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ABSTRACT

Multicast enables efficient data transmission from one source
to multiple destinations, and has been playing an important role
in Internet multimedia applications. Although several multicast
scheduling schemes for packet switches have been proposed,
they usually consider only short delay and high throughput but
not bandwidth guarantees. However, fair bandwidth allocation
is critical for the quality of service (QoS) of the network,
and is necessary to support multicast applications requiring
guaranteed performance services, such as online audio and
video streaming. This paper addresses the issue of bandwidth
guaranteed multicast scheduling on virtual output queued
(VOQ) switches. We propose the Credit based Multicast Fair
scheduling (CMF) algorithm, which aims at achieving not only
short multicast latency but also fair bandwidth allocation.
CMF uses a credit/balance based strategy to guarantee the
reserved bandwidth of an input port on each output port of the
switch. It keeps track of the difference between the reserved
bandwidth and actually received bandwidth, and minimizes the
difference to ensure fairness. Moreover, CMF supports multicast
scheduling by allowing a multicast packet to send transmission
requests to multiple output ports simultaneously. As a result,
a multicast packet has more chances to be delivered to all its
destinations in the same time slot, and thus shortens its multicast
latency. Extensive simulations are conducted to compare the
performance of CMF with other existing scheduling algorithms,
and the results demonstrate that CMF achieves the two design
goals: short multicast latency and fair bandwidth allocation.
Keywords: Multicast, fair scheduling, VOQ switch.

I. I NTRODUCTION

Multicast enables data to be efficiently transferred from
one source to multiple destinations, and has been playing an
important role in Internet multimedia applications [1], such
as teleconference, distance learning, and video on demand
services. Although one multicast packet can be handled as
multiple copies of a unicast packet, it is desired that multicast
scheduling and switching are supported at the router/switch
level to save network bandwidth and reduce multicast latency.
In this paper, we consider multicast scheduling on packet
switches. Such a switch can be used as a crossconnect in an
intermediate router or an edge router of a wide area communi-
cation network. It can also provide high speed interconnections

among a group of processors in a parallel and distributed
computing system.

Packet switches can be divided into different categories
based on where the blocked packets are queued. An output
queued switch, as shown in Fig.1(a), buffers packets at their
destination output ports, and is able to achieve 100% through-
put. However, since there is no buffer at the input side, if
multiple input ports have packets arriving at the same time
that are destined to the same output port, all the packets
must be transmitted simultaneously. Therefore, in order for an
N ×N output queued switch to work at full throughput, the
switching speed of the internal fabric and the receiving speed
of the output port must beN times faster than the sending
speed of the input port. This deficiency makes output queued
switches difficult to scale, especially when the switch has a
large number of input ports or the speed of a single input port
increases to gigabit/s [2] [3].

On the contrary, an input queued switch stores blocked
packets at the input side, and therefore gets rid of theN
speedup requirement. The single input queued switch, as in
Fig.1(b), has a first-in-first-out (FIFO) queue at each input port
to store the incoming packets. Because only the packets at the
head of line (HOL) of each input queue can participate in the
scheduling, the packets behind the HOL packet suffer from
the “head of line” blocking, which means that even though
their destination output ports may be free, they cannot be
scheduled to transfer because the HOL packet is blocked. The
HOL blocking severely affects the maximum throughput of
the single input queued switch [4]. An efficient yet simple
buffering strategy to remove the HOL blocking is to adopt the
virtual output queued (VOQ) structure, as shown in Fig.1(c). A
VOQ switch maintainsN logically separate FIFO queues for
buffering packets destined to theN different output ports. The
HOL blocking is eliminated because a packet cannot be held
up by another packet to a different output port. The traditional
VOQ structure buffers packets to different destinations in
different queues. However, since a multicast packet may be
destined to multiple output ports, it has2N − 1 possible
destinations. This means that a VOQ switch for multicast
traffic needs to maintain2N − 1 separate queues at each of
its input ports, which is obviously infeasible, especially for a
largeN .

The combined input output queued (CIOQ) switch, shown
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Fig. 1. Packet switches can be divided into different categories by the location where the blocked packets are buffered. (a) Output queued switch. (b) Single
input queued switch. (c) Virtual output queued switch. (d) Combined input output queued switch.

in Fig.1(d), extends the VOQ switch by adding the speedup
capability to the switching fabric. As a result, an output port
may receive more than one packet in a single time slot, and
needs buffer space to save the extra packets. [22] proves that,
for a CIOQ switch with a speedup of 2, special algorithms
can be designed to precisely emulate an output queued switch
employing a wide variety of scheduling algorithms. However,
because of the high complexity, these algorithms are only
of theoretical interest and are not practical for high speed
implementations at this time.

Due to its efficient hardware implementation, the input
queued switch has been the main focus in the networking
community, and several schemes are proposed to schedule
multicast traffic on the input queued switch, see, for example,
TATRA [5], ESLIP [23], and FIFOMS [7]. Existing multicast
scheduling algorithms usually aim to achieve short delay and
high throughput, without considering fair bandwidth alloca-
tion. In other words, the algorithms are not able to protect
normal users from being affected by ill-behaved users. How-
ever, the quality of service (QoS) has become a main concern
for the design of modern routers/switches, and it is a necessity
in order for the network to provide not only best effort
services but also guaranteed performance services. Bandwidth
guaranteed fair scheduling on shared output links has been
well studied, and a large number of algorithms have been
proposed [9] - [15]. These algorithms can be easily applied to
output queued switches to achieve fair bandwidth allocation,
but as mentioned earlier, output queued switches are expensive
to implement due to the speedup requirement. Therefore, some
efforts [16] [17] [18] have been made to apply these algorithms
to input queued switches mainly for scheduling unicast traffic,
and positive results have been obtained.

The objective of this paper is to design a multicast fair
scheduling algorithm for VOQ switches, to achieve not only
short multicast latency but also fair bandwidth allocation. To
be more specific, we consider anN ×N VOQ switch with a
crossbar as its switching fabric, which has built-in multicast
capability and is able to simultaneously send a packet from
one input port to multiple output ports in the same time
slot. The algorithm should schedule the packets in such a
way that the reserved bandwidth of an input port on each

output port is guaranteed, and multicast packets are efficiently
transmitted with short latency. We assume that the switch
internally operates on fixed length packets in a synchronous
time slot mode. As analyzed in [23], fixed length packet
scheduling has significant advantages over variable length
packet scheduling, and is adopted by most of the implemented
high speed switches, such as Cisco 12000 GSR [23], Tiny
Tera [24], and AN2 [3]. For variable length packets, they can
be segmented into fixed size units upon arrival, transferred
through the switch, and then reassembled into the original
packets before departure.

In this paper, we propose an algorithm calledCredit based
Multicast Fair scheduling (CMF). CMF uses a credit/balance
based strategy to guarantee the reserved bandwidth of an input
port on each output port. It keeps track of the difference
between the bandwidth that an input port receives in the
ideal fairness model and that in the algorithm, and minimizes
this difference to ensure fairness. Moreover, CMF supports
multicast scheduling by allowing a multicast packet to send
transmission requests to multiple output ports simultaneously.
Thus, the multicast packet has more chances to be delivered
to all the destinations in the same time slot, and shortens
its multicast latency. We also conduct simulations under both
multicast traffic and unicast traffic to compare the performance
of CMF with other existing scheduling algorithms, including
multicast scheduling algorithms without bandwidth guarantees
and unicast fair scheduling algorithms. The results demonstrate
that CMF fulfills the design objectives: short multicast latency
and fair bandwidth allocation.

The rest of the paper is organized as follows. Section II
reviews some existing schemes for bandwidth guaranteed fair
scheduling. Section III describes the multicast VOQ structure
associated with the CMF algorithm. Section IV defines an
ideal multicast fair scheduling model based on the output
queued switch, which is used as the reference system. Sec-
tion V presents the Credit based Multicast Fair scheduling
algorithm. In Section VI, we use simulations to evaluate the
performance of CMF. And finally section VII concludes the
paper.



II. RELATED WORK

In this section, we give a brief review of the work that has
been done on the issue of bandwidth guaranteed scheduling
for shared output links and input queued switches.

A. Bandwidth Guaranteed Scheduling on Shared Output Links

A lot of schemes have been proposed for bandwidth guar-
anteed fair scheduling on shared output links, as in the case
that several flows share the same outgoing gateway. These
algorithms can be classified into three types: (1) Time stamp
based. Time stamp based fair schedulers, such asWFQ [9] and
WF 2Q [10], compute time stamps for each packet upon its
arrival, and schedule packets in the order of the computed time
stamps. They usually provide excellent fairness guarantees and
perfectly emulate the ideal fairness models, such as GPS [8].
However, due to the operation to sort packets in the order
of their time stamps, time stamp based schedulers have high
time complexity. (2) Round robin based. The scheduling
principle of round robin schedulers, such asDRR [11] and
SRR[12], is to serve the flows one by one, so that each flow
has equal opportunity of consuming bandwidth. Round robin
based fair schedulers achieve O(1) time complexity, but have
poor delay bounds, as each flow has to wait for all other
flows before transmitting the next packet. (3) Combination of
both. Some recently proposed algorithms, such asBSFQ[13]
and Stratified Round Robin[14], attempt to obtain the tight
delay bound of time stamp based schedulers as well as the
low time complexity of round robin based schedulers. They
usually adopt a basic round robin like scheduling policy plus
time stamp based scheduling on a reduced number of units.
These schedulers improve the time complexity by reducing
the number of items that need to be sorted, but they still have
long worst case delay due to the round robin nature.

By running the algorithm at each output port, the above
algorithms for shared output links can be easily applied to
output queued switches to provide fair bandwidth allocation.

B. Bandwidth Guaranteed Scheduling on Input Queued
Switches

There have also been some attempts to implement band-
width guaranteed fair scheduling on input queued switches.
WPIM [16] improves uponPIM [3] by introducing a band-
width enforcement mechanism to provide probabilistic band-
width guarantees for input-output connections. Based on the
reservation, every input flow is assigned a quota that can be
used in a frame with a constant number of slots, and the
algorithm works by masking out from the matching process
the flows that have consumed their quotas in the current frame.
iFS [17] adaptsWFQ[9], a time stamp based fair scheduler for
shared output links, to VOQ switches. iFS uses a grant-accept
two stage iterative matching method, and uses the virtual time
as the grant criterion so as to emulate the GPS [8] ideal model
at each output port. Similarly,iDRR [18] is the application
of DRR [11], which is a round robin based fair scheduling
algorithm for shared output links, to VOQ switches. iDRR

uses the round robin principle in its iterative matching steps,
and thus is able to make fast arbitration. Also, the feature that
a matched pair can keep the status until the assigned quota is
used up reduces the iterative rounds needed for convergence.

All these algorithms can be used to provide fair bandwidth
allocation for scheduling on VOQ switches. However, none of
them particularly takes multicast traffic into consideration, and
as a result, their performance under mixed multicast/unicast
traffic has the potential to be improved.mFS [17] extends
iFS to schedule multicast traffic. It uses counters to record
the number of transmitted packets to ensure fair bandwidth
allocation. Unfortunately, mFS is built on the traditional VOQ
switch structure. As discussed earlier, the traditional VOQ
switch buffers packets on a per flow basis, and needs to
maintain2N − 1 separate queues at each input port in order
to handle multicast traffic, which is not practical.

III. M ULTICAST VOQ SWITCH

In this section, we describe the multicast VOQ switch
structure that our proposed CMF algorithm is based on. Since
the VOQ switch does not require speedup as the output queued
switch, and also removes the HOL blocking that limits the
maximum throughput of the single input queued switch, it
is the preferred structure for packet switches. However, the
traditional VOQ switch does not suit for multicast traffic. In
the following, we describe a scheme for organizing packets
in the input buffers of a multicast VOQ switch, so that the
number of queues at each input port can be reduced from
exponential (2N − 1) to linear (N ).

In general, the information that a packet carries can be
viewed as including two parts. The first part is the destination
address information, which is used by the switch to make
scheduling decisions, i.e., deciding for each input port when
and which output port its HOL packet should be sent to. The
second part of the information is the payload data, which is the
content to be forwarded to the destination output ports. When
the switch handles only unicast traffic, where the payload data
of a packet need to be sent only once from an input port to a
single output port, it is natural to combine the two parts into
a single unit and use it for both scheduling and transmission.
However, when multicast traffic is involved, a packet may need
to be sent to multiple output ports. Although the destinations
are different, the data content to be sent is the same. Therefore,
there is no need to store multiple copies of the same data
content. A more efficient way would be to store the address
and data content of a packet separately: the data are stored
once and used for all destination addresses of the packet.

Two different types of cells are used to store the two parts
of a packet: the data cell to store the payload content of the
packet, and the address cell to store the destination information
of the packet.

A data cell is created to store the data content when a new
packet arrives at the switch. Its data structure can be described
as follows:

DataCell {



binary payloadData;

int fanoutCounter;

}

The payloadData field stores the data content of a packet.
Since we assume that the switch operates on fixed size packets,
it can be implemented as a fixed size field. The fanoutCounter
field records the number of destination output ports that the
payloadData is going to be sent to. When a packet arrives at
the switch, the fanoutCounter field of its data cell is equal
to the fanout of the packet. As the payloadData is sent to
part or all of the destinations of the packet, the number in
the fanoutCounter field is decremented accordingly. When it
becomes zero, it means that all the destination output ports
have been served, and therefore the data cell can be destroyed
to return the buffer space to the switch.

The address cell stores the destination address information
of a packet. Specifically, an address cell represents one of
the destination output port of the packet, and serves as a place
holder in the virtual output queue corresponding to that output
port. When a new packet with fanoutk enters the switch,k
address cells are created for these destination output ports. The
data structure of an address cell can be described as follows:

AddressCell {

int timeStamp;

pointer pDataCell;

}

The timeStamp field records the arrival time of the packet
that the address cell is related to. The field has extra precision
digits to differentiate the multiple packets of a single input
ports arriving in the same time slot. In such cases, an arbitrary
order is given to these packets by assigning different values to
their extra precision digits. Because all the address cells of the
same packet have the same timeStamp value, it can be used
to identify the address cells that belong to the same multicast
packet. The pDataCell field is a pointer to the data cell that the
address cell corresponds to. When an address cell is scheduled
to transfer, the input port will actually send the payloadData
of the data cell that the address cells pDataCell field points
to.

After explaining the two types of cells used, we now give the
entire picture of the queue structure in a multicast VOQ switch.
In each input port, there is a buffer used to store the data cells,
and there areN virtual output queues to store the address cells
for theN output ports. All the address cells in the same virtual
queue are destined for the same output port, and only the
address cells at the head of the queues can be scheduled. If an
address cell receives the transmission grant from a particular
output port in the scheduling, the crosspoint connecting the
input port with the output port of the address cell will be set,
and the data cell that the address cells pDataCell field points
to will be transferred. After the data are sent, this address cell
is removed from the head of its queue, and the fanoutCounter
field of the corresponding data cell is accordingly decreased
by one.
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Fig. 2. The per flow fair scheduling for packet switches can be decomposed
to two levels: the per port based fair scheduling and the per flow based fair
scheduling.

IV. I DEAL MODEL FORBANDWIDTH GUARANTEED

MULTICAST SCHEDULING

In this section, we define an ideal model for bandwidth
guaranteed multicast scheduling. The model fairly allocates
the available bandwidth of an output port to all the input ports,
and will be used as the reference system for our algorithm.

A. Per Port Scheduling and Per Flow Scheduling

A fair scheduling algorithm can provide fair bandwidth allo-
cation at different granularity. We call it a per port scheduling
algorithm if the input port is the unit of bandwidth allocation,
and call it a per flow scheduling algorithm if the flow is
the unit. For an efficient implementation, the per flow based
fair scheduling for packet switches can be decomposed to
two levels, as show in Fig.2. At the first level, per port
fair scheduling algorithms on switches guarantee that the
transmission capacity of each output port is fairly allocated
to all the input ports. The first level enables each input port
to get its reserved share of bandwidth from a specific output
port. At the second level, the obtained bandwidth is further
divided among different flows of this input port. Existing
techniques for the second level of fair scheduling include fair
scheduling algorithms for shared output links [9] - [15] and
buffer management schemes [19] [20].

As seen in the previous section, the multicast VOQ switch
uses the virtual output queued structure, and organizes address
cells based on their destination output ports without distin-
guishing among flows. Nevertheless, the data cells in the buffer
space still can be arranged on a per flow basis, and buffer
management schemes similar to those in [19] [20] can be used
to assure each flow guaranteed bandwidth. It is interesting
and important to develop buffer management algorithms to
guarantee the reserved bandwidths of multicast flows that share
the same output links, but this is beyond the scope of this
paper. In the following discussion, we focus on the first level
of fair scheduling, i.e., to fairly assign the bandwidth of an
output port to all the input ports.

B. Ideal Model for Per Port Multicast Fair Scheduling

For the convenience of establishing the model, we use the
output queued switch as the underlying structure. When the
input queued switch is considered, the per port fair scheduling
must resolve two types of conflicts: (1) As in the usual
scheduling, when multiple input ports have packets destined



GPS

Input

GPS

Output

Switching fabric (with N speedup)

Fig. 3. The ideal model for per port multicast fair scheduling is based on
the output queued switch, and each output port runs the GPS scheduler to
ensure the fair bandwidth allocation.

to the same output port, only one can be granted to transmit at
each time slot. (2) Further, for fairness guaranteed scheduling,
the available bandwidth of an output port should be fairly
divided among different input ports. On the input queued
switch structure, it is difficult for a scheduling algorithm
to fully satisfy both requirements at the same time. On the
contrary, for the output queued switch, the first requirement
is automatically satisfied, since with theN speedup, even
each input port has a new incoming packet destined to the
same output port, all of them can be transmitted through the
switching fabric in the same time slot. Thus, a per port fair
scheduling algorithm based on the output queued switch only
needs to consider the bandwidth allocation issue.

Fig.3 shows the switch structure of the ideal model for
per port multicast fair scheduling. It is anN × N output
queued switch, and buffers the blocked packets at the output
side using a per input port buffering strategy. In other words,
each output port hasN logic separate queues, so that packets
arriving from different input ports can be placed in different
queues. The crossbar switching fabric of the switch is capable
of N speedup, and thus achieves 100% throughput. Upon the
arrival of a unicast packet, it is immediately transmitted across
the switch and delivered to its destination output port. For a
multicast packet, the packet replication is done by the crossbar,
and the packet is simultaneously sent to all its destinations.

An input port claims partial bandwidth on each output port
as its reservation, and we denote the normalized (with respect
to the total bandwidth of output portj) reserved bandwidth
of input port i on output portj asrij . By the definition,0 ≤
rij ≤ 1, and to avoid overbooking at any input port or output
port, rij satisfies that

∑N−1
j=0 rij ≤ 1 for any 0 ≤ i ≤ N − 1,

and
∑N−1

j=0 rij ≤ 1 for any 0 ≤ j ≤ N − 1.
Each output port of the switch runs a GPS [8] scheduler to

fairly allocate the available bandwidth to all the input ports
according to their reservations. Equivalently, we can view
each input port as having a logically separate and independent
transmission channel at each output port. As a result, perfect
fairness is achieved. Given that input porti1 and i2 have
backlogged packets to output portj during the time interval
(t1, t2], the following equation always holds

Bi1j(t1, t2]
Bi2j(t1, t2]

=
ri1j

ri2j

whereBij(t1, t2] is the amount of bandwidth that input porti
consumes on output portj in the interval(t1, t2]. In the next
section, this model will be used by the CMF algorithm as the
reference system to achieve fair bandwidth allocation.

V. CREDIT BASED MULTICAST FAIR SCHEDULING

In this section, we present theCredit based Multicast Fair
scheduling (CMF)algorithm. CMF works on the multicast
VOQ switch as described in Section III, and aims to efficiently
schedule multicast traffic with bandwidth guarantees. The
main idea for CMF to achieve fair bandwidth allocation is
to track and minimize the difference between the bandwidth
usage of an input port in the above ideal fairness model
and that in the algorithm. On the other hand, CMF supports
multicast scheduling by allowing a multicast packet to send
transmission requests to multiple output ports simultaneously.
Thus, the multicast packet has more chances to be delivered
to all its destinations in the same time slot, and its multicast
latency is shortened.

A. Terminologies

We introduce here some terminologies used to describe the
CMF algorithm.

A slot is the unit of time for the switch to make scheduling
decisions and transmit a batch of packets from input ports to
output ports. Slots are numbered0, 1, 2, . . ., and the switch
starts to run at slot0.

As in the ideal model, thereservationrij(t) is the normal-
ized reserved bandwidth of input porti on output portj at slot
t. It is a function of the time slot index, because the reserved
bandwidth may change at different time slots.

The credit cij(t) is defined to be the usable bandwidth of
input port i on output portj at slot t, i.e.,

cij(t) =

{ rij(t)P
k∈Ij(t) rkj(t)

, if input i has packets to outputj at slot t

0, otherwise

where Ij(t) is the set of input ports that have backlogged
packets to output portj at slot t. In order to make full use
of the available bandwidth, when an input port has no packet
to send to a specific output port, its reserved bandwidth is
reallocated to the rest backlogged input ports proportional
to their reservations, and a GPS [8] scheduler handles the
excessive bandwidth in the same way. Normally,cij(t) does
not need to be recomputed at each time slot, but instead only
when the first new flow starts or the last existing flow ends.

The balancebij(t) of input port i on output portj at slot
t is the actual bandwidth it uses at this time slot. For an
output port, either it is idle at a time slot, or one of the
input ports is scheduled to send a packet through. In the latter
case, the scheduled input port exclusively uses all the available
bandwidth of the output port at this slot, and the rest of the
input ports do not use any bandwidth, thus

bij(t) =

{
1, if input i sends a packet through outputj at slot t

0, otherwise



Since CMF is a bandwidth guaranteed scheduling algorithm,
we define the “accumulated credit” to record the up to date
bandwidth usage.

The accumulated creditAij(t) of input port i on outputj
till slot t is recursively defined as follows

Aij(t) =

{
0, t = 0
Aij(t− 1) + cij(t− 1)− bij(t− 1), t ≥ 1

Aij(t) is the accumulated difference between the reserved
bandwidth and the actually used bandwidth of input porti
on output portj up to slot t. It is also the accumulated
difference between the bandwidth that the input receives in
the ideal fairness model and that in the algorithm, since in the
ideal model, an input port gets exactly its reserved bandwidth.
CMF achieves fairness bandwidth allocation by minimize the
absolute value of the accumulated credit, and thus emulates
the scheduling of the ideal fairness model.

We call (Aij(t)+ cij(t)) the available credit of input porti
on output portj at slot t, which is the amount of bandwidth
input porti can use at output portj at slott without exceeding
its reservation.

B. CMF Algorithm Description

Like most scheduling algorithms [3] [17] [18] [21] on VOQ
switches, CMF is an iterative matching algorithm. An input
port or an output port is said to be matched if it has been
scheduled to send or receive a packet at the current time slot.
Otherwise, it is free. Initially, all the input ports and output
ports are free. After one iterative round finishes, some pairs of
input ports and output ports get matched, and they will not be
considered any more in the future rounds of the current time
slot.

Each iterative round of CMF consists of two steps: (1)
Request step. Address cells at each input port make requests
to their destination output ports for possible transmission.
(2) Grant step. Each output port selects one request from
all the requests it received, and grants the transmission to
the corresponding address cell. However, different from other
three-step iterative algorithms, the accept step is not needed
in CMF, because in our request step, all the address cells that
make requests must point to the same data cell. Therefore,
only one of the data cells in an input port can be granted the
transmission, and there is no potential conflict in which an
input port needs to send more than one data cells in a single
time slot. In an iterative scheduling round, CMF has one fewer
operational step, and less data exchange between input ports
and output ports.

Next, we explain each step of CMF in more detail.
Before the scheduling starts, the accumulated credits of each

input port are initialized to zero (Aij(0) = 0), in the sense that
no input port can pre-own credits.

Request Step.In the request step, if an input port is free,
its earliest HOL address cells with positive available credits
(Aij(t)+cij(t) > 0) send requests to the corresponding output
ports. There may be more than one such address cells in
each input port, which come from the same multicast packet.

Otherwise, if the input port has been matched with one or
more output ports in this time slot, it means that a data cell
has been scheduled to transmit, and therefore, no more address
cells can make requests.

Giving priorities to the address cells with positive available
credits helps CMF to achieve fair bandwidth allocation, i.e.,
firstly satisfying those that have not received enough band-
width. Allowing the address cells of the same multicast to send
requests simultaneously also gives the packet more chances to
be transmitted to all its destinations in short latency.

Grant Step. After the request step, each output port has
collected some requests. Like in the request step, requests with
larger available credits will be given priorities, and each output
port grants the request with the largest available credit.

Similarly, using the available credit as the grant criterion
ensures fair bandwidth allocation. On the other hand, it also
improves the chances that the address cells of the same
multicast packet can simultaneously get grants from multiple
output ports, because an input port normally claims reserved
bandwidth based on its traffic flows, and thus has similar
available credits on the multiple destination output ports of
the same multicast flow.

The iterative rounds of the request and grant steps continue
until no possible matching can be made.

However, at this time, there may still be matchable pairs
of input ports and output ports, but are not matched because
the HOL address cells have negative available credits and are
masked out in the first stage of matching. Similar to WPIM
[16], in order to improve the throughput of the algorithm and
avoid wasting usable bandwidth, a second stage of matching
is executed, which follows the same processes as in the first
stage, except that the HOL address cells do not need positive
available credits to send requests. The second stage matching
will not affect the fairness properties of the algorithm, because
the HOL address cells with positive available credits have
been given priorities in the first stage, and those with negative
available credits only consume the bandwidth that cannot be
used by the former. Even the HOL address cells with negative
available credit get scheduled, their accumulated credit will
become smaller because of the newly generated balance, and
their future chances of being transmitted are further reduced.

Data Transmission. After both stages of matching are
completed, scheduling decisions are generated in the form
of matched input port and output port pairs. Each input port
usually has one data cell to send and may need to send this
data cell to several output ports. On the other hand, each output
port will receive no more than one data cell from an input
port. The corresponding crosspoints connecting the scheduled
input ports and output ports are set, and the input ports
begin to send the data cells. Note that an input port may be
connected to more than one output ports simultaneously. Thus,
the algorithm can fully use the built-in multicast capability of
the crossbar switching fabric.

Post Transmission Processing.When the crosspoints are
set, all the input ports send their scheduled data cells to the



scheduled output ports at the same time. After the transmission
is finished, the accumulated credits of each input port are
updated accordingly,Aij(t + 1) = Aij(t) + cij(t)− bij(t). It
may happen that although several input ports had backlogged
packets to a specific output port, none of them obtained the
chance to transfer due to other conflicts. In this case, the
accumulated credits on this output port remain unchanged, i.e,
Aij(t + 1) = Aij(t). Also, some post processing work needs
to be performed to update the address cells and data cells
that have been transferred. The served HOL address cells are
removed from the heads of their queues, and the fanoutCounter
fields of the related data cells are decreased accordingly. If a
data cell’s fanoutCounter field becomes 0, i.e., it has been
sent to all destination output ports, the data cell is destroyed
to return the buffer space.

VI. SIMULATION RESULTS

We have conducted extensive simulations to compare the
performance of CMF with other scheduling algorithms. The
counterparts we compare CMF against include TATRA [6] and
FIFOMS [7], which are multicast scheduling algorithms but do
not provide bandwidth guarantees. By comparing with them,
we show that CMF is indeed able to guarantee an input port
its reserved bandwidth. The port scheduling versions of iFS
[17] and iDRR [18] are also included in the simulations. These
two algorithms are designed to fairly schedule unicast traffic
on VOQ switches. By comparing with them, we demonstrate
that CMF achieves short multicast latency.

Both pure unicast traffic and multicast traffic are adopted in
the simulations. For a unicast packet, it has equal probability
(1/N ) being destined to each output port. And a multicast
packet has equal probability to go to any possible multicast
destination. In other words, a multicast packet has the proba-
bility of 0.5 to be addressed to each output port. However, if
a packet happens not to be addressed to any output port, it is
regarded as invalid and discarded. Thus, the average fanout of
a multicast packet is0.5×N .

We consider both Bernoulli arrivals and burst arrivals for
unicast traffic and multicast traffic. The Bernoulli arrival is one
of the most widely used models in the simulation of scheduling
algorithms. Under the Bernoulli arrival, each input port has
the probability of p to have a new packet to arrive at the
beginning of a time slot. Therefore, the effective load isp for
the Bernoulli unicast traffic and0.5×N × p for the Bernoulli
multicast traffic.

In practice, network packets are usually highly correlated
and tend to arrive in a burst mode. For a discrete time slot
switch, we generally use a two state Markov process which
alternates between off and on states to describe the burst
nature. In the off state, there is no packet to arrive. In the
on state, packets arrive at every time slot and all have the
same destinations. At the end of each slot, the traffic can
switch between off and on states independently. A burst traffic
can be described using two parametersEoff andEon. Eoff

is the average length of the off state, or alternatively the

probability to switch from the off state to the on state is
1/Eoff . Eon is the average length of the on state, or the
probability to switch from the on state to the off state is
1/Eon. Therefore, the arrival rate isEon/(Eoff + Eon), and
the effective load isEon/(Eoff + Eon) for the burst unicast
traffic and0.5×N×Eon/(Eoff +Eon) for the burst multicast
traffic. For easy comparison, we setEon to be the same value
16 as in [6].

Each simulation runs for a fixed amount of time slots (106),
and there is a sufficient warmup period (50% of the total
simulation time) to obtain stable statistics.

In the following, we present the simulation results on
different properties of the algorithms.

A. Bandwidth Guarantees

CMF minimizes the absolute value of the accumulated
credit to assure the reserved bandwidth of each input port. By
giving priorities to the address cells with more positive avail-
able credits in the scheduling, they are likely to be scheduled
and have balances to reduce the accumulated credits. On the
other hand, those with negative available credits are masked
out from the first stage of matching, and have more chances
to recover the accumulated credits by adding credits of the
current time slot. The following results show that the fairness
mechanism of CMF is effective.

A 4×4 switch is considered, with the following reservation
setting:0

B@
r00 r01 r02 r03

r10 r11 r12 r13

r20 r21 r22 r23

r30 r31 r32 r33

1
CA =

0
B@

0.1 0.2 0.3 0.4
0.2 0.3 0.4 0.1
0.3 0.4 0.1 0.2
0.4 0.1 0.2 0.3

1
CA

Ideally, input port 0, 1, 2, and 3 should receive 10%, 20%,
30%, and 40% bandwidth from output port 0, respectively.
We let each input port have the same traffic load, and observe
the actually obtained bandwidth of each input port. In the
simulation, we assume there is limited buffer space at each
input port and use a simple drop-tail buffer management
strategy.

Fig.4 shows the actually received bandwidth of input port
0, 1, 2, and 3 on output port 0 in CMF. Initially, the load on
each input port (1/4 of the effective load of the switch) is
small, and all the arrived traffic can be totally delivered to the
output port. As the load increases gradually, the switch can
not sustain all the incoming traffic. The fairness mechanism
becomes effective and prevents the input ports with small
reservations from getting more than its reserved bandwidth. As
a result, the actually obtained bandwidth of these input ports
begin to drop. Finally, when the load on each input port goes
beyond 40%, each input port can only get its reserved part of
the bandwidth, which is 10%, 20%, 30%, and 40% respectively
for input port 0, 1, 2, and 3. And the above observation holds
for the Bernoulli multicast traffic (Fig.4(a)), burst multicast
traffic (Fig.4(b)), Bernoulli unicast traffic (Fig.4(c)), and burst
unicast traffic (Fig.4(d)).

Fig.5 describes the situation when FIFMOS is used. Since
FIFOMS does not consider bandwidth guarantees, the to-
tal bandwidth is always equally allocated to all the input



ports. Fig.6 shows the results from TATRA. As can be seen,
TATRA does not provide bandwidth guarantees either, and
its maximum throughput is severely affected by the HOL
blocking, especially under the burst unicast traffic (Fig.6(d)). It
is interesting to note the small difference between the actually
obtained bandwidth of each input port under the Bernoulli
arrivals, as in Fig.6(a) and Fig.6(c), which can be explained
by the fact that TATRA computes the “departure date” in
an increasing order of input port indexes, and therefore the
input ports with smaller indexes are given priorities in the
scheduling.

B. Necessity of the Second Stage of Matching

In order to avoid wasting available bandwidth, CMF adds
a second stage of matching to allow the address cells with
negative available credit to be transmitted.

Fig.7 gives the actually obtained bandwidth of each input
port with only the first stage of matching, under the same
configuration as above. We can see that the bandwidth con-
sumed by each input port is still roughly proportional to
its reservation, which means the fairness mechanism is still
effective. However, the available bandwidth of the output port
is not guaranteed to be fully utilized, and each input port
may get much less bandwidth comparing with the situations in
Fig.4. The results show that the second stage of matching suc-
cessfully increases the maximum throughput of the algorithm,
and also does not affect the original fairness performance.

C. Multicast Latency

In order to show that CMF indeed supports the scheduling of
multicast traffic, we compare the multicast latencies of various
algorithms. The latency of a multicast packet is defined to be
the time interval from the slot that the packet arrives at an input
port to the slot that it is delivered to its last destination output
port. Unicast here is viewed as a special case of multicast with
fanout equal to 1.

To make the results more realistic, a16 × 16 switch is
considered. We assign each input port equal share of reserved
bandwidth, i.e.,rij = 1/16, and tested the average multicast
latency. Fig.8(a) plots the multicast latency of the algorithms
under Bernoulli multicast traffic. As can be seen, the three
multicast scheduling algorithms, achieve much shorter laten-
cies than the two unicast scheduling algorithms, which process
a multicast packet as several copies of independent unicast
packets. To be more specific, TATRA, FIFOMS, and CMF
have almost the same latency when the load is not heavy,
but the performance of TATRA drops dramatically when the
effective load approaches 1 because of the HOL blocking.
FIFOMS and CMF consistently give shorter latency than
iFS and iDRR. Fig.8(b) shows the multicast latency of the
algorithms under burst multicast traffic. Similar observations
can be drawn that CMF and FIFOMS achieve shorter average
multicast latency than iFS and iDRR. Note that since FIFOMS
does not need to be concerned with the fairness property and
works in a pure first-in-first-out manner, its delay under heavy

load is smaller than that of CMF. Also, the HOL blocking
makes TATRA have extremely large delay under heavy load.
It also can be observed that, due to the bursty nature of the
arrivals, the delay of any algorithm under the same effective
load is much larger than that under the Bernoulli multicast
traffic.

Fig.8(c) and Fig.8(d) show the results under Bernoulli
unicast traffic and burst unicast traffic, respectively. Although
specifically designed for multicast scheduling, CMF achieves
short packet delay under pure unicast traffic, and successfully
matches the two unicast scheduling algorithms, iFS and iDRR.
Under unicast traffic, TATRA is more severely affected by the
HOL blocking, and can only achieve a maximal throughput of
about 55%, which is consistent with the theoretical analysis
result of 58.6% in [25].

D. Convergence Rounds

Fig.9 compares the convergence rounds of the four iterative
matching algorithms: CMF, FIFOMS, iDRR, and iWFQ. The
same configuration is used as in testing multicast latency.
We can see that the average convergence rounds of these
algorithms are much smaller thanN (=16). Under light load,
the convergence rounds of all the algorithms are similar and
not sensitive to the increase of the traffic. CMF has small con-
vergence rounds under Bernoulli arrivals, but relatively large
convergence rounds under burst arrivals. Generally, iDRR
requires fewer rounds than others, because at the beginning
of each time slot, the matched pairs of input ports and output
ports can keep their matched status unless the assigned quota
is used up.

VII. C ONCLUSIONS

In this paper, we have proposed the Credit based Multi-
cast Fair scheduling (CMF) algorithm to efficiently schedule
multicast traffic with bandwidth guarantees. The multicast
VOQ switch is adopted as the base of the algorithm. It stores
the address information and the payload data of a packet
separately, which allows an input port to manage only a linear
number of queues for multicast traffic, and at the same time
completely removes the HOL blocking.

CMF is an iterative matching algorithm, with each it-
erative round consisting of the request step and the grant
step. CMF adopts a credit/balance based policy, and defines
the accumulated credit to track the difference between the
reserved bandwidth and the actually consumed bandwidth.
It ensures the fair bandwidth allocation by minimizing the
accumulated credit in the scheduling. At the same time, CMF
supports multicast scheduling by allowing all the address cells
of the same multicast packet to send transmission requests
simultaneously, which increases the chance of this multicast
packet being delivered to all its destinations in the same
time slot, and thus shortens the multicast latency. Extensive
simulations are conducted to evaluate the performances of
CMF by comparing it against other algorithms. And the
results demonstrate that CMF fulfills the design objectives:



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Load on each input port

A
ct

ua
l o

bt
ai

ne
d 

ba
nd

w
id

th
4x4 Switch, Bernoulli Multicast Traffic

Input 0
Input 1
Input 2
Input 3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Load on each input port

A
ct

ua
l o

bt
ai

ne
d 

ba
nd

w
id

th

4x4 Switch, Burst Multicast Traffic

Input 0
Input 1
Input 2
Input 3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Load on each input port

A
ct

ua
l o

bt
ai

ne
d 

ba
nd

w
id

th

4x4 Switch, Bernoulli Unicast Traffic

Input 0
Input 1
Input 2
Input 3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Load on each input port

A
ct

ua
l o

bt
ai

ne
d 

ba
nd

w
id

th

4x4 Switch, Burst Multicast Traffic

Input 0
Input 1
Input 2
Input 3

(a) (b) (c) (d)

Fig. 4. CMF provides bandwidth guarantee. (a) Actually obtained bandwidth under Bernoulli multicast traffic. (b) Actually obtained bandwidth under burst
multicast traffic. (c) Actually obtained bandwidth under Bernoulli unicast traffic. (d) Actually obtained bandwidth under burst unicast traffic.
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Fig. 5. FIFOMS is not able to provide bandwidth guarantee. (a) Actually obtained bandwidth under Bernoulli multicast traffic. (b) Actually obtained
bandwidth under burst multicast traffic. (c) Actually obtained bandwidth under Bernoulli unicast traffic. (d) Actually obtained bandwidth under burst unicast
traffic.
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Fig. 6. TATRA is not able to provide bandwidth guarantee. (a) Actually obtained bandwidth under Bernoulli multicast traffic. (b) Actually obtained bandwidth
under burst multicast traffic. (c) Actually obtained bandwidth under Bernoulli unicast traffic. (d) Actually obtained bandwidth under burst unicast traffic.
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Fig. 7. Without the second stage of matching, CMF cannot make fully use of the available bandwidth. (a) Actually obtained bandwidth under Bernoulli
multicast traffic. (b) Actually obtained bandwidth under burst multicast traffic. (c) Actually obtained bandwidth under Bernoulli unicast traffic. (d) Actually
obtained bandwidth under burst unicast traffic.



0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Effective Load

A
ve

ra
ge

 M
ul

tic
as

t L
at

en
cy

16x16 Switch, Bernoulli Multicast Traffic

CMF
FIFOMS
iDRR
iWFQ
TATRA

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Effective Load

A
ve

ra
ge

 M
ul

tic
as

t L
at

en
cy

16x16 Switch, Burst Multicast Traffic

CMF
FIFOMS
iDRR
iWFQ
TATRA

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Effective Load

A
ve

ra
ge

 M
ul

tic
as

t L
at

en
cy

16x16 Switch, Bernoulli Unicast Traffic

CMF
FIFOMS
iDRR
iWFQ
TATRA

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Effective Load

A
ve

ra
ge

 M
ul

tic
as

t L
at

en
cy

16x16 Switch, Burst Unicast Traffic

CMF
FIFOMS
iDRR
iWFQ
TATRA

(a) (b) (c) (d)

Fig. 8. Comparison of average multicast latency of different algorithms. (a) Average multicast latency under Bernoulli multicast traffic. (b) Average multicast
latency under burst multicast traffic. (c) Average packet delay under Bernoulli unicast traffic. (d) Average packet delay under burst unicast traffic.
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Fig. 9. Comparison of convergence rounds of the four iterative algorithms. (a) Average convergence rounds under Bernoulli multicast traffic. (b) Average
convergence rounds under burst multicast traffic. (c) Average convergence rounds under Bernoulli unicast traffic. (d) Average convergence rounds under burst
unicast traffic.

CMF is able to provide guaranteed bandwidth which most
existing multicast algorithms, such as TATRA and FIFOMS,
do not consider, and CMF outperforms the existing unicast fair
scheduling algorithms, such as iFS and iDRR, by achieving
short multicast latency.
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