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Abstract—Many networking/computing applications require high
speed switching for multicast traffic at the switch/router level to save
network bandwidth. However, existing queueing based packet switches
and scheduling algorithms cannot perform well under multicast traf-
fic. While the speedup requirement makes the output queued switch
difficult to scale, the single input queued switch suffers from the head
of line (HOL) blocking, which severely limits the network throughput.
An efficient yet simple buffering strategy to remove the HOL blocking
is to use the virtual output queueing (VOQ), which has been shown to
perform well under unicast traffic. However, it is impractic al to use the
traditional virtual output queued (VOQ) switches for multi cast traffic,
because a VOQ multicast switch has to maintain an exponential number
of queues in each input port. In this paper, we give a novel queue struc-
ture for the input buffers of a VOQ multicast switch by separately stor-
ing the address information and data information of a packet, so that
an input port only needs to manage a linear number of queues. In con-
junction with the multicast VOQ switch, we present a first-in-first-out
based multicast scheduling algorithm, FIFO Multicast Scheduling (FI-
FOMS), and conduct extensive simulations to compare FIFOMSwith
other popular scheduling algorithms. Our results fully demonstrate the
superiority of FIFOMS in both multicast latency and queue space re-
quirement.

I. I NTRODUCTION AND BACKGROUND

Multicast is an operation to transmit information from a
single source to multiple destinations, and is a requirement
in high-performance networks. Many networking/computing
applications require high speed switching for multicast traf-
fic at the switch/router level to save network bandwidth.
Scheduling multicast traffic on packet switches has received
extensive attention in recent years, see, for example, [3] [4]
[5] [6] [11]. Although there have been many scheduling algo-
rithms proposed for different types of packet switches, how
to efficiently organize and schedule multicast packets on the
switches remains a challenging issue.

In general, packet switches can be divided into two broad
categories: output queued (OQ) switches and input queued
(IQ) switches, based on where the blocked packets are
queued at the switch. A typical OQ switch, as shown in
Fig.1(a), has a first-in-first-out (FIFO) queue at each output
port to buffer the packets destined for that output port. OQ
switches are shown to be able to achieve unity throughput,
and can easily meet different QoS requirements, such as de-
lay, bandwidth and fairness, by applying various scheduling
algorithms. However, in order for OQ switches to work at full
throughput, the switching speed of the internal fabric and the
receiving speed of the output port must beN times faster than
the sending speed of the input port, whereN is the number
of the input ports of the switch. This deficiency makes OQ
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Fig. 1. Packet switches can be divided into two categories based on where
the unserved packets are buffered. (a) Output queued switch. (b) Single
input queued switch. (c) Multiple input queued Switch.

switches difficult to scale [12].

On the other hand, for IQ switches, the switching fabric
and the output port only need to run at the same speed as
that of the input port, and therefore IQ switches have been
the main research focus of high speed switches. The single
input queued switch, as shown in Fig.1(b), has a FIFO queue
at each input port to store the incoming packets waiting for
transmission. Since only the packet at the head of line (HOL)
of each input queue can participate the packet scheduling,
the packets behind the HOL packet suffer from the so called
“head of line” blocking, which means that even though their
destination output ports may be free, they cannot be sched-
uled to transfer because the HOL packet is blocked. Further-
more, it is proved in [13] that whenN is large, a single input
queued switch running under the unicast i.i.d. Bernoulli traf-
fic saturates at an offered load of approximately0.586, and
with correlated input traffic throughput can be even lower [8].

[6] proposed a multicast scheduling algorithm called
TATRA based on the single input queued switch structure,
by mapping the general multicast switching problem onto a
variant of the popular block packing game, Tetris. However,
the performance of TATRA is restricted by the HOL block-
ing with the single input-queued structure, especially when
the incoming traffic has mixed multicast and unicast pack-
ets or the multicast packets have a relatively small average
number of destinations (or fanout).

An efficient yet simple buffering strategy to remove the
HOL blocking is to adopt the multiple input queued switch
structure . A typical multiple input queued switch has a sep-
arate FIFO queue corresponding to each output port at each
input port, resulting in a total ofN2 input queues, as shown in
Fig.1(c). It is also called virtual output queue (VOQ) struc-
ture, since each queue stores those packets arrived from a
given input port and destined for the same output port. HOL
blocking is eliminated because a packet cannot be held up
by a packet ahead of it that is destined for a different out-



put. It is known that the VOQ switch structure can achieve
100% throughput for all independent arrival processes by us-
ing the maximum weight matching algorithm [2]. However,
one problem for the traditional VOQ structure to be applied
to multicast traffic is that a multicast packet has too many
possible destinations, which is equal to(2N −1) for a switch
with N output ports. This means that a VOQ switch for mul-
ticast traffic needs to maintain(2N − 1) separate queues at
each of its input ports, which is obviously infeasible, espe-
cially for a largeN .

Based on the VOQ switch structure, a lot of scheduling al-
gorithms have been proposed, such as iSLIP [1] , PIM [12],
2DRR [9] and SERENA [7], but most of them are mainly de-
signed for unicast traffic, because, as stated above, the tradi-
tional VOQ switch cannot handle multicast traffic. Recently,
[15] extended the VOQ unicast scheduling algorithm WSGS
[14] to multicast scheduling, but it restricts the maximal for-
warding fanout and therefore is not able to fully utilize the
multicast capability of a crossbar switching fabric.

In order to eliminate the HOL blocking, and at the same
time to make the VOQ structure practical for multicast traf-
fic, in this paper we present a novel scheme to organize the
packets in the input buffers of a VOQ switch by separately
storing the address information and the data information of
a packet. In conjunction with the new structure of the VOQ
multicast switch, we present a first-in-first-out based multi-
cast scheduling algorithm, called FIFO Multicast Scheduling
(FIFOMS). As will be seen, FIFOMS can fully use the mul-
ticast capability of a crossbar fabric, does not suffer fromthe
HOL blocking, and performs well under both multicast traf-
fic and unicast traffic. It can provide fairness guarantee, and
achieve 100% throughput under uniformly distributed traf-
fic. Our simulation results show that FIFOMS outperforms
other input queueing based scheduling algorithms in average
packet delay and buffer space requirement.

In the following, we assume a switch model ofN input
ports andN output ports with a multicast-capable crossbar
as its switching fabric. The switch runs in a synchronous
time slot mode, and the incoming traffic includes fixed length
unicast and multicast packets.

II. QUEUE STRUCTURE FORMULTICAST VOQ
SWITCHES

As mentioned above, under the existing queueing scheme
of a VOQ switch, each input port needs to maintain(2N −1)
separate queues, which makes the VOQ switch impractical
for scheduling multicast traffic. In the following, we describe
a new scheme for organizing packets in the input buffers of a
multicast VOQ switch, so that the number of queues at each
input port can be reduced toN .

In general, the main task of a switch includes two separate
functions: 1) Scheduling - deciding for each input port which
output port the packet should be sent to, and making arbitra-
tion when more than one input ports request for the same
output port. 2) Data forwarding - sending the packet data
from input ports to output ports according to the scheduling

decision.
Accordingly, the information that a packet carries can be

divided into two parts. The first part is the data content to
be transferred. The second part is the destination address
information of the packet, which is also used by the switch to
make the scheduling decision. When the switch handles only
unicast traffic, where the data content of a packet needs to
be sent only once from an input port to a single output port,
it is natural to combine the two functions into a single unit
and use it for both scheduling and transmission. However,
when multicast traffic is involved, a packet may need to be
sent to multiple output ports. Although the destinations are
different, the data content to be sent is the same. Therefore,
there is no need to store multiple copies of the same data
content. A more efficient way would be to store the address
and data content of a packet separately: the data are stored
once and used for all destination addresses of the packet. We
use two different types of cells to store the two parts of a
packet: the data cell to store the data content of the packet,
and the address cell to store the destination information of
the packet.

A new data cell is created to store the data content when
a new packet arrives at the switch. Its data structure can be
described as follows:

DataCell{
binary dataContent;
int fanoutCounter;

}
The dataContent field stores the data content of a packet.

Since we assume the incoming traffic includes only fixed size
packets, it can be implemented as a fixed size field. The
fanoutCounter field records the number of destination out-
put ports that the dataContent is going to be sent to. When
a packet arrives at the switch, the fanoutCounter field of its
data cell is equal to the fanout of the packet. As the data-
Content is sent to part or all of the destinations of the packet,
the number in the fanoutCounter field is decremented accord-
ingly. When it becomes0, it means that all the destination
output ports have been served, and therefore the data cell can
be destroyed so as to return the buffer space to the switch.

The address cell stores the destination address information
of a packet. Specifically, an address cell represents one of the
destination output port of the packet, and serves as a place
holder in the virtual output queue corresponding to that out-
put port. When a new packet with fanoutk enters the switch,
k address cells are created for these destination output ports.
The data structure of an address cell can be described as fol-
lows:

AddressCell{
int timeStamp;
pointer pDataCell;

}
The timeStamp field records the arrival time of the packet

that the address cell is related to. It will be used by the
scheduling algorithm FIFOMS for two purposes: On the
one hand, because all the address cells of the same packet
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Fig. 2. An example of a4× 4 multicast VOQ switch. Left part shows the
details of input port 0.

have the same arrival time, the timeStamp field can be used
to identify the address cells that belong to the same multi-
cast packet. On the other hand, the time stamp value can be
used as a scheduling criterion of the first-in-first-out princi-
ple, where the address cells of earlier arrived packets have
smaller values. The pDataCell field is a pointer to the data
cell that the address cell corresponds to. When an address
cell is scheduled to transfer, the input port will actually send
to the corresponding output port the dataContent of the data
cell that the address cell’s pDataCell field points to.

After explaining the two types of cells used, we now
present the entire picture of the queue structure in a multi-
cast VOQ switch. In each input port, there is a buffer used to
store the data cells, and there areN virtual output queues to
store the address cells for theN output ports. All the address
cells in the same virtual queue are destined for the same out-
put port, and only the address cells at the head of the queues
can be scheduled.

Fig.2 gives an example of a4× 4 multicast VOQ switch.
The input ports and output ports are connected by a cross-
bar fabric, and the incoming packets are buffered at the input
side. The details of input port 0 are shown in the left part of
the figure, in which there is a buffer for data cells and four
virtual output queues for address cells. Input port 0 has four
packets that have not been fully transferred, and the packets
entered the switch at the 1st, 3rd, 4th and 7th time slots, re-
spectively. The fanout of the first packet is 3, and the packet
still needs to be sent to output ports 0, 1 and 2, the destina-
tions of the third packet are output ports 0 and 3, the desti-
nations of the fourth packet are output ports 2 and 3, and the
seventh packet is a unicast packet to output port 1.

III. F IRST-IN-FIRST-OUT MULTICAST SCHEDULING

ALGORITHM (FIFOMS)

By using the modified queue structure, the VOQ switch
now can efficiently handle multicast packets. However, no
appropriate algorithms are available for scheduling multicast
traffic on the VOQ switch. On the one hand, existing mul-
ticast scheduling algorithms, such as TATRA, are based on
the single input queued switch structure, and therefore, suffer
from the HOL blocking. On the other hand, current schedul-
ing algorithms for VOQ switches, see, for example, [1] [12]
[9], [7] were mainly designed for unicast traffic, because the

traditional VOQ switch queue structure is not suitable for
multicast traffic. The scheduling principle of these schedul-
ing algorithms is that an input port can only send its packet to
one output port in a single time slot. Apparently, it does not
take the characteristics of multicast traffic into consideration.

In this section, we propose a new multicast scheduling al-
gorithm, called FIFO Multicast Scheduling (FIFOMS), for
working with the multicast VOQ switch. As will be seen, the
VOQ switch structure completely removes the HOL block-
ing, and enables FIFOMS to achieve 100% throughput under
uniformly distributed traffic. And at the same time, FIFOMS
utilizes the multicast capability of a crossbar switch to send a
multicast packet to all its destination output ports in the same
time slot whenever possible, which significantly reduces the
multicast latency.

It should be mentioned that for any multicast scheduling
algorithm, there is an inherent conflict in scheduling. In order
to make use of the multicast characteristics and achieve short
average cell delay, it is preferred for a multicast packet tobe
sent to all its destination output ports in the same time slot,
or in other words, all the output ports should choose the same
multicast packet in the scheduling arbitration. However, for
the sake of fast scheduling, each output port should make ar-
bitration concurrently. Then, the question is: How could the
independently made decisions choose the same packet? FI-
FOMS solves this problem by adopting the first-in-first-out
rule. It assigns every incoming packet a time stamp with the
value equal to its arrival time, and uses the time stamp as a
criterion in the scheduling arbitration. The time stamp cri-
terion makes the multicast packets arrived earlier have bet-
ter chance to be chosen by all its destination output ports
when the output ports make scheduling decisions indepen-
dently. Next, we will describe FIFOMS and its associated
packet preprocessing algorithm.
A. Preprocessing Incoming Packets

In order to fit into the multicast VOQ switch queue struc-
ture, a multicast packet needs to be preprocessed upon arriv-
ing. One data cell is generated in the data buffer to store the
content of the packet. A separate address cell is generated for
each of the destination output ports, with its timeStamp field
assigned the value of current time slot, and is put at the end
of the corresponding queue.

Details of the packet preprocessing algorithm are de-
scribed in Table 1.
B. First-In-First-Out Multicast Scheduling Algorithm (FI-

FOMS)

Similar to iSLIP [1] or PIM [12], FIFOMS is an iterative
algorithm, and each iterative round consists of two steps: 1)
Request - address cells at each input port make requests to
their destination output ports for possible transmission.2)
Grant - each output port selects one request from all the re-
quests it received, and grants the transmission to the corre-
sponding address cell.

However, different from iSLIP and PIM, the accept step is
not needed in FIFOMS, because in our request step, all the



TABLE 1

PACKET PREPROCESSINGALGORITHM

Input: A new packet with destination vector dest[N ], in which
dest[i] = true means output porti is one of its destinations.

Output: One data cell in the buffer, andk address cells in the virtual
output queues, wherek is the fanout of the multicast packet.

dc = new DataCell(); // generate a new data cell
dc.dataContent = newpacket body; // copy the message body

for (int i = 0; i < N; i++) {
// generate the address cell for output port i, and enqueue it
if (newPacket.dest[i] == true){

ac = new AddressCell();
ac.timeStamp = currentSlot;
ac.pDataCell = dc;
queue[i].enqueue(ac);

}
}

address cells that make requests must point to the same data
cell. Therefore, only one of the data cells in an input port can
be granted the transmission, and there is no potential conflict
in which an input port needs to send more than one data cells
in a single time slot. In a scheduling round, FIFOMS has
one fewer operational step, and less data exchange between
inputs and outputs. The FIFOMS scheduling algorithm is
described in Table 2, and we will explain each step in more
detail next.

B.1 Request Step

In the request step, an input port finds the earliest HOL
address cells, and give them priorities to send transmission
requests. There are two possible cases. 1) If the input port is
free in the current scheduling round (an input port or an out-
put port is free if it has not been scheduled to send or receive
a packet in the current round), it simply selects the HOL ad-
dress cells whose time stamp is the smallest and correspond-
ing output ports are free. Then the selected address cells send
requests to their output ports with the scheduling weight be-
ing its time stamp. Note that there may be more than one such
address cells with the same smallest time stamp in an input
port, which came from the same multicast packet. 2) Other-
wise, if some address cells have been scheduled to transfer in
the earlier rounds of the current time slot, it means that allthe
other HOL address cells with the same time stamp, if there is
any, must have made requests in the earlier rounds but were
not selected by the output ports. Since one input port can
send at most one data cell in a single time slot, the input port
cannot make requests any more.

B.2 Grant Step

After the request step, each output port has collected some
requests with different weights. Following the first-in-first-
out rule, an output port grants the request with the smallest
time stamp. It is possible that several requests have the same
smallest time stamp. In this case, the output randomly select
one to grant.

The iterative rounds of the request and grant steps continue

TABLE 2

FIRST-IN-FIRST-OUT MULTICAST SCHEDULING ALGORITHM

Input: Input ports with address cell queues and data cell buffers.

Output: Scheduling decision.

do{
// request step
for all input ports do{

if the input port is free{
smallesttime stamp = the smallest time stamp of all HOL

address cells whose corresponding output port is free;

for all HOL address cells{
if address cell’s corresponding output port is free AND

its time stamp is equal to smallesttime stamp{
the address cell makes a request to the corresponding

output port, and sends its time stamp as weight;
}

}
}

}

// grant step
for all output ports do{

select the smallest time stamp from all its requests;
if there are more than one such requests, randomly select one;
grant the address cell corresponding to the selected request;
mark the output port and the granted address cell as reserved;

}
} while some output port and input port pairs match in this round;

// data transmission
set the crosspoints of the switch fabric;
for all input ports do{

find the data cell through the pointer field of the scheduled address cell;
send the data cell to all the scheduled output ports;

}

// post-transmission processing
for all input ports do{

for each scheduled address cell{
decrease the fanoutCounter field of the data cell that

the address cell points to by 1;
if the data cell’s fanoutCounter field becomes 0{

destroy the data cell;
}
remove the address cell from the head of queue;

}

until there are no possible matched pairs of free output ports
and free input ports.

B.3 Data Transmission

After the scheduling decisions are generated during the it-
erative rounds in the form of matched input and output pairs,
the corresponding crosspoints connecting the scheduled in-
put ports and output ports are set, and the input port begins to
send the data cell. Note that an input port may be connected
to more than one output ports simultaneously. Thus, the al-
gorithm can fully use the built-in multicast capability of the
crossbar switch fabric.

B.4 Post Transmission Processing

After the transmission is completed, some post process-
ing work needs to be performed to update the address cells
and data cells that have been transferred. The served HOL



address cells are removed from the heads of their queues,
and the fanoutCounter fields of the related data cells are de-
creased accordingly. If a data cell’s fanoutCounter field be-
comes0, i.e., it has been sent to all destination output ports,
the data cell is destroyed to return the buffer space.

IV. H ARDWARE IMPLEMENTATION AND COMPLEXITY

ANALYSIS OF THE FIFOMS SCHEDULING

ALGORITHM

In this section, we discuss some implementation and per-
formance issues of the newly proposed scheduling algorithm
and analyze the complexity of the algorithm.

A. Hardware Implementation

One important property of a practical scheduling algorithm
is that it should be easy to implement. In the following, we
briefly discuss the hardware implementation of the FIFOMS
scheduler. As can be seen, FIFOMS can be fairly easy to im-
plement in hardware and thus achieve high speed switching
in practice.

The scheduler can be logically divided into two units as
shown in Fig.3, corresponding to the scheduling functionality
and data forwarding functionality, respectively.

In the control unit on the left, the input side consists of all
the address cell queues, because the information provided by
the address cells are used for making scheduling decisions.
A comparator is used at each input port to select the HOL
address cells with the smallest time stamp. Since the com-
parison operation of each input port does not depend on each
other, it can be performed in parallel. The selected address
cells send their requests with time stamps as weights to the
corresponding output ports. Then each output port uses a
comparator to select the request with the smallest time stamp
and grants the transmission to the corresponding address cell.
Finally, before the next iterative round of FIFOMS could
start, the grant results of the current round are fed back to
the input ports.

The data forwarding unit consists of the data cell buffer
space and the crossbar switching fabric. The scheduling de-
cisions made by the control unit are forwarded to the data for-
warding unit as control signals. The output of the compara-
tor of each input port is used to select from the buffer space
which data cell should be sent. And the output of the com-
parator of each output port controls which crosspoint should
be set to connect a particular input port with this output port.

B. Space Complexity of the Algorithm

As has been seen, by separately storing the data and ad-
dress information of a packet, a VOQ switch is able to han-
dle multicast traffic efficiently. The multicast VOQ switch
saves buffer space by storing only one copy of data content
of a multicast packet. Compared to the single input queued
switch, the multicast VOQ switch consumes slightly more
storage space. The main cost comes from the separately
stored multiple address cells of a packet, in which case a sin-
gle packet may need up toN times of the size of an address
cell. Fortunately, the data structure of an address cell only
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Fig. 3. The overall FIFOMS scheduler can be logically divided into two
units, the control unit on the left and the data forwarding unit on the right.

includes an integer field and a pointer field, and a small con-
stant number of bytes should be sufficient.

C. Time Complexity of the Algorithm

The time complexity for preprocessing an arriving packet
is O(N), because when a multicast packet arrives at the
switch, up toN address cells may need to be created. [16]
pointed out the potential memory speedup problem, but since
the destinations of a packet are independent and an address
cell comprises only several bytes, the operation can be done
in parallel by hardware to achieveO(1) complexity. Further-
more, the preprocessing of new packets can be overlapped
with the scheduling and the switching in the switch. Thus it
would not introduce extra time delay.

The most time-consuming operation in each round of FI-
FOMS is for an input port to find the smallest time stamp
from those of all the HOL address cells, and for an output
port to select the request with the smallest time stamp. If the
operation is executed in a serial fashion, the time complexity
is O(N). If we use the parallel comparators as that in the
WBA scheduler [10], the time complexity can be reduced to
O(1).

The convergence time has been a big concern for itera-
tive matching algorithms like FIFOMS. In the worst case,
FIFOMS runsN rounds to converge, because in each round
at least one output port is scheduled for receiving a data cell
from an input port and will not be considered in the future
rounds. But as will be seen later in the simulation results sec-
tion in Fig.5, for the average case, the convergence rounds
of FIFOMS is much smaller thanN . And we have an in-
teresting observation that FIFOMS and iSLIP require almost
the same number of rounds to converge under relatively light
traffic load.

V. SIMULATION RESULTS

We have conducted extensive simulations to compare the
performance of FIFOMS with other three scheduling algo-
rithms: TATRA [6], iSLIP [1] and a simple FIFO scheduling
algorithm on the output queued switch structure.

TATRA is a multicast scheduling algorithm based on the
single input queued switch structure. By minimizing the



number of input ports with the set of cells that lose contention
for output ports and remain at the HOL of the input queues
in each cycle, it achieves good performance as well as strict
fairness. Through the comparison with TATRA, we demon-
strate that FIFOMS successfully removes the HOL blocking,
which restricts the maximum throughput TATRA can reach.

iSLIP is a scheduling algorithm mainly designed for uni-
cast traffic based on the VOQ switch structure. In the sim-
ulation, iSLIP schedules a multicast packet as separate (in-
dependent) unicast packets. Through the comparison with
iSLIP, we show that FIFOMS can make use of the character-
istics of multicast traffic and take advantage of the multicast
capability of the crossbar switch. As a result, FIFOMS has
much shorter average cell delay than iSLIP for multicast traf-
fic.

As discussed in the introduction section, the output queued
switch structure is known to be superior to the input queued
structure in performance but requiresN times fast switch-
ing ability. Despite its much stronger hardware requirement,
in our simulations we also include a simple FIFO schedul-
ing algorithm on the output queued structure as an ultimate
performance benchmark for FIFOMS.

In the simulations, we collect the following four types of
statistics:

• Average input oriented delay: Input oriented delay rep-
resents the transmission delay from the sender’s point
of view. Specifically, it is equal to the maximum delay
that the last destination output port of a multicast packet
receives the packet.

• Average output oriented delay: Average output oriented
delay represents the transmission delay from the re-
ceiver’s point of view. It can be computed as the average
of the delay that the multicast packet is delivered to all
its destination output ports.

• Average queue size: Average queue size tells how long a
new incoming packet needs to wait before transmission,
and it also represents the space requirement of the algo-
rithm. For FIFOMS and iSLIP, the queue size is defined
to be the number of data cells in the buffer of an input
port, in the sense that how many unsent packets an input
port needs to hold.

• Maximum queue size: Maximum queue size gives the
maximum buffer space for an algorithm to work without
loss of packets.

All the simulated switches are assumed to operate in a dis-
crete time slot manner with fixed size packets. In each simu-
lation run, there is a sufficient warmup period (typically half
of the total simulation time) to obtain stable statistics. The
simulation runs for a fixed amount of simulation time (106)
unless the switch becomes unstable (i.e. it reaches a stage
where it is unstable to sustain the offered load).

In order to compare the performance of the algorithms in
various networking environments, we consider several differ-
ent types of traffic, including Bernoulli traffic, uniform traf-
fic, and burst traffic.
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Fig. 4. Simulation results for a16× 16 switch under Bernoulli traffic with
b = 0.2 (a) Average input oriented delay. (b) Average output oriented delay.
(c) Average queue size. (d) Maximum queue size.

A. Simulation Results Under Bernoulli Traffic

The Bernoulli traffic is one of the most widely used traf-
fic models in the simulation of scheduling algorithms. A
Bernoulli traffic can be described using two parametersp and
b. p is the probability that an input port is busy at a time slot,
i.e., the probability an input port has some packet to arriveat
the beginning of a time slot. The destination of the incom-
ing packet is uniformly distributed over all possible multicast
destinations. To be precise, a packet has the probability ofb
to be addressed to each output port. Therefore, for anN ×N
switch, the average fanout of a multicast packet isb×N , and
the effective load isp× b×N .

The simulation results for a16 × 16 switch under the
Bernoulli traffic withb = 0.2 and a series of differentp val-
ues are shown in Fig.4. As can be seen from the figure, in
terms of input and output oriented average cell delays, FI-
FOMS closely matches OQFIFO, which has the best perfor-
mance. In addition, FIFOMS outperforms all other three al-
gorithms in terms of both average queue size and maximum
queue size. On the other hand, due to the HOL blocking in
the single input queued switch structure that TATRA is based
on, when the effective load goes beyond 80%, the delay of
TATRA increases dramatically and it becomes unstable. It
can also be observed that iSLIP has much longer average cell
delay than all the other algorithms. This is because iSLIP is
a scheduling algorithm specially designed for unicast traffic.

Fig.5 compares the convergence rounds between FIFOMS
and iSLIP. We can see that the convergence rounds of both
FIFOMS and iSLIP are not sensitive to the increasing of the
traffic. Also, it is interesting to notice that FIFOMS and iS-
LIP take roughly the same number of iterative rounds to con-
verge. To be more specific, FIFOMS outperforms iSLIP until
the effective load reaches above 90%, under which iSLIP has
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Fig. 5. Average convergence rounds of FIFOMS and iSLIP for a16× 16

switch under Bernoulli Traffic withb = 0.2.

already become unstable.

B. Simulation Results Under Uniform Traffic

In real-world applications, the fanout of most multicast
connections is limited by some upper bound value instead of
being uniformly distributed over all the possible destinations.
In this case, we can use the uniform traffic with a restricted
maximum fanout to capture this characteristics.

A uniform traffic can be described using two parametersp
andmaxFanout, in whichp is the probability that an input
port has a packet to arrive at a time slot, andmaxFanout
is the maximum possible fanout of any incoming packet.
The fanout of a packet is uniformly distributed from1 to
maxFanout, and the individual destination output ports are
randomly selected from all theN output ports. Therefore, for
anN×N switch, the average fanout is(1+maxFanout)/2,
and the effective load isp× (1 + maxFanout)/2.

First, let’s look at the simulation results when
maxFanout is set to 1, which is exactly the pure uni-
cast traffic. There is no doubt that the well-known unicast
scheduling algorithm iSLIP achieves short average cell de-
lay. Although mainly designed for multicast traffic, FIFOMS
manages to match and even surpass iSLIP on average cell
delay, and is the best in terms of buffer requirement. On the
contrary, the performance of TATRA is greatly affected by
the HOL blocking, it can only reach a maximum effective
load of about 55%, which is consistent with the theoretical
analysis result of 0.586 in [13].

Simulations are also conducted under uniform traffic with
maxFanout = 8 and the corresponding results are shown
in Fig.7. FIFOMS consistently gives a satisfactory perfor-
mance. It has the shortest average cell delay (both input
oriented and output oriented) among the three input queued
scheduling algorithms, and even excels OQFIFO on buffer
requirement. It also can be observed that as themaxFanout
value becomes larger, TATRA has better performance, be-
cause it has more choices to move the cells in the Tetris box.

C. Simulation Results Under Burst Traffic

In practice, network packets are usually highly correlated
and tend to arrive in a burst mode. For a discrete time slot
switch, we generally use a two state Markov process which
alternates between off and on states to describe the burst na-
ture. In the off state, there is no packet to arrive. In the on
state, packets arrive at every time slot and all have the same
destinations. At the end of each slot, the traffic can switch
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Fig. 6. Simulation results for a16× 16 switch under uniform traffic with
maxFanout= 1. (a) Average input oriented delay. (b) Average output ori-
ented delay. (c) Average queue size. (d) Maximum queue size.
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Fig. 7. Simulation results for a16× 16 switch under uniform traffic with
maxFanout= 8. (a) Average input oriented delay. (b) Average output ori-
ented delay. (c) Average queue size. (d) Maximum queue size.

between off and on states independently. A burst traffic can
be described using three parametersEoff , Eon andb. Eoff

is the average length of the off state, or alternatively the prob-
ability to switch from the off state to the on state is1/Eoff .
Eon is the average length of the on state, or the probability
to switch from the on state to the off state is1/Eon. b is the
probability of a packet being addressed to a specific output
port. Therefore, for anN ×N switch, the average fanout is
p×N , the arrival rate isEon/(Eoff +Eon), and the effective
load isp×N×Eon/(Eoff +Eon). For easy comparison, we
setEon to be the same value 16 as in [6].
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Fig. 8. Simulation results for a16 × 16 switch under burst traffic with
q = 0.5. (a) Average input oriented delay. (b) Average output oriented
delay. (c) Average queue size. (d) Maximum queue size.

The simulation results for a16× 16 switch with b = 0.5
are shown in Fig.8. Due to the burst nature, the saturated
throughput of all the algorithm becomes much lower. As to
average cell delay, FIFOMS outperforms TATRA, but is not
as good as OQFIFO. iSLIP saturates at a so small value that
it cannot even be seen in the first two graphs, which is consis-
tent with the theoretical analysis of [8]. As under other traffic
modes, FIFOMS has the smallest queue space.

VI. CONCLUSIONS

In this paper, we first gave a novel scheme to organize the
multicast packets in input buffers of a VOQ switch. By sepa-
rately storing the address and data of a packet, the new queue
structure enables the VOQ switch to handle multicast traffic
efficiently, because it decreases the number of queues an in-
put port needs to manages from exponential to linear, and at
the same time it keeps all existing advantages of the VOQ
switch.

In conjunction with the multicast VOQ switch, we also
designed a multicast scheduling algorithm, first-in-first-out
multicast scheduling (FIFOMS). The main features of FI-
FOMS can be summarized as follows:

• Performs well under both multicast and unicast traffic:
FIFOMS is designed for scheduling multicast traffic,
and fully uses the inherent multicast capability of the
crossbar switch. Furthermore, even under the pure uni-
cast traffic, the performance of FIFOMS can also match
the specifically designed unicast scheduling algorithms.

• Achieves 100% throughput under uniformly distributed
traffic: Under uniform 100% offered load, all theN ×
N virtual output queues have sustaining backlogs. As
a result, each output port can receive one data cell in
each time slot, and therefore FIFOMS achieves 100%
throughput.

• Starvation free: Because of the FIFO property, FIFOMS
provides fairness guarantee. In other words, the time a
packet can stay in the switch is bounded by a maximum
value, since an address cell will definitely get scheduled
after all its competitors are served, which include the
earlier address cells in the other queues of the same in-
put port and the earlier address cells in the virtual queues
corresponding to the same output port of the other input
ports.

• Enables fanout splitting: The destination output ports of
a multicast packet can be served in separate time slots. It
is allowed to send the data cell to some output ports in a
slot, and leave others for later chances. Fanout splitting
is necessary for an algorithm to achieve high throughput
under multicast traffic.

We have conducted extensive simulations to compare the
performance of FIFOMS with other popular scheduling algo-
rithms. And the results fully demonstrate the superiority of
FIFOMS in both the average cell delay and the queue space
requirement.
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