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Abstract

A function f : Fn
2 → {0, 1} is triangle-free if there are no x1, x2, x3 ∈ Fn

2 satisfying x1 + x2 +

x3 = 0 and f (x1) = f (x2) = f (x3) = 1. In testing triangle-freeness, the goal is to distinguish
with high probability triangle-free functions from those that are ε-far from being triangle-free.
It was shown by Green that the query complexity of the canonical tester for the problem is
upper bounded by a function that depends only on ε (GAFA, 2005), however the best known
upper bound is a tower type function of 1/ε. The best known lower bound on the query
complexity of the canonical tester is 1/ε13.239 (Fu and Kleinberg, RANDOM, 2014).

In this work we introduce a new approach to proving lower bounds on the query com-
plexity of triangle-freeness. We relate the problem to combinatorial questions on collections
of vectors in Zn

D and to sunflower conjectures studied by Alon, Shpilka, and Umans (Comput.
Complex., 2013). The relations yield that a refutation of the Weak Sunflower Conjecture over
Z4 implies a super-polynomial lower bound on the query complexity of the canonical tester
for triangle-freeness. Our results are extended to testing k-cycle-freeness of functions with do-
main Fn

p for every k ≥ 3 and a prime p. In addition, we generalize the lower bound of Fu and
Kleinberg to k-cycle-freeness for k ≥ 4 by generalizing the construction of uniquely solvable
puzzles due to Coppersmith and Winograd (J. Symbolic Comput., 1990).

1 Introduction

The research on property testing, initiated by Rubinfeld and Sudan [31] and by Goldreich, Gold-
wasser, and Ron [21], is concerned with very efficient algorithms that distinguish with high prob-
ability objects which satisfy a given property from those that are far from satisfying it. Typically,
one can think of an input object as a function from a domain D to a range R, and of a property
P as a subset of the function set D → R. For a distance parameter ε, the goal of the randomized
algorithm, called a tester, is to accept the functions of P and to reject functions which are ε-far
from P , that is, disagree with any function in P on at least ε-fraction of the inputs. In case that the
functions of P are always accepted, we say that the tester has one-sided error. The main objective
in property testing is to minimize the number of queries that the tester makes to the input object.
If the number of queries depends solely on the distance parameter ε, we say that the property is
strongly testable.
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Since the invention of the property testing model, many natural properties were shown to be
strongly testable. A considerable amount of attention was given to testing graph properties, and
the strongly testable dense graph properties were fully characterized [3, 11]. An important graph
property testing problem is that of deciding if a given undirected graph is H-free, i.e., contains
no subgraph isomorphic to H, or is ε-far from H-freeness, where H is a fixed graph. Whereas
H-freeness is known to be strongly testable for every graph H, it turns out that the graph H
significantly affects the dependence of the query complexity on ε. Alon proved in [1] that for
every bipartite graph H, the one-sided error query complexity of testing H-freeness is polynomial
in 1/ε, and that for every non-bipartite graph H, it is super-polynomial in 1/ε, namely, at least
(1/ε)Ω(log(1/ε)). Interestingly, the lower bound for the non-bipartite case relies on a construction
of Behrend [7] of dense sets of integers with no 3-term arithmetic progressions (see also [32, 16])
and on an extension of this construction given in [1].

Kaufman and Sudan initiated in [24] a systematic study of testing algebraic properties of func-
tions with domain Fn for a field F. They considered the class of linear invariant properties, those
which are closed under all linear transformations of the domain, and asked for necessary and suf-
ficient conditions for their strong testability (see [35, 8] for relevant surveys). This class includes
the properties that can be described as freeness of solutions to (possibly infinite) systems of linear
equations, which were shown to be strongly testable in [33] and in [27] (see also [9]). As opposed
to the H-freeness property of graphs, it is not known which of these properties have query com-
plexity polynomial in 1/ε. The k-cycle-freeness properties, whose query complexity is the focus
of the current work, fall into this category and are described next.

1.1 Testing k-Cycle-Freeness of Boolean Functions

Let n and k ≥ 3 be integers, and let Fp be the finite field of prime order p. A k-cycle of a function
f : Fn

p → {0, 1} is defined as k vectors x1, . . . , xk ∈ Fn
p satisfying x1 + · · ·+ xk = 0 and f (xi) = 1

for every 1 ≤ i ≤ k. In case that f has no k-cycles, we say that it is k-cycle-free. In the property
testing problem of k-cycle-freeness over Fp, the input is a function f : Fn

p → {0, 1}, and the goal
is to distinguish with high probability k-cycle-free functions from those that are ε-far from every
k-cycle-free function.

In the multiple-function variant of the k-cycle-freeness problem, the input is a k-tuple of func-
tions f1, . . . , fk : Fn

p → {0, 1}, and a k-cycle is defined as k vectors x1, . . . , xk ∈ Fn
p satisfying

x1 + · · · + xk = 0 and fi(xi) = 1 for every 1 ≤ i ≤ k. The goal here is to distinguish k-cycle-
free k-tuples of functions from those that are ε-far from k-cycle-freeness, that is, at least ε · pn

values returned by the functions f1, . . . , fk should be changed in order to make the k-tuple free
of k-cycles. Clearly, the query complexity of the multiple-function variant of k-cycle-freeness is
at least as large as that of the one-function variant. We observe, though, that whenever p does
not divide k, the two variants of testing k-cycle-freeness are essentially equivalent. On the other
hand, in case that p does divide k, the one-function variant of the problem seems to be easier, and
has query complexity O(1/ε) (see Section 2.1 for details). Therefore, in order to understand the
query complexity of testing k-cycle-freeness in the one-function case, it suffices to understand it
for the multiple-function case. The latter is more convenient to deal with while studying lower
bounds, so from now on, unless otherwise specified, we refer to the multiple-function variant as

2



the k-cycle-freeness problem.
A natural tester for k-cycle-freeness over Fp, known as the canonical tester of the problem,

repeatedly picks independently and uniformly at random k − 1 vectors x1, . . . , xk−1 ∈ Fn
p and

checks if they form, together with −x1 − · · · − xk−1, a k-cycle of the functions f1, . . . , fk. If no
k-cycle is found the tester accepts and otherwise it rejects. Despite the simplicity of this one-
sided error tester, Green proved in [22] that for every k it has a constant probability of success for
query complexity that depends only on ε, hence the k-cycle-freeness property is strongly testable.
However, the query complexity achieved by Green has a huge dependence on ε, namely, it is a
tower of twos whose height is polynomial in 1/ε. An improved upper bound on the tower’s
height follows from results of [19] and [26] (see [19, Section 5] and [23]).

The study of lower bounds on the query complexity of testing k-cycle-freeness was initiated by
Bhattacharyya and Xie in [10], where the case of triangles over F2 was considered. They provided
the first non-trivial lower bound of 1/ε4.847 on the query complexity of the canonical tester for
triangle-freeness over F2. They also showed that the query complexity of the canonical tester for
k-cycle-freeness over F2 is polynomially related to that of more general one-sided error testers for
the problem (see [10, Section 4] for details).

The proof technique of the above lower bound involved the notion, introduced in [10], of
perfect-matching-free families of vectors (PMFs). Roughly speaking, a PMF (for triangles over F2)
is a collection {(ai, bi, ci)}i∈[m] of m triples of vectors in Fn

2 satisfying that ai1 + bi2 + ci3 = 0 if and
only if i1 = i2 = i3. This means that the functions f1, f2, f3 : Fn

2 → {0, 1} defined as the character-
istic functions of the ai’s, bi’s, and ci’s respectively, have m triangles which are pairwise disjoint.
The distance of these functions from triangle-freeness is relatively large compared to the number
of their triangles. Hence, they can be used to obtain lower bounds on the query complexity of
the canonical tester for triangle-freeness over F2. The authors of [10] used a computer search to
construct a PMF of vectors in Fn

2 of size (roughly) 1.67n, and this allowed them to get their 1/ε4.847

lower bound. Further, they showed that a PMF of size (2− o(1))n implies a super-polynomial
lower bound on the query complexity of the canonical tester for triangle-freeness over F2, and
conjectured that such a PMF exists.

Very recently, Fu and Kleinberg [20] discovered an interesting connection between PMFs and
the combinatorial objects known as uniquely solvable puzzles (USPs). The latter were introduced in
the context of matrix multiplication algorithms and were explicitly defined by Cohn et al. in [12].
Coppersmith and Winograd [13] implicitly gave a probabilistic construction of n-dimensional
USPs of size (3/22/3− o(1))n ≈ 1.89n that played a central role in their famous O(n2.376)-time algo-
rithm for multiplication of n by n matrices, whose running time was improved only two decades
later [34, 37]. It was shown in [20] that every USP implies a PMF of the same cardinality, and this
led to an improved lower bound of 1/ε13.239 on the query complexity of the canonical tester for
triangle-freeness over F2. However, it was observed in [12] that the USP construction of [13] is es-
sentially optimal, hence it seems that the USP-based approach to proving lower bounds on testing
triangle-freeness has been pushed to its limit, and, in particular, cannot yield super-polynomial
lower bounds. Yet, a strengthened notion of USP, known as strong USP, was studied by Cohn et
al. [12], who proved that if strong USPs of optimal size exist then the exponent of matrix multipli-
cation is 2. A fascinating challenge, which was left open in [20], is to show that strong USPs might
imply super-polynomial lower bounds on the query complexity of related testing problems.
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In the current work we show that lower bounds on testing k-cycle-freeness might follow from
the existence of certain collections of vectors in Zn

D. These collections are related to famous sun-
flower conjectures, which we turn to describe in the next section.

1.2 Sunflower Conjectures

A k-sunflower is a collection of k sets that have the same pairwise intersections. This notion was
introduced in 1960 by Erdös and Rado [17], and besides being of great interest in combinatorics, it
found applications in several areas of computer science, e.g., circuit complexity [30, 2], hardness
of approximation [14], and property testing [4]. The main question regarding k-sunflowers is how
large a collection of sets containing no k-sunflowers can be. It was shown in [17] that the size of
any collection of subsets of size s of some universe U with no k-sunflowers is at most s! · (k− 1)s.
The classical sunflower conjecture of Erdös and Rado asserts the following.

Conjecture 1.1 (Classical Sunflower Conjecture [17]). For every k > 0 there exists a constant ck, such
that every collection of at least cs

k subsets of size s of some universe U contains a k-sunflower.

The above conjecture is still open even for the special case of k = 3. For this case, Kostochka

showed an improved upper bound of c · s! ·
(

30 ln ln ln s
ln ln s

)s
for some constant c > 0 [25]. Erdös and

Szemerédi [18] presented in 1978 the following conjecture on 3-sunflowers inside [n], and proved
that Conjecture 1.1, even restricted to k = 3, implies it.

Conjecture 1.2 (Sunflower Conjecture in {0, 1}n [18]). There exists an ε > 0, such that every collection
F of subsets of [n] (n ≥ 2) of size |F | ≥ 2(1−ε)n contains a 3-sunflower.

In a recent paper, Alon, Shpilka, and Umans [5] have studied a new notion of sunflowers
over ZD = {1, . . . , D} and several related sunflower conjectures. Following their definition, we
say that k vectors v1, . . . , vk in Zn

D form a k-sunflower if for every i ∈ [n] it holds that the ith
entries (v1)i, . . . , (vk)i of the vectors are either all equal or all distinct. It was shown in [5] that
Conjecture 1.2 can be equivalently formulated in terms of sunflowers of vectors as follows.

Conjecture 1.3 (Sunflower Conjecture in Zn
D [5]). There exist ε > 0, D0 and n0, such that for every

D ≥ D0 and n ≥ n0, every collection F of vectors in Zn
D of size |F | ≥ D(1−ε)n contains a 3-sunflower.

The above conjecture, just like Conjecture 1.2, is widely believed to be true. Still, one might
wonder if its assertion holds for small values of D. It is stated below for a specific integer D.

Conjecture 1.4 (Weak Sunflower Conjecture over ZD [5]). There exist ε > 0 and n0, such that for
every n ≥ n0, every collection F of vectors in Zn

D of size |F | ≥ D(1−ε)n contains a 3-sunflower.

Of special importance is the Weak Sunflower Conjecture over Z3, which refers to the maximum
possible size of a collection of vectors in the group Zn

3 with no 3-term arithmetic progressions (or,
equivalently, non-trivial triples of vectors with zero sum modulo 3). The largest known construc-
tion of such collections has cardinality cn for c ≈ 2.217 [15]. An upper bound of 2 · 3n/n was shown
by Meshulam in [29] (see [28] for a generalization of his result), and this was recently improved
by Bateman and Katz to O(3n/n1+ε) for some constant ε > 0 [6].
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Given the similarity between Conjecture 1.3 and the Weak Sunflower Conjecture over ZD, one
might guess that the latter is true for small values of D. In fact, it was observed in [5] that for
every D ≥ 3, the assertion of the Weak Sunflower Conjecture over ZD implies Conjecture 1.3.
Nevertheless, Conjecture 1.3 seems to be much more likely to hold than Conjecture 1.4 for small
values of D. For example, as explained in [5], the case of D = 3 can be viewed as a variant of the
assertion that collections of D(1−ε)n vectors in Zn

D must contain a 3-term arithmetic progression
modulo D. However, a result of Salem and Spencer [32] implies that the latter is false for large
values of D, namely, for D > 22/ε.

1.3 Our Contribution

In this work we introduce a new approach to proving lower bounds on the query complexity of
testing k-cycle-freeness over Fp for general k ≥ 3 and primes p. To do so, we show that certain
collections of vectors in Zn

D, which are related to some of the sunflower conjectures described
above, can be used to obtain perfect-matching-free vector families. For example, for the special
case of triangle-freeness over F2, it is shown that a large collection of vectors in Zn

4 containing no
3-sunflowers implies a large perfect-matching-free family over F2, thus implying a lower bound
on testing triangle-freeness. In case that the size of the collection is (4− o(1))n, it yields a super-
polynomial lower bound, as stated below.

Theorem 1.5. If the Weak Sunflower Conjecture (Conjecture 1.4) over Z4 is false, then the query complex-
ity of the canonical tester for triangle-freeness over F2 for distance ε is super-polynomial in 1/ε.

As alluded to before, a refutation of the Weak Sunflower Conjecture over ZD for small values of D
would not be overly surprising, thus a super-polynomial lower bound on testing triangle-freeness
over F2 might stem from the above theorem. Yet, even if the Weak Sunflower Conjecture over Z4 is
true, large collections of vectors in Zn

4 containing no 3-sunflowers might provide improvements on
the known lower bounds. Specifically, our results imply that any such collection of size (c− o(1))n

for c > 9/24/3 ≈ 3.57 beats the best known lower bound of [20], but for c < 4 the obtained lower
bound is only polynomial in 1/ε (see Theorem 3.4).

Using the connection shown in [10] between the query complexity of the canonical tester for
triangle-freeness over F2 and that of general (possibly adaptive) one-sided error testers for the
problem, it follows that:

Corollary 1.6. If the Weak Sunflower Conjecture (Conjecture 1.4) over Z4 is false, then the query com-
plexity of every one-sided error tester for triangle-freeness over F2 for distance ε is super-polynomial in
1/ε.

We then generalize Theorem 1.5 in a couple of ways. First, we obtain the following extension
to triangle-freeness over Fp, where p is an arbitrary prime.

Theorem 1.7. For every prime p, if the Weak Sunflower Conjecture (Conjecture 1.4) over Zp2 is false, then
the query complexity of the canonical tester for triangle-freeness over Fp for distance ε is super-polynomial
in 1/ε.
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Theorem 1.7 implies that for every prime p, a refutation of a certain Weak Sunflower Conjecture
over ZD (for D = p2) implies a super-polynomial lower bound on the query complexity of the
canonical tester for triangle-freeness over Fp. Therefore, the unlikely event that for some prime
p the query complexity is polynomial, implies Conjecture 1.3. On the other hand, it was shown
in [5] that a conjecture of Coppersmith and Winograd, which was shown in [13] to imply that
the matrix multiplication exponent is 2, implies that Conjecture 1.3 is false. Hence, the conjecture
of [13] implies, if true, a super-polynomial lower bound on the number of queries made by the
canonical tester for testing triangle-freeness over Fp for every prime p.

We note that for p = 3 one can show a stronger statement than that of Theorem 1.7. Indeed, in
this case a super-polynomial lower bound follows quite easily from a refutation of the Weak Sun-
flower Conjecture over Z3 (which can be only weaker than its refutation over Z9; see Section 3).
Interestingly, Alon et al. [5] studied a variant of this conjecture, called the Multicolored Sunflower
Conjecture over Z3, and related it to the notion of strong uniquely solvable puzzles. It turns out
that this multicolored conjecture coincides with our question on perfect-matching-free families
over F3, and that their results imply an (unconditional) lower bound of 1/ε7.298 on the query com-
plexity of the canonical tester for triangle-freeness over F3. Moreover, we use a result of [5] and
the connection observed here to obtain that if the conjecture of [12] that strong USPs of optimal
size exist is true, then the query complexity of the canonical tester for triangle-freeness over F3 is
super-polynomial. This gives, in a sense, an affirmative answer to a question posed in [20].

The above results are also extended to testing k-cycle-freeness for every k ≥ 3. We show how
lower bounds on the query complexity of the canonical tester for k-cycle-freeness over Fp follow
from the existence of certain collections of vectors in Zn

D for an appropriate choice of D. Namely,
we are interested in collections of vectors in Zn

D for D = pk−1, satisfying that for every k vectors in
the collection (not all equal) there is some i ∈ [n] for which the k vectors have exactly two distinct
symbols in their ith entries. Notice that for k = 3 this simply means that the collection contains
no 3-sunflowers. As before, for vector collections of optimal size (D− o(1))n, the obtained lower
bound on the query complexity turns out to be super-polynomial (see Section 3).

Finally, we show that the lower bound of Fu and Kleinberg [20] on testing triangle-freeness
over F2 can be generalized to testing k-cycle-freeness over Fp.

Theorem 1.8. For every k ≥ 3 and a prime p, the query complexity of the canonical tester for k-cycle-
freeness over Fp for distance ε is Ω(1/εg(k)−o(1)) for

g(k) =
k− 1− H(1/k)/ log2 p

1− H(1/k)/ log2 p
,

where H stands for the binary entropy function.

The proof of Theorem 1.8 relies on a delicate extension of a construction of Coppersmith and Wino-
grad [13] of uniquely solvable puzzles. This construction is based on a construction of Behrend [7]
which found great interest in additive combinatorics. Interestingly, our construction requires an
extension of Behrend’s result, given in [1], that was used there for proving lower bounds on testing
H-freeness of graphs.
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1.4 Outline

The rest of the paper is organized as follows. In Section 2 we provide a background on the k-cycle-
freeness problem, relate its one-function and multiple-function variants, present the notion of
perfect-matching-free families of vectors (PMFs), and show how they imply lower bounds on the
query complexity of the problem. In Section 3 we prove that PMFs can be constructed using certain
collections of vectors in Zn

D and derive relations to sunflower conjectures, including Theorem 1.7.
Finally, in Section 4, we prove Theorem 1.8.

2 Testing k-Cycle-Freeness of Boolean Functions

Let n and k ≥ 3 be integers, and let Fp be the finite field of prime order p. A k-cycle of k functions
f1, . . . , fk : Fn

p → {0, 1} is defined as k vectors x1, . . . , xk ∈ Fn
p satisfying x1 + · · · + xk = 0 and

fi(xi) = 1 for every 1 ≤ i ≤ k. If a k-tuple of functions ( f1, . . . , fk) has no k-cycles, we say that it is
k-cycle-free. Its distance from k-cycle-freeness is defined as

min
(g1,...,gk)

k

∑
i=1

dist( fi, gi),

where the minimum is over all the k-cycle-free k-tuples of functions (g1, . . . , gk), and dist( f , g)
denotes the fraction of points at which the functions f and g disagree. We say that a k-tuple of
functions is ε-far from k-cycle-freeness if its distance from k-cycle-freeness is at least ε.

In the property testing problem of k-cycle-freeness over Fp, the input is a k-tuple of functions
f1, . . . , fk : Fn

p → {0, 1}, and the goal is to accept k-cycle-free k-tuples of functions with probability
at least 2/3 and to reject k-tuple of functions which are ε-far from k-cycle-freeness with probability
at least 2/3. The canonical tester for k-cycle-freeness over Fp repeatedly picks uniformly and inde-
pendently k vectors with zero sum and checks if they form a k-cycle of the input functions. If no
k-cycle is found the tester accepts and otherwise it rejects.

2.1 Multiple-function vs. One-function

As mentioned before, one might consider the one-function variant of the k-cycle-freeness testing
problem. A k-cycle of a function f : Fn

p → {0, 1} is defined as k vectors that sum to the zero
vector and are all mapped by f to 1. The input of the one-function variant is a single function
f : Fn

p → {0, 1}, and the goal is to decide if f is k-cycle-free or ε-far from every k-cycle-free
function. The canonical tester for k-cycle-freeness is naturally extended to the one-function case.

We observe that whenever p does not divide k, every k-tuple of functions can be transformed
to a single function with the same number of k-cycles, a similar domain size, and a similar distance
from k-cycle freeness. This implies that, in this case, the canonical testers for the multiple-function
and the one-function variants of the problem have essentially the same query complexity.

Lemma 2.1. Let n be a positive integer, let k ≥ 3 and p be fixed integers such that p is a prime that does
not divide k, and let α > 0 be a real number. Suppose that the k-tuple of functions f1, . . . , fk : Fn

p → {0, 1}
is ε1-far from k-cycle-freeness and that the canonical tester for k-cycle-freeness needs to make q = Ω(1/εα

1)
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queries to ( f1, . . . , fk). Then, there exists a function f : Fn+k−1
p → {0, 1}, such that f is ε2-far from

k-cycle-freeness for ε2 = ε1/pk−1, and the canonical tester needs to make Ω(1/εα
2) queries to f .

Proof: Given the k-tuple of functions ( f1, . . . , fk), define f : Fn+k−1
p → {0, 1} as follows. For all

y ∈ Fn
p and z ∈ Fk−1

p , let

f (y, z) =


fi(y), if z = ei for 1 ≤ i ≤ k− 1,

fk(y), if z = −e1 − · · · − ek−1,

0, otherwise,

where ei denotes the vector whose entries are all 0 except the ith which is 1.
First, observe that the only way to choose k vectors (repetitions are allowed) from the set

{e1, . . . , ek−1,−e1 − · · · − ek−1},

so that their sum is the zero vector over Fp, is to choose each of the vectors exactly once (because
p does not divide k). This implies that all the k-cycles of f have exactly one point in each of the
subfunctions f1, . . . , fk. Hence there exists a bijection between the k-cycles of f1, . . . , fk and those
of f . Since ( f1, . . . , fk) is ε1-far from k-cycle-freeness, it follows that f is ε2-far from k-cycle-freeness
for ε2 = ε1/pk−1.

Let Ncycles be the number of k-cycles of ( f1, . . . , fk) and of f . Since the query complexity of
the canonical tester on a k-tuple of functions (resp. function) is proportional to the inverse of the
number of k-cycles of the input k-tuple (resp. function), the query complexity on f is Ω(q′) for

q′ = p(n+k−1)(k−1)/Ncycles = Θ(pn(k−1)/Ncycles) = Θ(q) = Ω(1/εα
1) = Ω(1/εα

2).

In case that the prime p divides k, the one-function variant of k-cycle-freeness over Fp is quite
easy. The reason is that in this case every vector in the support of a function f : Fn

p → {0, 1},
taken with multiplicity k, forms a k-cycle of f . Thus, the problem reduces to deciding if the input
function is the zero constant function or is ε-far from it. The tester that given a function f picks
uniformly and independently O(1/ε) random vectors in Fn

p and accepts if and only if they are all
mapped by f to 0 implies the following.

Claim 2.2. Let k ≥ 3 be an integer divisible by a prime p. Then, for every ε > 0, there is a one-sided error
tester for the one-function variant of k-cycle-freeness over Fp for distance ε with query complexity O(1/ε).

One may ask if a similar result can be shown once we consider only non-trivial cycles of f , that
is, k vectors, not all equal, that sum to zero and are all mapped by f to 1. It turns out that if p
divides k, O(1/ε) queries are still sufficient to decide if a given function f : Fn

p → {0, 1} is free
of non-trivial k-cycles or ε-far from this property. The reason is that the density of such functions
turns out to be very small, as follows from the following (special case of a) theorem of Liu and
Spencer [28].

Theorem 2.3 ([28]). For every n and a prime p ≥ 3, if A ⊆ Fn
p contains no p vectors, not all equal, whose

sum is the zero vector, then |A| = o(pn).
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Using the above theorem, it can be easily observed that if p divides k and f : Fn
p → {0, 1} is free of

non-trivial k-cycles, then it is o(1)-close to the zero constant function. Thus, by the same tester that
was used for Claim 2.2, we get query complexity O(1/ε) and an “almost” one-sided error, that is,
functions that are free of non-trivial k-cycles are accepted with probability that tends to 1 where n
tends to infinity.

2.2 Perfect-Matching-Free Families

We now define the notion of local perfect-matching-free vector families, which can be used to obtain
lower bounds on the query complexity of the canonical tester for k-cycle-freeness over Fp.

Definition 2.4. An (n, m) local perfect-matching-free family (PMF) for k-cycles over Fp is a collec-
tion

{(x(1)i , x(2)i , . . . , x(k)i )}i∈[m],

such that for every i ∈ [m], x(1)i , x(2)i , . . . , x(k)i are k vectors in Fn
p whose sum is zero, and for every

i1, i2, . . . , ik ∈ [m], if the sum of the vectors x(1)i1
, x(2)i2

, . . . , x(k)ik
is zero then i1 = i2 = · · · = ik. The

local PMF capacity for k-cycles over Fp is the largest constant c for which there exist (n, (c− o(1))n)

local PMFs for k-cycles over Fp for infinitely many values of n.

Two remarks are in order.

Remark 2.5. If the local PMF capacity for k-cycles over Fp is c, then there exist (n, (c − o(1))n) local
PMFs for k-cycles over Fp for every sufficiently large value of n (and not only for infinitely many of them).
To see this, for every n, denote by mn the largest integer for which there exists an (n, mn) local PMF for
k-cycles over Fp. Since mn+n′ ≥ mn · mn′ , we may apply Fekete’s lemma (see, e.g., [36, Lemma 11.6]) to
show that the limit of m1/n

n , as n tends to infinity, exists and equals the capacity c.

Remark 2.6. Our definition of local PMFs is slightly different from the definition of PMFs given in [10].
Namely, the requirement in the definition of PMFs in [10] is that for every k permutations π1, . . . , πk of
[m], either π1 = · · · = πk, or there exists an i ∈ [m] for which the sum x(1)

π1(i)
+ · · ·+ x(k)

πk(i)
is nonzero.

Clearly, every local PMF is a PMF. Whereas the other direction does not hold, it is easy to see that the local
PMF capacity for k-cycles over Fp equals the PMF capacity for k-cycles over Fp. For completeness, we
include a short proof (which resembles that of [12, Proposition 6.3]), and throughout the paper we prefer to
consider the notion of local PMFs, mainly for simplicity of presentation.

Claim 2.7. The local PMF capacity for k-cycles over Fp equals the PMF capacity for k-cycles over Fp.

Proof: Clearly, the PMF capacity for k-cycles over Fp is at least as large as the local PMF capacity
for k-cycles over Fp. For the other direction, let F be an (n, m) PMF for k-cycles over Fp for
m = (c − o(1))n. For every permutation π of [m] consider the k-tuple of vectors of length nm,
obtained by concatenating the m k-tuples of vectors in F ordered according to π. Let G be the
collection of all the k-tuples obtained this way. Observe that G is an (nm, m!) local PMF for k-
cycles over Fp and that

m! = m(1−o(1))m = (c− o(1))(1−o(1))nm = (c− o(1))nm.

Thus, the local PMF capacity for k-cycles over Fp is at least c, and we are done.
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The following lemma and corollary show how local PMFs imply lower bounds for testing
k-cycle-freeness. Similar statements were shown in [10], and we include here the proofs for com-
pleteness.

Lemma 2.8. Let k ≥ 3 be an integer, and let p be a prime. Suppose that there exists an (n, m) local PMF
for k-cycles over Fp. Then, the query complexity of the canonical tester for k-cycle-freeness over Fp for

distance ε on n variable functions is Ω(1/εα) for ε = m/pn and α =
k−1−(logp m)/n

1−(logp m)/n .

Proof: Let F = {(x(1)i , x(2)i , . . . , x(k)i )}i∈[m] be an (n, m) local PMF for k-cycles over Fp. For every

1 ≤ j ≤ k, let f j : Fn
p → {0, 1} be the characteristic function of the set {x(j)

i }i∈[m]. By definition of
local PMFs, the number of k-cycles of the k-tuple of functions ( f1, . . . , fk) is m, and these cycles are
pairwise disjoint. Hence, in order to remove all the m cycles, one has to change at least m values
of the functions, so this k-tuple is ε-far from k-cycle-freeness for ε = m

pn . On the other hand, the
probability that one iteration of the canonical tester, applied to ( f1, . . . , fk), finds a k-cycle is m

p(k−1)n ,

so its query complexity is Ω(q), for

q =
p(k−1)n

m
= p(k−1)n−logp m = (1/ε)

k−1−(logp m)/n
1−(logp m)/n .

Corollary 2.9. Let k ≥ 3 and p be fixed integers, such that p is prime. If the local PMF capacity for k-cycles
over Fp is c, then for every d < c, the query complexity of the canonical tester for k-cycle-freeness over Fp

for distance ε is Ω(1/εα) where α =
k−1−logp d

1−logp d . Furthermore, for every sufficiently small ε there exists

an n0 = n0(ε) such that for every n ≥ n0 the lower bound holds for k-tuples of n variable functions that
depend on all of their input variables. In particular, if the local PMF capacity for k-cycles over Fp is p, then
the query complexity of the canonical tester for k-cycle-freeness over Fp for distance ε is super-polynomial
in 1/ε.

Proof: Let c denote the local PMF capacity for k-cycles over Fp, and take an arbitrary d < c. Using
Remark 2.5, for every sufficiently large n there exists an (n, ddne) local PMF for k-cycles over Fp.
Now, for a given sufficiently small ε, let n0 = n0(ε) be the largest integer satisfying ε ≤ ddn0e

pn0 .
For this n0 there exists an (n0, ddn0e) local PMF for k-cycle-freeness over Fp. By Lemma 2.8, the
corresponding k-tuple of functions f1, . . . , fk : F

n0
p → {0, 1} is ε-far from k-cycle-freeness and

requires Ω(1/εα) queries of the canonical tester for α as in the statement of the corollary.
It remains to show that the above lower bound can be extended to k-tuples of functions with

domain Fn
p for every n ≥ n0. For every 1 ≤ j ≤ k define the function gj : Fn

p → {0, 1} such that
gj(y) = 1 if and only if y = (x, z) for x ∈ F

n0
p and z ∈ F

n−n0
p satisfying f j(x) = 1 and ∑n−n0

i=1 zi = 0.1

The k-tuple of functions (g1, . . . , gk) has at least ε · pn0 · (pn−n0−1)k−1 k-cycles, and every vector
of these cycles belongs to (pn−n0−1)k−2 of the cycles. Therefore, (g1, . . . , gk) is ε′-far from k-cycle-
freeness for ε′ = ε/p = Θ(ε) and requires query complexity Ω(1/εα), thus the required lower
bound holds for every sufficiently small distance parameter. In addition, it is easy to verify that
the k-tuple (g1, . . . , gk) depends on all of its input variables, as required.

1This is a slight generalization of a construction due to Jakob Nordström (Private communication, 2010).
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Finally, observe that if the local PMF capacity for k-cycles over Fp is p, then for every α > 0,
the query complexity of the canonical tester for k-cycle-freeness over Fp for some distance ε is
Ω(1/εα), thus it is super-polynomial in 1/ε.

We turn to define (strong) uniquely solvable puzzles (USPs). Then we state a theorem of Alon
et al. [5] that says that strong USPs imply local PMFs for triangles over F3 (in their language,
collections of ordered 3-sunflowers in Zn

3 ×Zn
3 ×Zn

3 containing no multicolored sunflowers).

Definition 2.10. An n-dimensional uniquely solvable puzzle (USP) is a collection of vectors {xi}i∈[m]

in Zn
3 satisfying that for every three permutations π1, π2, π3 of [m], either π1 = π2 = π3, or there exist

i ∈ [m] and j ∈ [n] for which at least two of (xπ1(i))j = 1, (xπ2(i))j = 2, and (xπ3(i))j = 3 hold. A strong
USP is defined similarly replacing the “at least two” by “exactly two”. The (strong) USP capacity is the
largest constant c for which there exist n-dimensional (strong) USPs of size (c− o(1))n for infinitely many
values of n.

Theorem 2.11 ([5]). If the strong USP capacity is at least c, then the local PMF capacity for triangles over
F3 is at least 22/3 · c.

It is known that the strong USP capacity is at least 22/3 [12, Proposition 3.8]. Hence, by Theo-
rem 2.11, the local PMF capacity for triangles over F3 is at least 24/3. By Corollary 2.9, it follows
that the query complexity of the canonical tester for triangle-freeness over F3 for distance ε is at
least 1/ε7.298. Cohn, Kleinberg, Szegedy, and Umans conjectured that the strong USP capacity is
3/22/3 and proved in [12] that their conjecture implies that the exponent of matrix multiplication
is 2. By Theorem 2.11, if their conjecture is true then the local PMF capacity for triangles over F3 is
3, and the latter yields, by Corollary 2.9, a super-polynomial lower bound on the query complexity
of the canonical tester for triangle-freeness over F3.

3 Sunflower Conjectures vs. Local PMFs

In this section we prove that local PMFs for k-cycles over Fp can be constructed from certain
collections of vectors in Zn

D, some of which are related to sunflower conjectures of Alon et al. [5].
The idea behind the construction is quite simple: every vector of these collections is mapped to
a k-tuple of vectors, in a way that every symbol of ZD is replaced by certain k vectors over Fp.
An important property of the transformation is that it preserves optimal capacity, namely, vector
collections of optimal size (D− o(1))n are transformed to local PMFs of optimal capacity p.

Theorem 3.1. Let k ≥ 3 be an integer, and let p be a prime. Assume that for infinitely many values of n
there exists a collection F of (c− o(1))n vectors in Zn

pk−1 such that for every k vectors v1, . . . , vk ∈ F , not
all equal, there exists an i ∈ [n] for which

|{(v1)i, . . . , (vk)i}| = 2.

Then, the local PMF capacity for k-cycles over Fp is at least c1/(k−1).

We need the following lemma and the corollary that follows it. We use here the notation A(`)

to denote the `th column of a matrix A.
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Lemma 3.2. For every prime p and a positive integer k, there exists a collection of pk matrices A1, A2, . . . , Apk

in Fk×k
p such that for every 1 ≤ i 6= j ≤ pk and every non-empty set I ⊆ [k] it holds that

∑
`∈I

A(`)
i 6= ∑

`∈I
A(`)

j .

Proof: Denote q = pk, and let α1, . . . , αq be the q elements of the field Fq. Let enc : Fq → Fk
p be

the natural encoding of the elements of Fq as distinct vectors in Fk
p. This encoding is linear, that

is, enc(0) = (0, . . . , 0) and enc(x + y) = enc(x) + enc(y) for every x, y ∈ Fq. Let β be a generator
of the multiplicative group F∗q , and notice that the set {1, β, β2, . . . , βk−1} is linearly independent
over Fp.

Now, for every 1 ≤ i ≤ q, define the k by k matrix Ai as the matrix whose columns are

enc(αi), enc(αi · β), enc(αi · β2), . . . , enc(αi · βk−1).

To prove that the collection A1, A2, . . . , Aq satisfies the requirement, take 1 ≤ i 6= j ≤ q and a
non-empty set I ⊆ [k]. Assume, for the sake of contradiction, that the matrices Ai and Aj have
the same sum of columns that correspond to indices in I. Viewing these sums as elements of Fq, it
follows that

αi ·∑
`∈I

β`−1 = αj ·∑
`∈I

β`−1.

By linear independence, it follows that ∑`∈I β`−1 is nonzero, thus αi = αj, a contradiction.

Corollary 3.3. For every prime p and a positive integer k, there exists a collection of pk matrices B1, B2, . . . , Bpk

in F
k×(k+1)
p such that

1. for every 1 ≤ i ≤ pk, the sum of the columns of Bi is the zero vector, and

2. for every 1 ≤ i 6= j ≤ pk and every non-empty set I ⊂ [k + 1], the sum

∑
`∈I

B(`)
i + ∑

`∈[k+1]\I
B(`)

j

is nonzero.

Proof: By Lemma 3.2, there exists a collection of pk matrices A1, A2, . . . , Apk in Fk×k
p such that for

every 1 ≤ i 6= j ≤ pk and every non-empty set I ⊆ [k] it holds that

∑
`∈I

A(`)
i 6= ∑

`∈I
A(`)

j .

For every 1 ≤ i ≤ pk define the k by k + 1 matrix Bi as the matrix whose columns are

A(1)
i , A(2)

i , . . . , A(k)
i ,−

k

∑
`=1

A(`)
i .

The collection B1, B2, . . . , Bpk trivially satisfies Item 1. To prove that Item 2 is also satisfied, take
1 ≤ i 6= j ≤ pk and a non-empty set I ⊂ [k + 1], and assume by contradiction that the sum of
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the columns of Bi corresponding to indices in I and the columns of Bj corresponding to indices in
[k + 1] \ I is the zero vector. Assume without loss of generality that k + 1 /∈ I, and use Item 1 to
observe that

∑
`∈I

A(`)
i = ∑

`∈I
B(`)

i = − ∑
`∈[k+1]\I

B(`)
j = ∑

`∈I
B(`)

j = ∑
`∈I

A(`)
j ,

in contradiction to the property of the collection A1, A2, . . . , Apk .

Now, equipped with Corollary 3.3, we are ready to show how certain collections of vectors in
Zn

D can be transformed to local PMFs over Fp and to prove Theorem 3.1.

Proof of Theorem 3.1: LetF ⊆ Zn
pk−1 be a collection of (c− o(1))n vectors satisfying the condition

given in the theorem. By Corollary 3.3, applied with k− 1, there exists a collection of pk−1 matrices
B1, B2, . . . , Bpk−1 in F

(k−1)×k
p satisfying that (1) for every 1 ≤ i ≤ pk−1, the sum of the columns of Bi

is the zero vector, and (2) for every 1 ≤ i 6= j ≤ pk−1 and every non-empty set I ⊂ [k], the sum

∑`∈I B(`)
i + ∑`∈[k]\I B(`)

j is nonzero.

Consider the function f : Zn
pk−1 → F

n(k−1)×k
p that maps every vector v ∈ Zn

pk−1 to the con-
catenation of the n matrices Bv1 , Bv2 , . . . , Bvn . We claim that the set G = { f (v) | v ∈ F} is an
(n(k− 1), (c− o(1))n) local PMF for k-cycles over Fp, thus the PMF capacity for k-cycles over Fp

is at least c1/(k−1).
To see this, first observe that property (1) of the matrices B1, B2, . . . , Bpk−1 implies that the sum

of the k columns of every f (v) is the zero vector. Second, let f (v1), . . . , f (vk) be k elements, not all
equal, of G. Our goal is to prove that the sum of the vectors f (v1)

(1), . . . , f (vk)
(k) is nonzero. Since

f is injective, the vectors v1, . . . , vk are not all equal, so there is an i ∈ [n] for which

|{(v1)i, . . . , (vk)i}| = 2.

Hence, the ith blocks (of length k− 1) of the matrices f (v1), . . . , f (vk) contain exactly two distinct
matrices Bj and Bj′ . By property (2), the sum of the ith blocks of the vectors f (v1)

(1), . . . , f (vk)
(k)

is nonzero, hence the sum of these vectors is also nonzero, and we are done.

Theorem 3.1 gives us a method to derive lower bounds on the query complexity of the canon-
ical tester for k-cycle-freeness over Fp from certain collections of vectors in Zn

pk−1 . In the special
case of k = 3, the vectors are in Zn

p2 , and for every three vectors, not all equal, there is a coordinate
in which the three symbols are not all equal and are not all distinct. This exactly means that the
three vectors do not form a 3-sunflower (see Section 1.2), yielding the following result.

Theorem 3.4. Let p be a prime, and assume that for infinitely many values of n there exists a collection of
(c− o(1))n vectors in Zn

p2 containing no 3-sunflowers. Then, for every d <
√

c, the query complexity of

the canonical tester for triangle-freeness over Fp for distance ε is Ω(1/εα) where α =
2−logp d
1−logp d .

Proof: By Theorem 3.1, the assumption implies that the local PMF capacity for triangles over Fp

is at least
√

c. Corollary 2.9 completes the proof.
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Observe that if the Weak Sunflower Conjecture over ZD (Conjecture 1.4) is false for D = p2, it
follows from the above theorem that the query complexity of the canonical tester for triangle-
freeness over Fp for distance ε is super-polynomial in 1/ε, confirming Theorem 1.7.

For the special case of p = 3, it is easy to get a local PMF for triangles from a collection of vec-
tors in Zn

3 containing no 3-sunflowers. Indeed, for such a collection F , the set {(x, x, x)}x∈F forms
a local PMF for triangles over F3 of the same size. Thus, in case that the Weak Sunflower Conjec-
ture over Z3 is false, a super-polynomial lower bound on the query complexity of the canonical
tester follows. Note that this assumption can be only weaker than the assumption that the Weak
Sunflower Conjecture over Z9 is false. The reason is that given a collection of (9− o(1))n vectors
in Zn

9 containing no 3-sunflowers one can replace every symbol of Z9 in the vectors by its base-3
representation to obtain a collection of (3− o(1))2n vectors in Z2n

3 containing no 3-sunflowers.
We note that for k ≥ 4 the property required in Theorem 3.1 from the collection F ⊆ Zn

D does
not coincide with freeness of k-sunflowers. Indeed, the collection should satisfy that for every
k vectors v1, . . . , vk ∈ F , not all equal, there exists a coordinate in which they contain exactly 2
distinct symbols. On the other hand, freeness of k-sunflowers means that for every such k vectors,
there exists a coordinate in which the number of distinct symbols is in the range from 2 to k− 1.

It is natural to ask if one can relate local PMFs for k-cycles to collections of vectors with no
k-sunflowers for k ≥ 4. It seems, though, that the proof technique of Theorem 3.1 cannot achieve
this in a way that preserves optimal capacity. To see this, observe that such an extension requires
a mapping from ZD to D matrices in F`×k

p for D = p` (because the transformation increases the
length of the vectors by a factor of `, and capacity D should be mapped to capacity p). The matrices
returned by this mapping have to satisfy the following two properties: (1) the sum of the columns
of each of the matrices should be zero, and (2) for every k of these matrices B1, . . . , Bk, not all equal
and not all distinct, the sum of the vectors B(1)

1 , . . . , B(k)
k should be nonzero. However, it is not

difficult to show that such a collection of matrices does not exist for k ≥ 4. First observe that the p`

matrices should contain all the p` distinct vectors of F`
p in each of their k columns, since otherwise

two of the matrices contradict property (2). Now, take two arbitrary distinct matrices Bi and Bj,
and consider the sum, say, of the first k − 2 columns of Bi and the (k − 1)th column of Bj. The
unique vector that completes this sum to zero is the kth column of one of the p` matrices, so we
again contradict property (2).

4 A Lower Bound on Testing k-Cycle-Freeness

As mentioned before, the best known lower bound on the query complexity of the canonical tester
for testing triangle-freeness over F2 for distance ε is 1/ε13.239, as was shown by Fu and Klein-
berg [20]. Their proof is crucially based on a construction of uniquely solvable puzzles of Copper-
smith and Winogard [13], which employs a construction of Behrend [7] of dense sets of integers
with no 3-term arithmetic progressions. In this section we generalize the lower bound of [20] to
testing k-cycle-freeness over Fp for every k ≥ 3 and a prime p.

We need here a few notations. For a vector v ∈ Zn
k we denote by v|j = {i ∈ [n] | vi = j}

the set of coordinates at which v has symbol j ∈ Zk. Note that for every vector v ∈ Zn
k , the

sets v|1, . . . , v|k form a partition of [n]. In case that the sets v|1, . . . , v|k have the same size we
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say that the vector v is balanced. Finally, let H stand for the binary entropy function, defined by
H(p) = −p log2 p− (1− p) log2 (1− p) for 0 ≤ p ≤ 1.

Let us start with a generalization of the construction of [13], stated below. Note that the case
of k = 3 gives the construction of [13], which implies a uniquely solvable puzzle as was defined
for the purpose of fast matrix multiplication (see Definition 2.10).

Theorem 4.1. For every fixed integer k ≥ 3 and a sufficiently large n, there exists a collection F of
(2H(1/k)− o(1))nk balanced vectors in Znk

k such that for every k vectors v1, . . . , vk ∈ F , the sets v1|1, . . . , vk|k
form a partition of [n · k] if and only if v1 = · · · = vk.

Remark 4.2. The cardinality of F in Theorem 4.1 is optimal up to the o(1) term. Indeed, the requirement
onF implies that the, say, v|1’s for v ∈ F are distinct subsets of size n of [n · k], so |F | ≤ (nk

n ) ≈ 2H(1/k)nk.

In the proof of Theorem 4.1 we use the following extension of Behrend’s result [7].

Lemma 4.3 (Lemma 3.1 in [1]). For every fixed integer r ≥ 2 and every positive integer m, there exists a
set B ⊆ [m] of size

|B| ≥ m

e10
√

log m log r

with no non-trivial2 solutions to the equation x1 + x2 + · · ·+ xr = r · xr+1.

Proof of Theorem 4.1: For a sufficiently large n denote N = n · k, and let M be the smallest prime
which satisfies

M ≥ c(k) ·
(

n(k− 1)
n, . . . , n

)1/(k−2)

, (1)

where c = c(k) is a constant that depends solely on k and will be determined later. As is well
known, M is at most twice its lower bound in (1). By Lemma 4.3, applied with m = bM/(k− 1)c,
there exists a set B = {b1, . . . , b|B|} ⊆ [m] of size |B| = m1−o(1) = M1−o(1) with no non-trivial
solutions to the equation

x1 + x2 + · · ·+ xk−1 = (k− 1) · xk. (2)

Since B is contained in [m], it contains no non-trivial solutions to Equation (2) taken modulo M as
well.

Consider the set I of all the subsets of [N] of size n, and identify the sets in I with their char-
acteristic vectors in {0, 1}N . Let w1, . . . , wN and c1, . . . , ck be integers chosen at random uniformly
and independently from FM, and denote w = (w1, . . . , wN). For these numbers we define k map-
pings β1, . . . , βk : I → FM as follows. For 1 ≤ j ≤ k− 1, β j is defined by

β j(I) = 〈w, I〉+ cj mod M,

and βk is defined by

βk(I) =
(
〈w, [N] \ I〉+

k−1

∑
j=1

cj

)
/(k− 1) mod M.

2A trivial solution is one that satisfies x1 = · · · = xr+1.
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The construction involves two steps. First, for every 1 ≤ i ≤ |B|, let Li denote the set of all
k-tuples of sets (I1, . . . , Ik) ∈ I k satisfying I1 ∪ . . . ∪ Ik = [N] and β j(Ij) = bi for every 1 ≤ j ≤ k.
Second, remove from every Li all the k-tuples (I1, . . . , Ik) ∈ Li that share some set Ij with other
k-tuples in Li, that is, satisfy Ij = Jj for some j and (J1, . . . , Jk) ∈ Li. We denote by L′i ⊆ Li the
obtained set.

Every partition (I1, . . . , Ik) ∈ Ik of [N] can be naturally encoded by a balanced vector v in
ZN

k defined by v|j = Ij for every 1 ≤ j ≤ k. Define F ⊂ ZN
k to be the set of partitions in the

union ∪1≤i≤|B|L′i encoded as vectors in ZN
k . We first show that F satisfies the property required in

Theorem 4.1, and then analyze its expected size.

Claim 4.4. For every k vectors v1, . . . , vk ∈ F , the sets v1|1, . . . , vk|k form a partition of [N] if and only if
v1 = · · · = vk.

Proof: It is clear that if v1 = · · · = vk then v1|1, . . . , vk|k form a partition of [N]. For the other
direction, consider k vectors v1, . . . , vk ∈ F , and denote Ij = vj|j for every 1 ≤ j ≤ k. Assume by
contradiction that the vectors are not all equal and that (I1, . . . , Ik) ∈ I k is a partition of [N]. For
every 1 ≤ j ≤ k denote bj = β j(Ij), and observe that

k−1

∑
j=1

bj =
k−1

∑
j=1

β j(Ij) =
k−1

∑
j=1
〈w, Ij〉+

k−1

∑
j=1

cj = 〈w, [N] \ Ik〉+
k−1

∑
j=1

cj = (k− 1) · βk(Ik) = (k− 1) · bk,

where all the equalities hold modulo M. This implies that the numbers b1, . . . , bk ∈ B satisfy
Equation (2) modulo M, hence by our choice of B, they must be all equal. Therefore, the vectors
v1, . . . , vk correspond to k partitions in the same set L′i. This implies that the partition (I1, . . . , Ik)

belongs to Li and shares a subset of I with each of the partitions that correspond to the vectors
v1, . . . , vk. However, this implies that all these partitions were not added to L′i in the second step
of the construction. Hence all the vi’s are equal, in contradiction.

We turn to analyze the expected size of the collection F . We start with the size of the sets Li

(before performing the second step of the construction).

Claim 4.5. For every 1 ≤ i ≤ |B|, the expected size of the set Li is ( nk
n,...,n) ·M−(k−1).

Proof: Fix 1 ≤ i ≤ |B|, and let (I1, . . . , Ik) ∈ Ik be a partition of [N]. Recall that (I1, . . . , Ik)

is added to Li if β j(Ij) = bi for every 1 ≤ j ≤ k. We claim that this happens with probability
M−(k−1). Indeed, the k− 1 events β j(Ij) = bi, 1 ≤ j ≤ k− 1, are independent, each of them occurs
with probability M−1, and once they all occur, it follows that βk(Ik) = bi as well. The number of
partitions of [N] in Ik is ( nk

n,...,n), so by linearity of expectation the claim follows.

We now turn to estimate the expected number of partitions that are removed from every Li in
the second step of the construction. To do so, we have to consider the probability of two distinct
partitions in Ik that share some subset to belong to Li. However, this probability depends on the
specific pair of partitions. Indeed, sharing more than one subset of the partitions, or even a certain
union of the subsets, might increase this probability. Hence, we need the following definition.
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Definition 4.6. Let t1 ≤ . . . ≤ t` be ` positive integers satisfying ∑`
r=1 tr = k. We say that two partitions

(I1, . . . , Ik) and (J1, . . . , Jk) of [N] in Ik are (t1, . . . , t`)-similar if there exists a partition of [k] into ` sets
T1, . . . , T` of sizes t1, . . . , t` respectively, such that for some permutation π : [k]→ [k],

∪i∈Tr Ii = ∪i∈Tr Jπ(i) (3)

for every 1 ≤ r ≤ `, and, in addition, no refinement of the partition T1, . . . , T` satisfies (3) for any permu-
tation π.

Claim 4.7. Let (I1, . . . , Ik) and (J1, . . . , Jk) be distinct (t1, . . . , t`)-similar partitions of [N] in Ik for some
` positive integers t1 ≤ . . . ≤ t` satisfying ∑`

r=1 tr = k. Then, for every 1 ≤ i ≤ |B|, the following holds.

1. For 1 ≤ ` ≤ k− 1, the probability that the two partitions are in Li is at most M−(k−1) ·M−(k−`).

2. For ` = k, the probability that the two partitions are in Li is at most M−(k−1) ·M−1.

Proof: Let (I1, . . . , Ik) and (J1, . . . , Jk) be distinct (t1, . . . , t`)-similar partitions of [N] in Ik, and let
T1, . . . , T` and π be the corresponding partition and permutation of [k] as in Definition 4.6.

For Item 1, we fix the values of c1, . . . , ck and analyze the probability that the two partitions
(I1, . . . , Ik) and (J1, . . . , Jk) are in Li over the random choice of w1, . . . , wN . First, notice that the
k− 1 events β j(Ij) = bi for 1 ≤ j ≤ k− 1 are independent, occur with probability M−1 each, and
imply the event βk(Ik) = bi. So the probability that (I1, . . . , Ik) ∈ Li is M−(k−1). For 1 ≤ r ≤ `,
let Ar denote the event that the equalities βπ(j)(Jπ(j)) = bi hold for every j ∈ Tr. It can be shown
that for every 1 ≤ r ≤ `, the probability that Ar occurs conditioned on the event (I1, . . . , Ik) ∈ Li

and on A1, . . . , Ar−1 is M−(tr−1). Indeed, since no refinement of the partition T1, . . . , T` satisfies
the condition of Definition 4.6, it follows that tr − 1 of the equalities of Ar are independent, occur
with probability M−1 each, and might imply the last one. This can be verified by observing that
every vector Jj that corresponds to such an equality is linearly independent of the vectors that
correspond to the previously considered equalities. Hence, the probability that the two k-tuples
are in Li is at most

M−(k−1) ·M−∑`
r=1 (tr−1) = M−(k−1) ·M−(k−`).

For Item 2, take ` = k and notice that in this case, (J1, . . . , Jk) is a permutation of (I1, . . . , Ik), so
we have t1 = · · · = t` = 1. The probability that (I1, . . . , Ik) ∈ Li is again M−(k−1). Since the two
partitions are distinct, there are distinct j, j′ for which Ij = Jj′ . Assume, without loss of generality,
that j′ < k. By the randomness of the choice of cj′ , the probability that β j′(Jj′) = bi, conditioned
on (I1, . . . , Ik) ∈ Li, is M−1. Therefore, the probability that both the partitions are in Li is at most
M−(k−1) ·M−1.

Claim 4.8. For every 1 ≤ i ≤ |B|, the expected size of the set L′i is at least 1
2 · (

nk
n,...,n) ·M−(k−1).

Proof: By Claim 4.5, the expected size of Li is ( nk
n,...,n) ·M−(k−1). We turn to bound from above the

expected number of partitions removed from Li in the second step. Notice that if two partitions of
[N] in Ik share a subset then they are (t1, . . . , t`)-similar for some ` ≥ 2 positive integers t1 ≤ . . . ≤
t` satisfying ∑`

r=1 tr = k (in fact, we also know that at least one of the tr’s equals 1). Therefore, we
turn to bound the expected number of (ordered) pairs of (t1, . . . , t`)-similar partitions of [N] in Ik

for some t1, . . . , t` as above.
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We start with the case 2 ≤ ` ≤ k− 1. Fix a partition (I1, . . . , Ik) of [N] in Ik, and ` positive in-
tegers t1 ≤ . . . ≤ t` satisfying ∑`

r=1 tr = k. The number of partitions (J1, . . . , Jk) of [N] in Ik which
are (t1, . . . , t`)-similar to (I1, . . . , Ik), associated with certain partition T1, . . . , T` and permutation
π of [k], is at most (

n · t1

n, . . . , n

)
· . . . ·

(
n · t`

n, . . . , n

)
≤
(

n(k− `+ 1)
n, . . . , n

)
.

By Item 1 of Claim 4.7, the probability that two such partitions are in Li is at most M−(k−1) ·
M−(k−`). It follows that the expected total number of pairs of (t1, . . . , t`)-similar partitions in Li

for some t1 ≤ . . . ≤ t` as above (2 ≤ ` ≤ k− 1) is at most

kO(k) ·
(

nk
n, . . . , n

)
·
(

n(k− `+ 1)
n, . . . , n

)
·M−(k−1) ·M−(k−`),

where the kO(k) term counts all the possible choices of numbers t1, . . . , t`, partitions T1, . . . , T`, and
permutations π of [k]. Now, consider the case k = `, that is, t1 = · · · = t` = 1. Using Item 2 of
Claim 4.7, the expected number of (1, . . . , 1)-similar partitions in Li is at most

kO(k) ·
(

nk
n, . . . , n

)
·M−(k−1) ·M−1.

Therefore, by linearity of expectation, the expected number of partitions removed from Li is at
most (

nk
n, . . . , n

)
·M−(k−1) ·

(
kO(k) ·M−1 +

k−1

∑
`=2

kO(k) ·
(

n(k− `+ 1)
n, . . . , n

)
·M−(k−`)

)
.

Choosing the constant c(k) in (1) to be sufficiently large, we have kO(k) ·M−1 ≤ 1
2k . We turn to

prove that for every 2 ≤ ` ≤ k− 1,

kO(k) ·
(

n(k− `+ 1)
n, . . . , n

)
·M−(k−`) ≤ 1

2k
, (4)

as this implies, combined with Claim 4.5, that the expected size of L′i is at least(
nk

n, . . . , n

)
·M−(k−1) − 1

2
·
(

nk
n, . . . , n

)
·M−(k−1) =

1
2
·
(

nk
n, . . . , n

)
·M−(k−1).

For (4), observe that our choice of M satisfies

kO(k) ·
(

n(k− `+ 1)
n, . . . , n

)
·M−(k−`) ≤ 1

2k
·
(

n(k− `+ 1)
n, . . . , n

)
·
(

n(k− 1)
n, . . . , n

)− k−`
k−2

≤ 1
2k

,

where the first inequality holds for a sufficiently large constant c(k) in (1), and the second follows

from the inequality (n(k−`+1)
n,...,n )

1/(k−`)
≤ (n(k−1)

n,...,n )
1/(k−2)

that holds for every ` ≥ 2 by monotonicity
of the geometric mean.

Finally, using Claim 4.8, we conclude that there exists a choice of w1, . . . , wN and c1, . . . , ck for
which

|F | =
|B|

∑
i=1
|L′i| ≥

1
2
·
(

nk
n, . . . , n

)
·M−(k−1) · |B| ≥

(
nk

n, . . . , n

)
·M−(k−2)−o(1) ≥

(
nk
n

)1−o(1)

.

By standard estimations of Binomial coefficients, this completes the proof of Theorem 4.1.
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Corollary 4.9. For every k ≥ 3 and a prime p, the local PMF capacity for k-cycles over Fp is at least
2H(1/k).

Proof: By Theorem 4.1, for every sufficiently large n, there exists a collection F of (2H(1/k) −
o(1))nk balanced vectors in Znk

k such that for every k vectors v1, . . . , vk ∈ F , the sets v1|1, . . . , vk|k
form a partition of [n · k] if and only if v1 = · · · = vk. For every vector v ∈ F consider the k-tuple
of vectors, whose first k− 1 vectors are the characteristic vectors of v|1, v|2, . . . , v|k−1, and the last
one is the characteristic vector of [n] \ v|k multiplied by−1 (modulo p). Observe that the collection
of all k-tuples obtained in this way from the vectors of F is an (nk, |F |) local PMF for k-cycles over
Fp. Hence, the local PMF capacity for k-cycles over Fp is at least 2H(1/k), as required.

The above corollary, combined with Lemma 2.8, completes the proof of Theorem 1.8.
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