 8).

We have used the gold standard set of accounts con-
trolled by the 23 fraud workers detailed in the previous
section, to empirically set the τ threshold to 0.5, as the
lowest density of the 23 groups of accounts revealed by the
workers was just above 0.5.

MCDense converges and has O(|Ew||U|3) complexity.
To see that this is the case, we observe that at each step,
MCDense either stops or, at the worst, “shaves” one node
from G. The complexity follows then based on Karger’s
min-cut algorithm complexity [28].

5.3 Component Attribution (CA) Module
Given a set of fraud worker profiles FW and a set of fraud
components returned by the FCD module for a product A,
the component attribution module identifies the workers
likely to control the accounts in each component. To achieve
this, DOLOS leverages the unique writing style of human
workers to fuse elements from computational linguistics,
e.g., [29], [30], and author de-anonymization, e.g., [31].
Specifically, we propose the following 2-step component
attribution process:
CA Training. Identify the products reviewed by the ac-
counts controlled by each worker W ∈ FW . For each such
product, create a review instance that consist of all the re-
views written by the accounts controlled by W for A. Thus,
each review instance contains only (but all) the reviews
written from the accounts controlled by a single worker,
for a single product. Extract stylometry features from each
review instance of each worker, including character count,
average number of characters per word, and frequencies
of letters, uppercase letters, special characters, punctuation
marks, digits, numbers, top letter digrams, trigrams, part

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on February 27,2020 at 02:41:50 UTC from IEEE Xplore. Restrictions apply.

8

Algorithm 2 DOLOS pseudocode. Given a set of crowd-
sourcing sites and peer-review site products, identify
prolific fraud workers, accounts they control and tar-
geted apps.

Input: Prod[] Products : monitored products
site[] crowdSites : monitored sites
int φ : threshold account number signal expertise

Output: < F, Acc >[] workers : detected fraud
Prod[] fraudProd : detected fraud products

1. DOLOS (){
2. while (true) do
3. 〈 F, Acc 〉[] fraud := FPC.getSeeds(crowdSites);
4. candidates.add(fraud); CA.train(candidates);
5. for each prod in Products do
6. C := MCDense.getComponents(prod);
7. if (C.size 6= 0) then fraudProd.add(prod);
8. for each c in C do
9. F f := CA.attribute(c, candidates);
10. UserAcc a := candidates.getAccounts(f);
11. a.add(c.accounts);
12. for each 〈 f, a 〉 in candidates do
13. if (a.size ≥ φ) then
14. workers.add(〈 f, a 〉);
15. candidates.remove(〈 f, a 〉); }

of speech (POS) tags, POS digrams, POS trigrams, word
digrams, word trigrams and of misspelled words. Train a
supervised learning algorithm on these features, that as-
sociates the feature values of each review instance to the
worker who created it.
Attribution. Let C denote the set of components returned
by MCDense for a product A. For each component C ∈ C,
group all the reviews written by the accounts in C for
product A, into a review instance, r. Extract r’s stylometry
features and use the trained classifier to determine the
probability that r was authored by each of the workers
in FW . Output the identity of the fraud worker with the
highest probability of having authored r.

5.4 Putting It All Together
Algorithm 2 shows the pseudocode of DOLOS. DOLOS takes
as input a list of crowdsourcing sites and a list of products,
and generates a list of identified prolific fraud workers and
accounts that they are suspected to control in the online
service, along with a list of the products on which they have
performed search rank fraud.

DOLOS uses FPC (see § 4.3) to identify a fresh set of seed
fraud from crowdsourcing sites, that consists of a new set
of crowdsourcing site workers F, along with a set of user
accounts Acc that each worker controls in the peer-review
site (Algorithm 2, line 3). It then adds this seed information
to the set of candidate fraud workers and uses it to re-train
the component attribution (CA) module (line 4).

For each product received in its input (line 5), DOLOS
uses MCDense to find the densely connected components of
its co-review graph (line 6). If it finds at least one such com-
ponent, it adds the product to the list of products targeted
by search rank fraud (line 7), then, for each component, it
uses the trained CA module to attribute the accounts in
the component (line 9), and adds the accounts to the list
of accounts controlled by the identified fraud worker (lines
10-11). At the end of this process, DOLOS plucks the expert
workers (i.e., who now control more than the threshold φ

user accounts) and adds them to the list of workers that it
outputs (lines 12-15).

DOLOS repeats the above steps each time FPC identifies
more seed ground truth data (line 2).

6 EMPIRICAL EVALUATION

In this section we compare the results of DOLOS on fraud
and honest apps, evaluate its de-anonymization accuracy,
and present its results on 13,087 apps. Further, we compare
MCDense with adapted dense sub-graph detection and
loopy belief propagation solutions.

6.1 Fraud vs. Honest Apps
We evaluate the ability of DOLOS to discern differences
between fraudulent and honest apps. For this, we first
selected 925 candidate apps from the longitudinal app set,
that have been developed by Google designated “top devel-
opers”. We have filtered those flagged by VirusTotal. We
have manually investigated the other apps, and selected
219 apps that (i) have more than 10 reviews and (ii) were
developed by reputable media outlets (e.g., Google, PBS,
Yahoo, Expedia, NBC) or have an associated business model
(e.g., fitness trackers). We have collected 38,224 reviews and
their associate user accounts from these apps.

Figure 10(a) compares the CDF of the number of compo-
nents (of at least 5 accounts) found by MCDense per each
of the 640 fraud apps vs. the 219 honest apps. MCDense
found that all the fraud apps had at least 1 component,
however, 70% of the honest apps had no component. The
maximum number of components found for fraud apps is
19 vs. 4 for honest apps. Figure 10(b) compares the CDF
of the maximum edge density (ratio of number of edges
to maximum number of edges possible) of a component
identified by MCDense per fraud vs. honest apps. 94.4%
of fraud apps have density more than 75% while only 30%
of the honest apps have a cluster with density larger than
0. The increase is slow, with 90% of the honest apps having
clusters with density of 60% or below. Figure 10(c) compares
the CDF of the size of the per-app densest component
found for fraud vs. honest apps. 80% of the fraud apps
vs. only 7% of the honest apps, have a densest component
with more than 10 nodes. The largest, densest component
has 220 accounts for a fraud app, and 21 accounts for an
honest app. We have manually analyzed the largest, densest
components found by MCDense for the honest apps and
found that they occur for users who review popular apps
such as the Google, Yahoo or Facebook clients, and users
who share interests in, e.g., social apps or games.

6.2 De-Anonymization Performance
We have implemented the CA module using a combination
of JStylo [32] and supervised learning algorithms. We have
collected the 111,714 reviews posted from the 2,664 at-
tributed, fraud worker controlled user accounts of § 4.3. The
reviews were posted for 2,175 apps. We have grouped these
reviews into instances, and we have filtered out those with
less than 5 reviews. The remaining total is 6,046 instances,
40 to 1,664 per worker. Figure 11(a) shows their distribution
among the 23 workers who authored them.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on February 27,2020 at 02:41:50 UTC from IEEE Xplore. Restrictions apply.

9

0.00

0.25

0.50

0.75

1.00

0 5 10 15

of Components

E
m

p
ir

ic
a
l
C

D
F

(a)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Maximum Density

E
m

p
ir

ic
a
l
C

D
F

(b)

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200

Size of Densest Component

E
m

p
ir

ic
a
l
C

D
F

Honest

Fraud

Wild

(c)
Fig. 10. MCDense: Cumulative distribution function (CDF) over 640 fraud, 219 honest, and 1,056 suspicious “wild” apps, of per-app (a) number of
components of at least 5 accounts, (b) maximum density of an identified component and (c) size of densest component.

TABLE 2
DOLOS attribution performance for the 1,690 instances of the 640 fraud
apps. k-NN identifies the workers responsible for 95% of the instances.

Algo Top 1 (TPR) Top 3 Top 5

k-NN (IBK) 1608 (95.0%) 1645 1646
RF (Random Forest) 1487 (87.9%) 1625 1673
DT (Decision Tree) 1126 (66.5%) 1391 1455
SVM 1101 65% 1195 1214
NB (Naive Bayes) 569 36.5% 874 1067
SMO 1117 68.3% 1434 1548

We have evaluated the performance of DOLOS (MC-
Dense + CA) using a leave-one-out cross validation process 3

over the 640 fraud apps (and their 1,690 review instances).
More specificaly, for each app A, CA extracts stylometric
features from each review instance with JStylo [32] (see
§ 5.3), then trains a supervised learning algorithm on all the
review instances minus the instances that were written for
A. During testing, DOLOS converts each fraud component
returned by MCDense for A into a review instance, that
contains the reviews written by its accounts for A. It then
uses the trained CA to determine the workers most likely
to have authored it. Thus, DOLOS trains a different classifier
for each test app.

We have used several supervised learning algorithms,
including k-nearest neighbors (k-NN), Random Forest (RF),
Decision Trees (DT), Naive Bayes (NB), Support Vector Ma-
chine (SVM), and Sequential Minimal Optimization (SMO).
Instance level performance. Table 2 shows the number of
instances correctly attributed by DOLOS (out of the 1,690
instances of the 640 fraud apps) and corresponding true
positive rate, as well as the number of instances where the
correct worker is among DOLOS’ top 3 and top 5 options.
k-NN achieved the best performance, correctly identifying
the workers responsible for posting 95% of the instances.
We observe that k-NN correctly predicts the authors of
95% of the instances. Figure 11(b) zooms into per-fraud
worker precision and recall, showing the ability of DOLOS
to identify the instances and only the instances of each of the
23 workers. For 21 out of 23 workers, the DOLOS precision
and recall both exceed 87%.
App level performance. Table 3 shows that when using k-
NN, DOLOS correctly identified at least 1 worker per app,
for 97.5% of the fraud apps, and identified at least 90% of
the workers in each of 87% of the fraud apps. Table 4 shows

3. https://en.wikipedia.org/wiki/Cross-validation (statistics)

TABLE 3
Number of apps for which DOLOS has a recall of at least 50%, 70% and

90%. k-NN identifies at least one worker for 97.5% of the 640 fraud
apps, and 90% of the workers of each of 557 (87%) of the apps.

Algo 1 worker 50%-recall 70%-recall 90%-recall

RF 624 622 537 465
SVM 574 517 325 284
k-NN 625 625 585 557
DT 554 510 315 264
NB 379 256 128 125
SMO 533 492 318 265

TABLE 4
App level precision: the number of apps where its precision is at least

50%, 70% and 90%. The precision of DOLOS when using k-NN
exceeds 90% for 69% of the fraud apps.

Algo 50%-prec 70%-prec 90%-prec

RF 573 434 359
SVM 460 249 209
k-NN 578 483 444
DT 446 260 208
NB 217 100 99
SMO 436 264 212

that the precision of DOLOS in identifying an app’s workers
exceeds 90% for 69% of the apps.
Developer tailored search rank fraud. Upon closer inspec-
tion of the DOLOS identified clusters, we found numerous
cases of clusters consisting of user accounts who reviewed
almost exclusively apps created by a single developer. We
conjecture that those user accounts were created with the
specific goal to review the apps of the developer, e.g., by the
developer or their employees.

6.3 DOLOS in the Wild

To understand how Dolos will perform in real life, we have
randomly selected 13,087 apps from Google Play, developed
by 9,430 distinct developers. We monitored these apps over
more than 6 months, and recorded their changes once every
2 days. This enabled us to collect up to 7,688 reviews per
app, exceeding Google’s one shot limit of 4,000 reviews. We
collected the data of the 586,381 distinct reviewers of these
apps, and built their co-activity graphs.

MCDense found at least 1 dense component of at least
5 accounts in 1,056 of the 13,087 apps (8%). Figure 10
compares the results of MCDense on the 1,056 apps, with

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on February 27,2020 at 02:41:50 UTC from IEEE Xplore. Restrictions apply.

10

3
7

6

1
8

0

1
7

0

1
6

0

4
3 1
0

1

3
4

0

6
4

5

4
4

2

1
0

1

3
0 9
8 1
3

1

2
0

8

6
3

1
6

4
4

1
1

1
4

7
0

3
3

5
0

1
9

0

4
5 1
0

6

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Worker ID

In
s
ta

n
c
e

 C
o

u
n
t

(a)

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

Worker ID

P
re

c
is

io
n
/R

e
c
a
ll

Precision

Recall

(b)
Fig. 11. (a) Number of review instances collected from each of the 23 fraud worker. Each review instance has at least 5 reviews, written by the
accounts controlled by a single worker, for a single app. (b) DOLOS per-worker attribution precision and recall, over the 1,690 review instances of
640 fraud apps, exceed 87% for 21 out of the 23 workers.

those for the fraud and honest apps. The CDF of the number
of components found by MCDense for these “wild” apps is
closer to that of the fraud apps than to the honest apps:
up to 19 components per app, see Figure 10(a). The CDF of
the maximum density of per app components reveals that
231 of the 1,056 apps (or 21.87%) had at least 1 component
with edge density 1 (complete sub-graphs). The CDF of the
size of the densest components (Figure 10(c)) found per each
of the wild apps shows that similar to the 640 fraud apps,
few of these apps have only 0 size densest components. The
largest component found by MCDense for these apps has 90
accounts.
Validation of fraud suspicions. Upon close inspection of the
231 apps that had at least 1 component with edge density of
1 (i.e., clique), we found the following further evidence of
suspicious fraud being perpetrated. (1) Targeted by known
fraud workers: 169 of the 231 apps had received reviews
from the 23 known workers (§ 4.3). One app had received
reviews from 10 of the workers. (2) Review duplicates: 223
out of the 231 apps have received 10,563 duplicate reviews
(that replicate the text of reviews posted for the same app,
from a different account), or 25.55% of their total 41,339
reviews. One app alone has 1,274 duplicate reviews, out of a
total of 4,251 reviews. (3) Fraud re-posters: our longitudinal
monitoring of apps enabled us to detect fraud re-posters,
accounts who re-post their reviews, hours to days after
Google Play filters them out. One of the 231 apps received
37 fraud re-posts, from the same user account.

6.4 MCDense Evaluation

6.4.1 MCDense Competitors

We adapt two existing solutions to the fraud-component
detection problem and compare them against MCDense.
DSG: Adapted Densest SubGraph approach. We first com-
pare MCDense against DSG, a densest subgraph approach
that we adapt based on [25]. DSG, whose pseudocode is
shown in Algorithm 3, iteratively identifies multiple dense
subgraphs of an app’s co-activity graph G = (U,E), each
suspected to belong to a different worker. DSG peels off
nodes of G until it runs out of nodes (lines 4-11). Dur-
ing each “peeling” step, it removes the node that is least
connected to the other nodes (lines 5-6). After removing
the node, the algorithm computes and saves the density of
the resulting subgraph (lines 7-10). The algorithm returns

Algorithm 3 DSG: Densest Sub-Graph algorithm.

Input: G = (V, E): input graph
n := |V |

Output: SG: optimum subgraph
1. Graph H := G;
2. double r := ρD(H); # holds max density
3. Graph SG := G
4. for i := 2 to n do
5. v := least connected node of H ;
6. H := H - {v}
7. if (ρD(H) > r) then
8. SG := H;
9. r := ρD(H);
10. end if
11. end for
12.return SG;

the subgraph with the highest density. We use the triangle
density definition proposed in [25], ρD = t(U)

|U | , where t(U)
is the number of triangles formed by the vertices in U .
DSG uses this greedy strategy iteratively: once it finds the
densest subgraph D of G, DSG repeats the process, to find
the densest subgraph in G−D. The nodes in each identified
densest subgraph are well connected among themselves, but
not well connected to the nodes in the previously identified
subgraphs.
LBP: Adapted Loopy Belief Propagation approach. We
adapt a Loopy Belief Propagation approach [18] to formu-
late the problem of detecting fraudulent user accounts as a
network classification task on G. The resulting algorithm,
LBP, assigns labels to the user account nodes of the co-
activity graph. Specifically, the graph is modeled as a pair-
wise Markov Random Field (MRF) [33], where each user
account node has a random variable Yi that can take values
from the user class domain L = {honest, fraud} (i.e., the
label space), encoding the belief that the node is fraudulent.

In MRFs, the memoryless Markov property implies that
in the undirected network, the label of a node only de-
pends on its neighbors. Then, the overall joint probability
distribution is written as the normalized product of fac-
tors associated with the nodes and edges [34]: P(y) =
1
Z

∏
Yi∈U φi(yi)

∏
(Yi,Yj ,wij)∈Ew ψ

w
ij(yi, yj), where y repre-

sents an assignment of labels to each of the nodes in U ,
and Z is the normalization constant. φ : L → R+ represents
the “prior probability” for each node, and ψw : L×L → R+

are the “compatibility potentials”.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on February 27,2020 at 02:41:50 UTC from IEEE Xplore. Restrictions apply.

11

Fig. 12. Illustration of p-coverage and p-SCC scores that measure the
quality of detected community partitions (shown as ovals). (a) Graph
with two workers: one controls the square nodes and one the round
nodes. The partition provides (50%,100%)-coverage and (50%,100%)-
SCC. (b) Graph with a single worker (circles). p-coverage 6= p-SCC:
the partition provides (100%,80%)-coverage but only (0%,80%)-SCC.

We adapt the priors φi and compatibility potentials ψij

to capture the behavioral dynamics of the users in the
Google Play review ecosystem. We have experimented with
two types of priors. First, the priors are all 1/2, modeling
the lack of knowledge on the status of nodes/accounts.
Second, we chose the prior of a user node ui having label
honest to be inversely proportional to the average weight
of ui’s edges, i.e., φi(honest) = |N(ui)|∑

j∈N(ui)
wij

; φi(fraud) =

1 − φi(honest). The results shown are over the latter ap-
proach, which proved to be more effective.

Further, the compatibility potentials ψij(yi, yj), capture
the likelihood of a node ui with assigned label yi to be
neighbor of a node uj with label yj , when ui and uj have
a link of weight w between them. We defined ψij(yi, yj) as
follows. If ui is honest, ψij(yi, yj) is independent of wij .
However, when ui is “fraud” ψij(yi, yj) depends on wij :
ψij(yi = “fraud′′, yj = “honest′′) = δlogwij decreases
exponentially with wij , while ψij(yi = “fraud′′, yj =
“fraud′′) = 1− δlogwij increases, where δ in (0, 1).

6.4.2 Evaluation Scores
To evaluate MCDense, we introduce two coverage scores.
Let RA(A) = {a1, .., ak} denote the set of user accounts
who reviewed product A. Given the set S = {W1, ..,Ww} of
workers who wrote fake reviews forA, letWi = {ai1 , .., aij}
denote the accounts in RA(A) that are controlled by
worker Wi, i = [w]. Then, a partition of RA(A) is a set
of sets {P1, .., Pp}, such that each account ai ∈ RA(A),
i = [k], belongs to exactly one of these sets. Let H =
RA(A) \ ∪i=[w]Wi, be A’s “honest” reviewers, i.e., ac-
counts not known to be controlled by a worker. The set
{W1, ..,Ww, H}, forms a partition of RA(A).

Let C = {C1, .., Cc, HC} be the partition ofRA(A) of the
user accounts who reviewed an app A, returned by a fraud-
component detection algorithm: ∀ai, aj ∈ Cl, are considered
to be controlled by the same worker, and HC is the set of
accounts considered to be honest. To quantify how well the
partition C has detected the worker accountsW1, ..,Ww who
targetedA, we propose the coverage measure of workerWi ∈
S as follows:
Definition 1. (Coverage) The coverage of worker Wi ∈ S

by a partition C is covi(C) = |Wi∩(C1∪..∪Cc)|
|Wi|

. Given
p ∈ [0, 1], we say that Wi is “p-covered” by C if
covi(C) ≥ p. Then, we say that partition C provides
a (p1, p2)-coverage of the worker set S, if p1 percent of
the workers in S are p2-covered by C .

Further, we introduce the single component coverage (SCC) of
a worker Wi ∈ S by a partition C:

Definition 2. (Single Component Coverage - SCC) The single
component coverage of a workerWi ∈ S by a partition C =
{C1, .., Cc} is SCCi(C) = maxj=[c]

|Wi∩Cj |
|Wi|

. Given p ∈
[0, 1], we say that Wi is “p-single component covered”
(or p-SCC) by C if SCCi(C) ≥ p. We say that partition C
provides a (p1, p2)-SCC of the worker set S, if p1 percent
of the workers in S are p2-SCC by C .
p-SCC is about precision: a worker is p-single com-

ponent covered by Alg only if at least p percent of its
accounts belong to a single component discovered by Alg.
In contrast, a worker is p-covered if p percent of its accounts
belong to any component returned by Alg. As such, p-
SCC will always be at most equal to p-coverage. Figure 12
illustrates the p-coverage and p-SCC measures on the co-
activity graphs of two apps.

6.4.3 MCDense vs. DSG
Figure 13 compares MCDense and DSG in terms of their
distributions of the p-coverage and p-SCC scores, over the
640 fraud apps. MCDense consistently outperforms DSG.
For instance, Figure 13(a) shows that 537 apps are at least
(90%+, 50%)-covered by MCDense, while only 507 apps
achieve the same coverage for DSG. The difference is even
higher for the p-SCC score: Figure 13(b) shows that 490 apps
(75%) are at least (90%+, 50%)-SCC by MCDense, that is, at
least 50% of the accounts controlled by 90% of the workers
belong to only one of the components returned by MCDense.
In contrast, only 383 apps are at least (90%+, 50%)-SCC by
DSG.

The difference between MCDense and DSG becomes
more pronounced as p2 increases to 80% and 90%. For
instance, Figure 13(c) shows that 438 apps are at least (90%+,
80%)-covered by MCDense, while only 359 apps achieve
the same coverage for DSG. Figure 13(d) compares the p-
SCC score: 409 apps (63%) are at least (90%+, 80%)-SCC
by MCDense compared to only 225 apps that are at least
(90%+, 80%)-SCC by DSG. Figure 13(e) shows that 415 apps
are at least (90%+, 90%)-covered by MCDense, while only
245 apps achieve the same coverage for DSG. Figure 13(f)
shows the p-SCC score: 381 apps (59%) are at least (90%+,
90%)-SCC by MCDense, but only less than half (188 apps)
are at least (90%+, 90%)-SCC by DSG.

6.4.4 LBP Performance
Since LBP has no information (in the form of priors) about
the accounts controlled by workers, we use it to deter-
mine which accounts are suspected of being controlled by
a worker, as those whose final fraud belief exceeds 0.5.
Figure 14 shows the box and whiskers plot of the precision
and recall values of LBP, when δ ranges from 0.1 to 0.9.
We observe that recall in this case is equivalent to our p-
coverage score. In addition to precision and recall, we also
use the notion of “prevalence”: the ratio of the number of
fraud labeled accounts to the total number of the app’s ac-
counts. This enables us to determine when LBP labels all the
accounts as fraudulent. LBP achieves the best performance
when δ = 0.7, with an average per-app recall exceeding 95%.

Thus, while LBP can be used to detect fake reviews, it
cannot determine if all accounts detected as fraudulent are
controlled by a single or multiple workers.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on February 27,2020 at 02:41:50 UTC from IEEE Xplore. Restrictions apply.

12

0.01 − 0.1
0.11 − 0.2
0.21 − 0.3
0.31 − 0.4
0.41 − 0.5
0.51 − 0.6
0.61 − 0.7
0.71 − 0.8
0.81 − 0.9
0.91 − 1.0

0 200 400

Number of apps

(a)

0.01 − 0.1
0.11 − 0.2
0.21 − 0.3
0.31 − 0.4
0.41 − 0.5
0.51 − 0.6
0.61 − 0.7
0.71 − 0.8
0.81 − 0.9
0.91 − 1.0

0 200 400

Number of apps

(b)

0.01 − 0.1
0.11 − 0.2
0.21 − 0.3
0.31 − 0.4
0.41 − 0.5
0.51 − 0.6
0.61 − 0.7
0.71 − 0.8
0.81 − 0.9
0.91 − 1.0

0 200 400

Number of apps

(c)

0.01 − 0.1
0.11 − 0.2
0.21 − 0.3
0.31 − 0.4
0.41 − 0.5
0.51 − 0.6
0.61 − 0.7
0.71 − 0.8
0.81 − 0.9
0.91 − 1.0

0 200 400

Number of apps

(d)

0.01 − 0.1
0.11 − 0.2
0.21 − 0.3
0.31 − 0.4
0.41 − 0.5
0.51 − 0.6
0.61 − 0.7
0.71 − 0.8
0.81 − 0.9
0.91 − 1.0

0 200 400

Number of apps

(e)

0.01 − 0.1
0.11 − 0.2
0.21 − 0.3
0.31 − 0.4
0.41 − 0.5
0.51 − 0.6
0.61 − 0.7
0.71 − 0.8
0.81 − 0.9
0.91 − 1.0

0 200 400

Number of apps

(f)
Fig. 13. Comparison of MCDense and DSG distribution of coverage score and distribution of SCC score over 640 fraud apps. The y axis shows
the p1 value, and the x axis shows the number of apps for which MCDense and DSG achieve that p1 value, when (a,b) p2 = 50%, (c,d) p2 = 80%,
and (e,f) p2 = 90%. MCDense consistently outperforms DSG as it provides (a) (90%+, 50%)-coverage for 537 (83%) of the apps vs. DSG’s 506
apps, and (b) (90%+, 50%)-SCC for 490 (75%) of the apps, vs DSG’s only 383 apps, and (e) (90%+, 90%)-coverage for 415 (65%) of the apps vs.
DSG’s 245 apps, and (f) (90%+, 90%)-SCC for 381 of the apps, vs. DSG’s 188 apps, which is half of MCDense.

0.00

0.25

0.50

0.75

1.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

δ

Precision Recall Prevalence

Fig. 14. LBP identification of fraudulent accounts: precision, recall and
prevalence, when δ = [0.1..0.9]. LBP achieves best performance when
δ = 0.7, with a median precision of 69% and recall of 98%; the median
prevalence of 82% shows that these values are not achieved by labeling
all the accounts as fraudulent.

7 DISCUSSION AND LIMITATIONS

Union fraud graph complexity. Given n unique user ac-
counts, the complexity of building their union fraud graph
is O(n2): the existence of an edge and its weight, need to be
identified and computed for each pair of user accounts. The
addition or deletion of a single account to/from the union
fraud graph has O(n) complexity, as the account may have
at most n− 1 edges to the other nodes in the graph.
Unexpected fraud and generalization of results. DOLOS is
designed to work with fraud workers defined by the traits
of § 4.5. Thus, DOLOS may not be effective in identifying
and attributing fraud posted by workers who do not share
these traits.

Further, we performed our experiments using data we
collected from Google Play. We conjecture that DOLOS could
also attribute fraud to workers who target other peer-
opinion sites, e.g., Amazon, Yelp, App Store, as long as they
satisfy the traits of § 4.5. However, due to lack of data, we
cannot validate this hypothesis, and cannot claim that our
results generalize to other sites.

Automating fraud discovery. Our approach requires man-
ual interaction with fraud workers, in order to collect at-
tributed fraud, i.e., user accounts that they claim to control.
While it would be desirable to fully automate fraud attri-
bution efforts, we note that informed consent is required to
interact with and collect data from human workers. Com-
mercial peer-opinion sites may use alternative techniques
to automatically attribute accounts to workers, e.g., through
duplicate IP addresses used during site accesses. However,
fraud workers can also use VPNs to de-anonymize their
access. We leave an investigation into ethical and automatic
collection of attributed fraud for future work.
Answer validation. Our studies involving fraud workers
assume that their answers are truthful. While we verified
that workers knew the Gmail accounts associated with
the accounts that they claimed to control, we have less
confidence in answers to questions about, e.g., the number
of reviews they can write, fraud experience and number
of apps reviewed in the past week (shown in Figure 3).
Fraud workers may have incentives to exaggerate expertise.
Future work may investigate protocols to validate answers
provided by fraud workers.

8 RELATED WORK

This article significantly extends our initial work [35] with
(1) a detailed analysis of fraud data that we collected from
23 crowdsourced workers, an extension of the results of
our study on search rank fraud jobs, and additions to the
extracted adversarial traits, (2) the addition of p-SCC, a new
coverage score, (3) pseudocode for DOLOS and DSG, (4)
significant new comparison of MCDense and DSG, both for
the previous p-coverage and the new p-SCC score, and (5)
the introduction of a Loopy Belief Propagation algorithm
adapted to the fraud detection problem, and its evaluation.
Fraud detection in peer-review sites. Yang et al. [36]
showed that “criminal” Twitter accounts tend to form small-
world social networks. Mukherjee et al. [11], [14] confirmed
this finding and introduced features that identify reviewer
groups, who review many products in common but not

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on February 27,2020 at 02:41:50 UTC from IEEE Xplore. Restrictions apply.

13

much else, post their reviews within small time windows,
and are among the first to review the product.

Beutel et al. [37] proposed CopyCatch, a system that
identifies lockstep behaviors, i.e., groups of user accounts that
act in a quasi-synchronized manner, to detect fake page
likes in Facebook. Chen et al. [9] identify clusters of apps
in Apple’s China App store, that have been promoted in a
similar fashion. Cao et al. [38] used lockstep behaviors and
insider information, to cluster user accounts and uncover
groups of malicious accounts in Facebook.

DOLOS goes beyond fraud detection, to further attribute
detected fraud to the human fraud workers in crowdsourc-
ing sites who are responsible for posting it.
Graph-based fraud detection. Previous work has used
graph based approaches to detect fraudulent behaviors,
e.g., [39], [12], [40], [19]. Ye and Akoglu [39] quantified the
chance of a product to be a spam campaign target, then
clustered spammers on a 2-hop subgraph induced by the
products with the highest chance values. Wang et. al [12]
leveraged a novel Markov Random Field to detect work-
ers in social networks via guilt-by-association on directed
graphs. Shen et al [40] introduced “k-triangles” to measure
the tenuity of account groups and proposed algorithms to
approximate the Minimum k-Triangle Disconnected Group
problem. Hooi et al. [19] have shown that workers have
evolved to hide their traces, by adding spurious reviews to
popular items. They introduced a class of “suspiciousness”
metrics that apply to bipartite user-to-item graphs, and
developed a greedy algorithm to find the subgraph with
the highest suspiciousness metric.

Wang et al. [41] used “heterogeneous review graphs”
that capture relations among reviewers, reviews and sub-
jects, and develop an iterative model to identify suspicious
reviewers. Malliaros et al. [42] exploit expansion properties of
large social graphs to build an efficient algorithm for com-
puting the robustness property of time evolving graph to
detect communities and anomalies. Faloutsos et al. [43] use
static and temporal properties (e.g. eigenspokes) of time-
evolving graphs to spot suspicious activities and process
time-evolving graphs in map-reduce environments.

DOLOS builds on the empirical observation that search
rank fraud is perpetrated by many workers who often
control hundreds of user accounts. To de-anonymize the
influential workers, DOLOS leverages co-activity graphs that
capture the frequency and intensity of common activities
posted from user accounts.
Stylometry based fraud detection and de-anonymization.
Ott et al. [29] used computational linguistics features to de-
tect deceptive TripAdvisor reviews. Lau et al. [30] proposed
a text mining model integrated into a semantic language
model to detect fake Amazon reviews. Sentiment and bias,
e.g., [44] may complement stylometry tools to help attribute
detected fraud. Overdorf and Greenstadt [31] proposed
authorship attribution methods that work across social
networks. Abbasi and Chen [45] developed Writeprints, a
system for de-anonymizing e-mail, IM, reviews and pro-
gram code. Narayanan et al. [46] proposed author de-
anonymization techniques that handle large number of
classes (100, 000 authors).

DOLOS links search rank fraud to crowdsourcing site
worker accounts, thus breaks the anonymity barrier be-

tween crowdsourcing site workers and Google Play user
accounts. DOLOS is resilient to input imprecision (due to the
false positives of its fraud component detection module).

9 CONCLUSIONS

We introduced the fraud de-anonymization problem for
search rank fraud in online services. We have collected
fraud data from crowdsourcing sites and the Google Play
store, and we have performed user studies with crowd-
sourcing workers. We have proposed DOLOS, a fraud de-
anonymization system. DOLOS correctly attributed 95% of
the fraud detected for 640 Google Play apps, and identified
at least 90% of the workers who promoted each of 87% of
these apps. DOLOS identified 1,056 out of 13,087 monitored
Google Play apps, to have suspicious reviewer groups, and
revealed a suite of observed fraud behaviors. DOLOS sig-
nificantly outperforms adapted dense subgraph detection
and loopy belief propagation competitors, in two coverage
scores that we have developed.

10 ACKNOWLEDGMENTS

This research was supported by NSF grants CNS-1527153
and CNS-1526254 and by the Florida FC2 Center.

REFERENCES

[1] Huffington Post. Yelp study shows extra half-star nets restaurants
19reservations. Huffington Post, https://tinyurl.com/y7u32ssl,
2012.

[2] Michael Luca. Reviews, Reputation, and Revenue: The Case of
Yelp.Com. SSRN eLibrary, 2011.

[3] Google I/O 2013 - Getting Discovered on Google Play. www.
youtube.com/watch?v=5Od2SuL2igA, 2013.

[4] Fiverr. https://www.fiverr.com/.
[5] Upwork Inc. https://www.upwork.com.
[6] Freelancer. http://www.freelancer.com.
[7] Zeerk. https://zeerk.com/.
[8] Peopleperhour. https://www.peopleperhour.com/.
[9] Hao Chen, Daojing He, Sencun Zhu, and Jingshun Yang. Toward

detecting collusive ranking manipulation attackers in mobile app
markets. In Proceedings AsiaCCS, 2017.

[10] Mahmudur Rahman, Mizanur Rahman, Bogdan Carbunar, and
Polo Chau. Fairplay: Fraud and Malware Detection in Google
Play. In Proceedings of the SIAM International Conference on Data
Mining (SDM), 2016.

[11] Arjun Mukherjee, Bing Liu, and Natalie Glance. Spotting fake
reviewer groups in consumer reviews. In Proceedings of ACM
WWW, 2012.

[12] Binghui Wang, Neil Zhenqiang Gong, and Hao Fu. GANG:
Detecting Fraudulent Users in Online Social Networks via Guilt-
by-Association on Directed Graphs. In Proceedings of ICDM, 2017.

[13] Geli Fei, Arjun Mukherjee, Bing Liu, Meichun Hsu, Malu Castel-
lanos, and Riddhiman Ghosh. Exploiting burstiness in reviews for
review spammer detection. ICWSM, 13:175–184, 2013.

[14] Arjun Mukherjee, Abhinav Kumar, Bing Liu, Junhui Wang, Me-
ichun Hsu, Malu Castellanos, and Riddhiman Ghosh. Spotting
opinion spammers using behavioral footprints. In Proceedings of
the ACM KDD, 2013.

[15] Huayi Li, Geli Fei, Shuai Wang, Bing Liu, Weixiang Shao, Ar-
jun Mukherjee, and Jidong Shao. Bimodal distribution and co-
bursting in review spam detection. In Proceedings of ACM WWW,
2017.

[16] Bryan Hooi, Neil Shah, Alex Beutel, Stephan Günnemann, Leman
Akoglu, Mohit Kumar, Disha Makhija, and Christos Faloutsos.
Birdnest: Bayesian inference for ratings-fraud detection. In Pro-
ceedings of SDM, 2016.

[17] Prudhvi Ratna Badri Satya, Kyumin Lee, Dongwon Lee, Thanh
Tran, and Jason Jiasheng Zhang. Uncovering fake likers in online
social networks. In Proceedings of the ACM CIKM, 2016.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on February 27,2020 at 02:41:50 UTC from IEEE Xplore. Restrictions apply.

14

[18] Leman Akoglu, Rishi Chandy, and Christos Faloutsos. Opinion
Fraud Detection in Online Reviews by Network Effects. In Pro-
ceedings of ICWSM, 2013.

[19] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin,
and Christos Faloutsos. Fraudar: Bounding graph fraud in the face
of camouflage. In Proceedings of ACM KDD, 2016.

[20] Shebuti Rayana and Leman Akoglu. Collective opinion spam
detection: Bridging review networks and metadata. In Proceedings
of ACM KDD, 2015.

[21] Leman Akoglu, Rishi Chandy, and Christos Faloutsos. Opinion
fraud detection in online reviews by network effects. Proceedings
of ICWSM, 2013.

[22] Jason Cipriani. Google starts filtering fraudulent app reviews from
Play Store. ZDNet, https://tinyurl.com/hklb5tk, 2016.

[23] Sarah Perez. Amazon bans incentivized reviews tied to free or
discounted products. Tech Crunch, https://tinyurl.com/zgn9sq3,
2016.

[24] Arjun Mukherjee, Vivek Venkataraman, Bing Liu, and Natalie
Glance. What Yelp Fake Review Filter Might Be Doing. In
Proceedings of ICWSM, 2013.

[25] Charalampos E. Tsourakakis. The k-clique densest subgraph
problem. In Proceedings of ACM WWW, 2015.

[26] Dolos on github. https://github.com/FraudHunt.
[27] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk:

Online learning of social representations. In Proceedings of ACM
KDD, 2014.

[28] David R Karger. Global min-cuts in rnc, and other ramifications
of a simple min-cut algorithm. In SODA, volume 93, 1993.

[29] Myle Ott, Yejin Choi, Claire Cardie, and Jeffrey T. Hancock.
Finding deceptive opinion spam by any stretch of the imagination.
In Proceedings of the Human Language Technologies, HLT ’11, 2011.

[30] Raymond YK Lau, SY Liao, Ron Chi Wai Kwok, Kaiquan Xu, Yun-
qing Xia, and Yuefeng Li. Text mining and probabilistic language
modeling for online review spam detecting. ACM Transactions on
Management Information Systems, 2(4):1–30, 2011.

[31] Rebekah Overdorf and Rachel Greenstadt. Blogs, twitter feeds,
and reddit comments: Cross-domain authorship attribution.
PoPETs, 2016(3), 2016.

[32] JStylo. The JStylo Open Source Project on Open Hub. https://
www.openhub.net/p/jstylo.

[33] Jonathan S Yedidia, William T Freeman, and Yair Weiss. Un-
derstanding belief propagation and its generalizations. Exploring
artificial intelligence in the new millennium, 8, 2003.

[34] Daphne Koller and Nir Friedman. Probabilistic Graphical Models.
Principles and Techniques. The MIT Press, 2009.

[35] Mizanur Rahman, Nestor Hernandez, Bogdan Carbunar, and
Duen Horng Chau. Search rank fraud de-anonymization in online
systems. In Proceedings of the ACM Conference on Hypertext and
Social Media, 2018.

[36] Chao Yang, Robert Harkreader, Jialong Zhang, Seungwon Shin,
and Guofei Gu. Analyzing spammers’ social networks for fun and
profit: a case study of cyber criminal ecosystem on Twitter. In
Proceedings of ACM WWW, 2012.

[37] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher
Palow, and Christos Faloutsos. CopyCatch: Stopping Group
Attacks by Spotting Lockstep Behavior in Social Networks. In
Proceedings of the WWW, 2013.

[38] Qiang Cao, Xiaowei Yang, Jieqi Yu, and Christopher Palow. Un-
covering large groups of active malicious accounts in online social
networks. In Proceedings of ACM CCS, 2014.

[39] Junting Ye and Leman Akoglu. Discovering opinion spammer
groups by network footprints. In Machine Learning and Knowledge
Discovery in Databases. 2015.

[40] Chih-Ya Shen, Liang-Hao Huang, De-Nian Yang, Hong-Han
Shuai, Wang-Chien Lee, and Ming-Syan Chen. On finding socially
tenuous groups for online social networks. In Proceedings of KDD,
2017.

[41] Guan Wang, Sihong Xie, Bing Liu, and Philip S. Yu. Review Graph
Based Online Store Review Spammer Detection. IEEE ICDM, 2011.

[42] Fragkiskos D Malliaros, Vasileios Megalooikonomou, and Christos
Faloutsos. Fast robustness estimation in large social graphs: Com-
munities and anomaly detection. In Proceedings of the 2012 SIAM
International Conference on Data Mining, pages 942–953. SIAM, 2012.

[43] Christos Faloutsos. Large graph mining: patterns, cascades, fraud
detection, and algorithms. In Proceedings of the 23rd international
conference on World wide web, pages 1–2. ACM, 2014.

[44] Haokai Lu, James Caverlee, and Wei Niu. Biaswatch: A
lightweight system for discovering and tracking topic-sensitive
opinion bias in social media. In Proceedings of the 24th ACM In-
ternational on Conference on Information and Knowledge Management,
pages 213–222. ACM, 2015.

[45] Ahmed Abbasi and Hsinchun Chen. Writeprints: A stylometric
approach to identity-level identification and similarity detection
in cyberspace. ACM Transactions on Information Systems (TOIS),
26(2):7, 2008.

[46] Arvind Narayanan, Hristo Paskov, Neil Zhenqiang Gong, John
Bethencourt, Emil Stefanov, Eui Chul Richard Shin, and Dawn
Song. On the feasibility of internet-scale author identification. In
2012 IEEE Symposium on Security and Privacy, 2012.

Mizanur Rahman is a Ph.D. candidate at Florida
International University. He has previously held
various positions in KAZ Software, iAppDragon
and Prolog Inc. His research interest include
internet data privacy, fraud detection in social
network and user experience analysis.

Nestor Hernandez is a PhD. candidate at
Florida International University. He has worked
as a data mining analyst for Wunderman. His re-
search interests include fraud and opinion spam
detection in online services.

Duen Horng (Polo) Chau is an associate pro-
fessor at Georgia Techs School of Computa-
tional Science and Engineering, and an Asso-
ciate Director of the MS Analytics program. Polo
holds a Ph.D. in Machine Learning and a Mas-
ters in human-computer interaction (HCI). Polo
received faculty awards from Google, Yahoo,
LexisNexis, and the Raytheon Faculty Fellow-
ship and Edenfield Faculty Fellowship, Outstand-
ing Junior Faculty Award.

Bogdan Carbunar is an associate professor in
SCIS at FIU. Previously, he held various re-
searcher positions within the Applied Research
Center at Motorola. His research interests in-
clude distributed systems, security and applied
cryptography. He holds a Ph.D. in Computer Sci-
ence from Purdue University.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on February 27,2020 at 02:41:50 UTC from IEEE Xplore. Restrictions apply.

