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ABSTRACT
Traditional iterative matching algorithms for VOQ switches
need three steps, i.e., request, grant and accept. By incor-
porating arbitration into the request step, two step itera-
tive matching can be achieved. This enables simpler im-
plementation and shorter scheduling time, while maintain-
ing almost identical performance. As an example of the
two step iterative matching algorithms, in this paper we
present Two Step Parallel Iterative Matching (PIM2), and
theoretically prove that its average convergence iterations
are less than lnN + e/(e − 1) for an N × N switch. Fur-
thermore, two step iterative matching algorithms can be ef-
ficiently pipelined on CIOQ switches so that two matchings
can be obtained in each time slot. We propose a scheme
called Second of Line (SOL) matching to provide two inde-
pendent virtual switches, with which the pipelining can be
achieved without additional scheduling time and arbitration
hardware. More importantly, the pipelined algorithms are
theoretically guaranteed to achieve 100% throughput for any
admissible traffic. Extensive simulations are conducted to
show that our analytical result on the average convergence
iterations ln N +e/(e−1) is more accurate than the classical
result log2 N + 4/3, and to test the performance of different
pipelined algorithms on CIOQ switches.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]:
Packet-switching networks

General Terms
Algorithms, Design

Keywords
Scheduling, Pipeline, Iterative algorithms, Convergence

∗This research was supported in part by the U.S. National
Science Foundation under grant numbers CCR-0073085,
CCR-0207999 and ECS-0427345.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’05, October 26–28, 2005, Princeton, New Jersey, USA.
Copyright 2005 ACM 1-59593-082-5/05/0010 ...$5.00.

1. INTRODUCTION
Crossbar switches operating with fixed length packets have

demonstrated advantages in high speed switching [1, 3, 7,
5, 8]. On the one hand, the crossbar fabric provides non-
blocking switching capability, which is desired by high speed
switches. On the other hand, fixed length packets (or cells)
enable the switch to work in a synchronous time slot mode,
which considerably simplifies and accelerates the scheduling
and switching processes. In each time slot, the schedul-
ing algorithm makes a scheduling decision in the form of
conflict-free input-output pairs, and the crossbar simultane-
ously transmits all the scheduled packets.

The general structure of an N × N crossbar switch is il-
lustrated in Figure 1. The input ports and output ports are
connected by a crossbar switching fabric, which may have
speedup capability. A crossbar with speedup of S can re-
move S packets from each input port and deliver S packets
to each output port in a single time slot. Depending on
the exact speedup factor, temporarily blocked packets may
be buffered at either the input side or the output side or
both. When S = 1, each output port will receive at most
one packet per time slot, which can be immediately sent to
the outline, and therefore no buffer space is needed at the
output side. Such a switch is called an input queued (IQ)
switch. When S = N , the crossbar is able to deliver N pack-
ets to an output port per time slot. Thus, even each input
port simultaneously has a new incoming packet destined to
the same output port, all of these packets can be transmit-
ted in the same time slot. As a result, the buffer space at
the input side can be eliminated, and such a switch is called
an output queued (OQ) switch. When 1 < S < N , both
input ports and output ports need to have buffers, and such
a switch is a combined input output queued (CIOQ) switch.

For the buffer space at the input side, we consider only the
virtual output queued (VOQ) buffering [2], since the tradi-
tional single FIFO queue suffers from the head of line (HOL)
blocking, i.e., even though the destination output ports of the
packets behind the HOL packet may be free, they cannot be
scheduled to transmit because the HOL packet is blocked. It
was proved in [4] that the HOL blocking limits the switch’s
maximum throughput to about 2 −

√
2 ≈ 58.6%. On the

contrary, the VOQ buffering maintains a (logically) separate
queue for each output port at each input port, so that a
packet will no longer be held up by another packet ahead of
it that goes to a different output port. Conventionally, an
IQ switch with VOQ buffering is called a VOQ switch.

The scheduling problem on crossbar packet switches can
be viewed as a special case of the bipartite graph matching
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Figure 1: The general structure of a crossbar switch.

problem. Input ports and output ports make up of the two
disjoint sets of vertices, and the scheduling decisions are rep-
resented by the edges from input ports to output ports. Tra-
ditionally, maximum size matching (MSM) [2] and maximum
weight matching (MWM) [2] are adopted in order to maxi-
mize the throughput of the switch. However, while MWM is
able to achieve 100% throughput for any independent traffic,
MSM may lead to instability and unfairness under admissible
traffic, and starvation under inadmissible traffic [9]. Besides,
both MSM and MWM have high time complexity, which is
O(N2.5) [10] and O(N3 log N) [11], respectively, and there-
fore are impractical for high speed switching.

In order to make fast scheduling decisions, iterative match-
ing algorithms, such as PIM [3] and iSLIP [1] were proposed.
The algorithms attempt to quickly converge on a maximal
matching in multiple iterations. As shown in Figure 2, each
iteration of the algorithms usually consists of the following
three steps:

Request step. Each input port sends a packet to every
output port for which it has a buffered packet.

Grant step. An output port selects one request among
all the requests that it receives to grant.

Accept step. An input port selects one grant among all
the grants that it receives to accept. Then, the input port
marks itself and the corresponding output port as matched.

All input ports and output ports are initially unmatched
and only those not matched at the end of one iteration are
considered in the next round. Iterative matching algorithms
find a maximal matching each time slot by incrementally
adding input-output pairs, without removing the ones made
earlier. In general, a maximal matching is smaller than a
maximum matching (the one with largest size or weight),
but is easier to obtain. Also, it was proved in [6] that, for a
CIOQ switch with speed up of two, any maximal matching
achieves 100% throughput.

The purpose of this paper is to design efficient iterative
matching algorithms for CIOQ crossbar switches. First, we
show that by incorporating arbitration into the request step,
two step iterative matching can be achieved, as shown in
Figure 3, which enables simpler implementation and shorter
scheduling time, while maintaining almost the same perfor-
mance as three step algorithms. As an example, we present
Two Step Parallel Iterative Matching (PIM2) for VOQ switches,
which is the two step version of PIM [3], and prove that its
average convergence iterations are less than ln N + e/(e− 1).
In order to efficiently apply two step iterative matching al-
gorithms to CIOQ switches, we propose a scheme called Sec-
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Figure 2: Three step iterative matching.
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Figure 3: Two step iterative matching.

ond of Line (SOL) matching which makes two scheduling
decisions in one time slot, without extra scheduling time or
arbitration hardware requirement. We prove that any two
step iterative matching algorithm pipelined with the pro-
posed scheme achieves 100% throughput for any admissible
traffic. In order to further reduce the packet transmission de-
lay, a mechanism called HOL rescheduling is also proposed.
Extensive simulations are conducted to verify the accuracy
of our analysis on the convergence property of PIM2, and to
compare the performance of different scheduling algorithms
on CIOQ switches.

The rest of this paper is organized as follows. Section
2 discusses the two step iterative matching algorithms for
VOQ switches. Section 3 applies the two step algorithms to
CIOQ switches in a pipelined manner. Section 4 gives the
simulation results. Finally, Section 5 concludes the paper.

2. TWO STEP ITERATIVE MATCHING
FOR VOQ SWITCHES

In this section, we first analyze the advantages of two
step iterative matching algorithms. Then, as an example,
we present Two Step Parallel Iterative Matching (PIM2) for
VOQ switches, and theoretically prove that its average con-
vergence iterations are less than ln N + e/(e − 1). Other
generalizations of the two step iterative matching algorithms
are discussed as well in this section.

2.1 Advantages of Two Step Iterative
Matching

For the traditional three step iterative matching, each in-
put port can send up to N requests and receive up to N
grants. Thus, the accept step is necessary for each input port
to choose one grant among the possible N grants. Alterna-
tively, if the arbitration in the accept step is executed before
even sending out requests, so that each input port sends only
one request and correspondingly receives only one grant, the
accept step can be eliminated.

Comparing with the traditional three step algorithms, the
two step iterative matching has some advantages which we
summarize as follows. Firstly, by eliminating the accept step,
the time for one iteration of the algorithm is reduced, and
thus shorter total scheduling time can be achieved. Secondly,
for a two step iterative matching algorithm, the request step
and the accept step are carried out the same way, i.e., to



arbitrate among N items and choose one. This property
enables easier and cheaper implementation of the two step
algorithms. Thirdly, since each input port sends only one
request, the data exchanged between input ports and output
ports are greatly reduced. Especially, since each input port
can get at most one grant, the request step of the next iter-
ation can start immediately after the only grant is received.
While for the three step algorithms, an output port needs to
wait for up to N requests before begins the grant step, and
an input port needs to wait for up to N grants before begins
the accept step.

2.2 PIM2
As an example, we present a two step iterative matching al-

gorithm called Two Step Parallel Iterative Matching (PIM2)
for VOQ switches, which corresponds to the three step al-
gorithm PIM in [3]. Each iteration of the PIM2 algorithm
includes the following two steps:

Request step. Each input port randomly sends a request
to an output port for which it has a buffered packet.

Grant step. An output port randomly grants to one re-
quest among all requests it receives. The output port marks
itself and the corresponding input port as matched.

Similarly, all input ports and output ports are initially un-
matched and only those not matched at the beginning of an
iteration will be considered. The algorithm continues un-
til there is no more matchable input-output pairs. Thus, a
maximal matching has been found.

As in PIM, the request or grant arbitrations of different
input ports or output ports are independent, and therefore
can be done in parallel to accelerate the matching process.
Also, PIM2 makes arbitration decisions on a random basis,
so each input port has equal transmission opportunity, and
fairness is achieved.

2.3 Convergence Property of PIM2
Because of the simplicity, the PIM2 algorithm is easy to

analyze. In this subsection, we discuss its convergence prop-
erty.

One perception to a two step iterative matching algorithm
might be that since an input port sends much less requests
in each iteration, the algorithm may take longer time to con-
verge, which is of course unfavorable for a practical schedul-
ing algorithm. However, our following theoretical analysis
and simulations in Section 4 both show that three step al-
gorithms and two step algorithms have almost identical con-
vergence properties. To understand this, we can view the
three step iterative matching as that in the grant step each
output port selects one input port to “request,” and in the ac-
cept step, each input port selects one output port to “grant.”
Then, three step iterative matching is only different from two
step iterative matching in its extra request step.

In the following analysis, we assume a uniformly distributed
traffic model. We first define some notations to represent the
matching status. An input port is said to be free if it is not
matched, but has buffered packets to an unmatched output
port, and similarly, an output port is free if it is not matched,
but at least one free input has packets to it.

ini: the ith input port;
outj : the jth output port;
qij : the queue of ini that buffers packets to outj ;
fanout(ini) = {outj |outj is free, and qij is not empty};
FreeIn(k) = {ini|ini is free after k iterations};
O(FreeIn(k)) =

�
ini∈F reeIn(k) fanout(ini);

p(k) = min{|FreeIn(k)|, |O(FreeIn(k))|}.
p(k) is the largest possible number of input-output pairs

that still can be matched in the current time slot after k
iterations, and we call it potential.

Lemma 1. After one more iteration, the expected value of
the new potential is 1/e of that before this iteration, i.e.,

E(p(k + 1)) ≤ p(k)

e
Proof. Suppose that after k iterations, |FreeIn(k)| = m
and |O(FreeIn(k))| = n. And assume that, for the average
case, the fanout of a free input port is uniformly distributed
among the rest of the free output ports. Thus, the probability
for a free output outj to receive the request from a free input
ini in the (k + 1)th iteration is

Pr{outj receives a request from ini}

=
|fanout(ini)|

n
× 1

|fanout(ini)|

=
1

n

The first part |fanout(ini)|
n

of the formula is the probabil-
ity that outj is in the fanout of ini, and the second part

1
|fanout(ini)|

is the probability that ini sends the request to

any output port of its fanout. Thus, the probability that
a free output does not receive any request in the (k + 1)th

iteration is

Pr{outj does not receive any request} =

�
1 − 1

n�m

and we obtain

E(|O(FreeIn(k + 1))|)
= |O(FreeIn(k))| × Pr{an output receives no request}

= n ×
�
1 − 1

n�m

In order words, the expected value of the number of free
output ports after the (k + 1)th iteration is n �1 − 1

n �m
.

According to the definition of the potential, p(k) is equal
to the smaller of m and n. In the following, we will discuss
two possible cases.

Case 1: m ≥ n and p(k) = n.
Define f(n) = �1 − 1

n �n
. It has a limit when n goes to

infinity:
lim

n→∞
f(n) = lim

n→∞

�
1 − 1

n�n

=
1

e

and it is easy to verify that for any practical n, say, n ≤ 106,
f(n) ≤ 1

e
. Thus, we can obtain

E(p(k + 1))

≤ E(|O(FreeIn(k + 1))|) = n

�
1 − 1

n�m

≤ n

�
1 − 1

n�n

≤ n

e
=

p(k)

e

Case 2: m < n and p(k) = m.
For m = 1, it is trivial that the algorithm converges after

one more iteration. We consider in the following m ≥ 2.
Since the expected value of the number of input-output

pairs matched in the (k +1)th iteration is n−n(1− 1
n
)m, we

have E(FreeIn(k + 1)) = m − n + n(1 − 1
n
)m.

Define g(x) = m−x+x(1− 1
x
)m −m/e, and g′(x) = −1+

(1− 1
x
)m +(1− 1

x
)m−1 m

x
. Define h(m) = (1− 1

x
)m−1 x+m−1

x
.

When m = 2, h(2) = 1 − 1
x2 < 1 for any x 6= 0; when



m > 2, it is easy to prove by induction that h(m) < h(2) < 1.
Thus, we have g′(x) < 0 for any m ≥ 2. Since g(m) =
m(1 − 1

m
)m − m

e
< 0, we have g(n) < g(m) < 0. In other

words,

m − n + n

�
1 − 1

n�m

≤ m

e

Therefore, we can obtain
E(p(k + 1))

≤ E(O(FreeIn(k + 1))) = m − n + n

�
1 − 1

n�m

≤ m

e
=

p(k)

e

Thus, in each case, we have E(p(k + 1)) ≤ p(k)/e.

Lemma 2. Assume M ≥ N . Then for an N×M or M×N
switch, the expected value of the potential after k iterations
is less than or equal to N/ek, i.e.,

E(p(k)) ≤ N

ek

Proof. We prove it by induction.
Base case: When i = 0, i.e., before any matching has

been done, we have E(p(0)) ≤ N .
Inductive case: Suppose E(p(k)) ≤ N/ek holds. From
Lemma 1, we know that E(p(k + 1)|p(k)) ≤ p(k)/e. Then,

E(p(k + 1)) = E(E(p(k + 1)|p(k)))

≤ E(
p(k)

e
) =

E(p(k))

e

By the inductive hypothesis, E(p(k + 1)) ≤ N
ek+1 .

Define C to be the number of convergence iterations of
PIM2. We have the following theorem regarding the average
value of C.

Theorem 1. Assume M ≥ N . Then for an N × M or
M ×N switch, the average number of convergence iterations
of PIM2 is less than or equal to lnN + e/(e − 1).

Proof. Since the potential is decreased by at least one in
each iteration, it is clear that C is in the range [1, N ]. There-
fore

E(C) =

N�
i=1

i × Pr{C = i} =

N�
j=1

N�
i=j

Pr{C = i}

=
N�

j=1

Pr{j ≤ C ≤ N}

On the other hand,

Pr{j ≤ C ≤ N} =

N−j+1�
k=1

Pr{p(j − 1) = k}

≤
N−j+1�

k=1

k × Pr{p(j − 1) = k}

= E(p(j)) ≤ N

ej

Also, because Pr{j ≤ C ≤ N} ≤ 1, we have

E(C) ≤
N�

j=1

min �1,
N

ej � ≤ ln N +
e

e − 1

2.4 Generalization of Two Step Iterative
Matching

The basic idea of two step iterative matching can be gen-
eralized to other existing three step algorithms as well. For
example, the well known iSLIP algorithm [1] improves upon
PIM [3] by making arbitration based on round robin pointers,
which automatically adapt to different input ports or output
ports under heavy load so that fast scheduling decisions can
be made. As an example, we give the two step version of
iSLIP, which we call iSLIP2, as follows.

Request step. Each free input port sends a request to
the first free output port which appears next to its round
robin pointer and it has buffered packets destined to.

Grant step. Each free output port chooses the request
from the first input port which appears next to its round
robin pointer, and grants it to transmit. For the first itera-
tion of each time slot, the round robin pointers of the newly
matched input port and output port are both incremented
by one (in a modular manner).

Similarly, under heavy load, the round robin pointers of
different input ports or output ports in iSLIP2 also tend
to desynchronize with respect to one another. More impor-
tantly, iSLIP2 does not have any extra “overhead” in this
scenario. In other words, all the N requests are granted,
while in iSLIP N2 requests are sent, but only N of them are
granted and the rest of N(N − 1) are unnecessary overhead.
Thus, iSLIP2 is more efficient in this sense.

The two step iterative matching can also be used to sched-
ule multicast traffic [13]. The crossbar switch can have built-
in capability to simultaneously send a packet from one input
port to multiple output ports to efficiently support multicast
communication. In order to apply two step iterative match-
ing to multicast scheduling, each input port sends requests
to all the destination output ports of its earliest packet, and
each output port also grants to the packet with the small-
est arrival time. Hence, the chance of the earliest multicast
packet in the switch being delivered to all its output ports
in the same time slot is increased. Besides, because all the
requests sent by an input port are for the same multicast
packet, there is no potential transmission conflict. As indi-
cated in [13], the two step multicast iterative matching algo-
rithm has small average convergence iterations and achieves
short multicast latency as well.

For CIOQ switches, scheduling algorithms are required to
run faster in order to make more than one scheduling deci-
sions each time slot within the same scheduling time limita-
tion as that under VOQ switches. Two step iterative match-
ing algorithms can also be efficiently adapted to schedule
packets for CIOQ switches, which we will discuss in detail in
the next section.

3. PIPELINED TWO STEP ITERATIVE
MATCHING FOR CIOQ SWITCHES

In this section, we propose a scheduling scheme, called
Second of Line (SOL) matching, for CIOQ switches with
speedup of two. Different from any specific scheduling al-
gorithm, such as [12], our scheme can efficiently pipeline any
two step iterative matching algorithm, so that two schedul-
ing decisions can be made in each time slot without extra
scheduling time or arbitration hardware requirement.

On VOQ switches, the request step and grant step of a
two step iterative matching algorithm can only be executed
in a sequential manner, as shown in Figure 4. The reason is
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Figure 5: On CIOQ switches, the request step and

the grant step of different matching processes can be

pipelined to fully utilize the arbitration logic.

that only free input ports can send requests in the request
step, but whether an input port is free or not is not known
until the grant step of the previous iteration is completed.
Therefore, the request logic and grant logic are only busy for
a half of the total time and are not fully utilized.

For CIOQ switches with speedup of two, the scheduling
algorithm needs to obtain two matchings in each single time
slot. If the two matchings are arranged in such a way that
the request step of one is coincident with the grant step of
the other, and vice versa, as illustrated in Figure 5, the arbi-
tration logic can be fully pipelined and two matchings can be
obtained within the same scheduling time as in the sequential
case plus an extra step time. As we will see in the simulation
section (Section 4), because of the speedup, the pipelined
algorithms usually have a smaller number of convergence it-
erations, and the two matchings can be obtained within the
same scheduling time limitation as that under VOQ switches.

3.1 HOL Matching and SOL Matching
Because the two matching processes progress simultane-

ously, two “virtual” switches are needed so that each match-
ing can independently work on one of the virtual switches.
This is done by adding lookahead information into each vir-
tual queue. In addition to the head of line (HOL) packet
of each virtual queue, the second of line (SOL) packet is
checked as well. For easy understanding, we can view the
two matchings as being made for the HOL packets and the
SOL packets respectively, as shown in Figure 6. Since the
HOL matching and SOL matching are completely indepen-
dent, each of them does not need to wait for the information
from the other, and they can run in parallel, as long as the
logic needed is idle. To be precise, the HOL matching starts
first. While the HOL matching progresses to the grant step,
as we discussed above, the request logic is idle. Then, the
request step of the SOL matching can start. When the grant
step of the HOL matching is completed, the SOL matching
has also finished its request step. Thus, they can simulta-
neously move to the next steps, and so on. This pipelined
process continues until both the HOL matching and the SOL
matching converge.

It should be noted that although the SOL matching is
based on the SOL packet information, the actually transmit-
ted packets with the SOL matching result are not necessarily
the SOL packets. After the HOL matching is finished, the
crossbar extracts the first packets of all the scheduled virtual
queues and simultaneously transmits them to the scheduled
output ports. After one or more steps, the SOL matching is
done as well, and again, the crossbar simply removes the first
packet from each corresponding virtual queue. The trans-
mission will not introduce any conflict, since the scheduling

algorithms make decisions based on the number of packets
in each virtual queue and do not care about the exact con-
tent of the packets. In this way, the packets of the same
virtual queue are transmitted in their arrival order, and out-
of-sequence delivery is avoided.

3.2 Throughput of Pipelined Two Step
Iterative Matching Algorithms

By using the fluid model theory in [6], it can be shown that
any two step iterative matching algorithm pipelined with the
above proposed scheme achieves 100% throughput for any
admissible traffic.

Use Aij(n) and Dij(n) to denote the number of packet
arrivals and departures at qij up to time slot n, respectively.
Conventionally, Aij(0) = 0 and Dij(0) = 0. Aij(n) satisfies
a strong law of large numbers, i.e.,

lim
n→∞

Aij(n)

n
= λij

where λij is called the arrival rate of qij . A traffic is said to
be admissible if it has no oversubscription at any input port
or output port, i.e.,

∀i,
N�

j′=1

λij′ ≤ 1, and ∀j,
N�

i′=1

λi′j ≤ 1 (1)

Define Zij(n) = Aij(n) − Dij(n), which is the number of

packets in qij at time slot n, and Cij(n) = �N
j′=1 Zij′(n) +

�N
i′=1 Zi′j(n), which is the total number of packets in the

virtual queues of input port ini and in the virtual queues to
output port outj of different input ports. Based on the fluid
model in [6], we have the following lemma.

Lemma 3. For any pipelined two step iterative matching
algorithm on a CIOQ switch with speedup of two, the follow-
ing fluid equation holds

Ċij(t) ≤
N�

j′=1

λij′ +
N�

i′=1

λi′j − 2

whenever Zij(t) > 0.

Proof. By the fluid limit procedure, it is equivalent to show
that, if Zij(n) ≥ 2,

Cij(n + 1) − Cij(n) ≤
N�

j′=1

(Aij′(n + 1) − Aij′(n))

+
N�

i′=1

(Ai′j(n + 1) − Ai′j(n)) − 2

Since Zij(n) ≥ 2, there must be a HOL packet as well as a
SOL packet at qij . Therefore, at least one packet should be
scheduled to transmit either from ini or to outj in both the
HOL matching and the SOL matching. Otherwise, both ini

and outj are free, but the HOL (SOL) packet of qij is not
scheduled in the HOL (SOL) matching, which contradicts the
matching process. Use πij(n) and π′

ij(n) to denote the HOL
and SOL matching results for qij at time slot n, respectively.
For example, if πij(n) = 1, the HOL packet of qij is scheduled
to be sent from ini to outj at slot n in the HOL matching.
Then, according to the above reasoning, we can obtain

N�
j′=1

πij′(n)+
N�

i′=1

πi′j(n) ≥ 1, and
N�

j′=1

π′
ij′(n)+

N�
i′=1

π′
i′j(n) ≥ 1
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matching, the packet delay can be reduced and the throughput of the SOL matching can be improved.

Since for a pipelined algorithm, Dij(n+1)−Dij(n) = πij(n)+
π′

ij(n), we have

N�
j′=1

(Dij′ (n + 1)−Dij′ (n)) +
N�

i′=1

(Di′j(n + 1)−Di′j(n)) ≥ 2

Finally, by the definition of Cij(n), it follows that

Cij(n + 1) − Cij(n)

=
N�

j′=1

(Aij′(n + 1) − Dij′(n + 1))

+
N�

i′=1

(Ai′j(n + 1) − Di′j(n + 1))

−
N�

j′=1

(Aij′(n) − Dij′ (n)) −
N�

i′=1

(Ai′j(n) − Di′j(n))

≤
N�

j′=1

(Aij′(n + 1) − Aij′(n)) +
N�

i′=1

(Ai′j(n + 1) − Ai′j(n)) − 2

Theorem 2. Any pipelined two step iterative matching al-
gorithm on a CIOQ switch with speedup of two achieves 100%
throughput for any admissible traffic.

Proof. By Lemma 3 and the no oversubscription condition
(1), we have

Ċij(t) ≤
N�

j′=1

λij′ +

N�
i′=1

λi′j − 2 ≤ 0

Following the proof of Theorem 2 in [6], it can be shown
that Zij(t) = 0 for almost every t ≥ 0, which means that
the switch is stable. The rest of the proof is omitted in this
paper.

3.3 HOL Rescheduling
By rescheduling the failed HOL packets in the SOL match-

ing, the packet delay can be further reduced. Consider an ex-
treme case, where any virtual queue has at most one packet,
i.e., the HOL packet. In this case, the SOL matching does

not generate any result, because there is no SOL packet.
However, for the HOL matching, at most one HOL packet
will be matched among all the virtual queues of the same
input port or those to the same output port. For the HOL
packets that fail in the competition for the HOL matching,
they can still participate in the subsequent SOL matching
of the same time slot to improve the efficiency of the algo-
rithm. We call the mechanism “HOL rescheduling,” i.e., to
allow failed HOL packets to be rescheduled in the following
SOL matching iterations. An example of HOL rescheduling
is shown in Figure 7. Originally, there are only five SOL
packets. Suppose, at some time, the HOL packet of q11 is
matched in the HOL matching. As a result, all other HOL
packets at the virtual queues of in1 and the virtual queues
to out1 have no chance to be matched in the HOL match-
ing anymore, which we would like to reconsider in the SOL
matching. For q12 and q13, there is no change after HOL
rescheduling, since q12 already has a SOL packet while q13

does not have a HOL packet. But for q14, there is no SOL
packet originally, and therefore the failed HOL packet can
improve the possible matching pairs of the SOL matching.
Similarly, the HOL packet of q31 can participate in the SOL
matching while there is no change to q21 and q41. The side ef-
fect of HOL rescheduling is that the SOL matching may take
more iterations to converge. Fortunately, as can be seen in
the simulations section (Section 4), it only slightly increases
the convergence iterations.

3.4 Hardware Implementation
For a practical scheduling algorithm, easy and efficient im-

plementation is important. As illustrated in Figure 8, the
proposed pipeline scheme can be efficiently implemented in
hardware. Since the HOL matching and SOL matching are
progressing simultaneously, two sets of registers are needed
to keep the input states of the two matchings and another
two sets of registers are needed to store the matching deci-
sions. However, no extra arbitration logic is necessary, since
the two matchings can be pipelined to make fully use of the
single set of hardware. For PIM2 and iSLIP2, their request
and grant arbitrations perform the same operation, and the
arbiters can be efficiently implemented.
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Figure 8: High level diagram of the hardware imple-

mentation of the proposed pipeline scheme.

At the beginning of each time slot, the HOL and SOL in-
put state registers are initialized according to the occupancy
of the corresponding virtual queues. Then, the two sets of
input state registers alternately use the request arbitration
logic to send requests, and the grant arbitration logic will
continuously send matched input-output pairs to the two sets
of matching decision registers in a pipelined manner. The
process goes on until both matchings converge. Finally, the
matching decisions are forwarded to the crossbar as control
signals to transmit the scheduled packets.

4. SIMULATION RESULTS
Extensive simulations are conducted to verify the accuracy

of the convergence iteration analysis in Section 2, and to test
the performance of the pipelined two step iterative matching
algorithms.

We consider both Bernoulli arrival and burst arrival. Bernoulli
arrival is one of the most widely used models in the simula-
tion of scheduling algorithms. With Bernoulli arrival, each
input port has the probability of p to have a new packet to
arrive at the beginning of a time slot. However, in practice,
network packets are usually highly correlated and tend to
arrive in a burst mode. The burst nature can be described
by a Markov process alternating between off and on states.
In the off state, there is no packet to arrive. In the on state,
packets arrive at every time slot and all have the same desti-
nations. At the end of each time slot, the traffic can switch
between off and on states independently. Burst traffic can
be described using two parameters Eoff and Eon. Eoff is
the average length of the off state, or alternatively the prob-
ability to switch from the off state to the on state is 1/Eoff .
Eon is the average length of the on state, or the probability to
switch from the on state to the off state is 1/Eon. Therefore,
the arrival rate is Eon/(Eoff + Eon).

In the simulations, both uniform traffic and non-uniform
traffic (hotspot traffic [14] in our case) are adopted. For
uniform traffic, the destination of a new incoming packet
is uniformly distributed among all the output ports, i.e.,
λij = p/N , where p is the arrival rate. For hotspot traf-
fic, each input port has a “hotspot” output port, which is
the destination of a half of the arriving packets, and the rest
of output ports receive equal amount of packets. In our sim-
ulations, we set λii = p/2 and λij = p/2(N − 1) for i 6= j.
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Figure 9: Comparison of average convergence itera-

tions with different switch sizes.

Each virtual queue of the switch is set to be able to hold
a maximum number of 104 of packets, and each simulation
run lasts for 106 time slots, a half of which is the warmup
period in order to obtain stable statistics.

In the following, we will present the simulation results on
different properties of the algorithms. In the legend of the fig-
ures, we append “-P” to the name of the scheduling algorithm
if it is pipelined, and append “-PH” if HOL rescheduling is
considered.

4.1 Analytical Convergence Result
The convergence property of PIM was analyzed in [3], and

an average number of convergence iterations log2 N + 4/3
was obtained. Since then, log2 N + 4/3 has been commonly
viewed as an estimation of the convergence iterations of iter-
ative matching algorithms [1]. In Section 2, we also proved
that the average number of convergence iterations of PIM2 is
less than lnN + e/(e− 1), which is a smaller number for any
N > 1. We show in the following by simulation that, firstly,
PIM and PIM2 have very similar convergence properties, and
secondly, our analyzed result of the average convergence it-
erations is more accurate, in the sense that it is closer to the
simulated data. As a result, if an iterative matching algo-
rithm is designed to run with a fixed number of iterations,
which is the case for most practical scheduling algorithms,
ln N + e/(e− 1) iterations are sufficient for the algorithm to
converge in most cases.

In the simulations, we consider switch sizes of 16 × 16,
32 × 32, and 64 × 64, all of which have 100% Bernoulli or



burst uniform traffic. We look at the average convergence
iterations of both PIM and PIM2, and compare them with
the analysis results in this paper and in [3].

Figure 9(a) shows the simulations under Bernoulli uniform
traffic. As can be seen, PIM and PIM2 have almost the same
average convergence iterations for all the switch sizes. On the
other hand, our analysis result ln N +e/(e−1) is closer to the
simulation result than the classical one log2 N + 4/3. Figure
9(b) shows the simulation results under burst uniform traffic,
and similar conclusions can be drawn that PIM and PIM2
have almost identical convergence property, and that ln N +
e/(e − 1) is a more accurate estimation. It should be noted
that because of the burst nature, the convergence iterations
of both algorithms are smaller than those under Bernoulli
arrival. This can be explained by the fact that under burst
arrival, within a small time interval, the incoming packets of
an input port are not uniformly distributed among all the
virtual queues. Thus, the convergence occurs earlier.

4.2 Input Queueing Delay
Input queueing delay is the interval from the time that a

packet arrives at its input port to the time it is removed from
the HOL of its virtual queue by the crossbar, i.e., the delay
that a packet experiences in the input side of the switch.

For the rest of the simulations, a 16 × 16 switch is con-
sidered. Figure 10(a) shows the input queueing delay of dif-
ferent algorithms under the Bernoulli uniform traffic. We
notice that the four non-pipelined algorithms, i.e., PIM, iS-
LIP, PIM2, and iSLIP2, have almost the same input queueing
delay. This is consistent with our analysis that two step algo-
rithms and three step algorithms have similar performance.
As can be easily seen, the pipelined two step iterative match-
ing algorithms with speedup greatly shorten the average in-
put queueing delay compared with the non-pipelined algo-
rithms. In addition, with the HOL rescheduling mechanism,
the delay is further reduced. Even under 100% load, the aver-
age input queueing delay for the pipelined PIM2 and iSLIP2
algorithms with HOL rescheduling is less than one time slot,
which means that most packets are immediately transmitted
to their output ports at the same time slot that they arrive.
Thus, we can expect the two algorithms to exhibit similar
performance to an OQ based scheduling algorithm. It is also
interesting to note that, although PIM and iSLIP use differ-
ent arbitration logic, they and all of their variants have very
similar performance.

The simulation results under the burst uniform traffic are
given in Figure 10(b). It is clear that the pipelined algo-
rithms still achieve shorter input queueing delay than the
non-pipelined algorithms. Although the delay of PIM2-PH
and iSLIP2-PH are still shorter than that of PIM2-P and
iSLIP2-P, the HOL rescheduling mechanism is less effective
in reducing the input queueing delay than that under the
Bernoulli uniform traffic. This can be explained by the burst
nature of the traffic. Under burst arrival, the incoming pack-
ets of adjacent time slots have bigger chances to destine to the
same output port. Therefore, if the SOL of a virtual queue is
empty, it is very likely that its HOL is empty as well. Thus
the HOL rescheduling mechanism cannot contribute much in
this situation.

Figure 10(c) and (d) plot the results under the Bernoulli
hotspot traffic and the burst hotspot traffic, respectively.
Similar conclusions can be drawn that the pipelined algo-
rithms greatly reduce the input queueing delay and the HOL
rescheduling mechanism can further lower it. However, since
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Figure 10: Comparison of input queueing delay of

different scheduling algorithms.



the packets are no longer uniformly distributed among all the
output ports, the input queueing delay of the non-pipelined
algorithms increases dramatically when the effective load is
approaching 80%. Especially, under the Bernoulli hotspot
traffic, iSLIP and iSLIP2 saturate earlier than PIM2, and
PIM2 saturates earlier than PIM.

4.3 Transmission Delay
In a similar way, we can define output queueing delay as

the interval from the time that a packet is transmitted by the
crossbar to the output port to the time that it is delivered
to the outline. Then transmission delay is the sum of the
input queueing delay and output queueing delay, or the total
time that a packet stays in the switch. For a VOQ switch,
its packet transmission delay is equal to its input queueing
delay, since packets transmitted to the output ports are im-
mediately delivered to the outline. For an OQ switch, its
input queueing delay is zero, and its packet transmission de-
lay is equal to the output queueing delay. It is known that
OQ switches achieves the shortest average packet transmis-
sion delay. As an ultimate performance benchmark crite-
ria, a simple FIFO scheduling algorithm (OQFIFO) on OQ
switches is also included in the following comparison.

The average transmission delay of the various algorithms
under the Bernoulli uniform traffic is given in Figure 11(a).
We see that the pipelined algorithms achieves shorter delay
than the non-pipelined ones. Furthermore, the transmission
delay of the pipelined algorithms with HOL rescheduling is
almost identical to that of OQFIFO, which has the shortest
transmission delay. Figure 11(b) shows the situation under
the burst uniform traffic. Due to the burst nature, the de-
lay of all the algorithms is larger than that under Bernoulli
arrival. Figure 11(c) and (d) show the results under the
Bernoulli and burst hotspot traffic, respectively. Because the
hotspot traffic is not uniformly distributed, the non-pipelined
algorithms become unstable as the load approaches 80%. On
the other hand, the pipelined algorithms are guaranteed to
achieve 100% throughput.

4.4 Convergence Property
For an iterative matching algorithm, the average number of

convergence iterations is a very important property, since an
algorithm with smaller convergence iterations needs shorter
scheduling time, and can achieve higher speed switching. As
can be seen from Figure 12, all the algorithms use a sim-
ilar number of iterations to converge. Generally, pipelined
algorithms have smaller average convergence iterations than
non-pipelined algorithms, because they find two matchings
in each time slot. The HOL rescheduling mechanism incurs
a slight increase in average convergence iterations. For iS-
LIP and iSLIP2, when the effective load of the Bernoulli
uniform traffic approaches 100%, their convergence itera-
tions decrease due to the round robin pointer desynchronizing
mechanism.

5. CONCLUSIONS
In this paper, we have studied two step iterative matching

algorithms for VOQ switches and CIOQ switches. First, we
analyzed the advantages of the two step iterative matching
algorithms and presented Two Step Parallel Iterative Match-
ing (PIM2) as an example algorithm for VOQ switches. We
theoretically proved that the average number of convergence
iterations of PIM2 is less than ln N + e/(e − 1), and showed
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Figure 11: Comparison of transmission delay of dif-

ferent scheduling algorithms.
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Figure 12: Comparison of convergence iterations of

different scheduling algorithms.

through simulations that it is a more accurate estimation
than the classical result log2 N + 4/3 in [3]. We also pro-
posed a scheme called Second of Line (SOL) matching to ef-
ficiently pipeline two step iterative matching algorithms for
CIOQ switches. The scheme does not require extra arbitra-
tion hardware and can make two scheduling decisions in each
time slot. More importantly, any two step iterative algorithm
pipelined with the proposed scheme is guaranteed to achieve
100% throughput for any admissible traffic. In order to fur-
ther reduce the packet delay, the HOL rescheduling mecha-
nism was proposed to improve the matching chances of the
SOL matching. Extensive simulations were also conducted to
test the performance of different scheduling algorithms. The
simulation results show that the pipelined two step itera-
tive matching algorithms are stable under both uniform and
non-uniform traffic, and the HOL rescheduling mechanism
enables the algorithms to achieve the same packet transmis-
sion delay as an OQ based scheduling algorithm.
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