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ABSTRACT

With the rapid development of Internet multimedia
applications, the next generation of networks is required
to schedule not only the best effort traffic but also the
traffic with bandwidth and delay guarantees. Currently,
there are two types of fair scheduling algorithms in the
literature. The time stamp based schedulers achieve very
good fairness and delay guarantees but have high O(log N)
time complexity, where N is the number of flows. While the
round robin based schedulers reach O(1) time complexity,
their delay guarantees are O(N). This paper aims at a
fair scheduling algorithm with constant time complexity
as well as good fairness and delay guarantees. We first
present a credit/balance based fair scheduling algorithm
called Most Credit First (MCF). We theoretically prove
that MCF can provide O(log N) fairness, delay and delay
jitter guarantees, and demonstrate experimentally that it
actually can achieve O(1) guarantees. In order to reduce
the O(log N) time complexity of MCF, we further present
a more efficient variant of MCF, called Fast Most Credit
First (FMCF). FMCF achieves O(1) time complexity by
utilizing approximation and synchronization, and at the same
time preserves the O(log N) theoretical fairness, delay and
delay jitter guarantees of MCF. We also implemented MCF
and FMCF in NS2 simulator to compare the end to end
delay performance with other fair scheduling algorithms. Our
experimental results demonstrate that MCF outperforms two
commonly used fair schedulers, and FMCF is able to closely
match the performance of MCF with reduced time complexity.

Keywords: Scheduling, fair scheduling, time stamp scheduler-
s, round robin schedulers, gateways, Generalized Processor
Sharing (GPS).

I. INTRODUCTION

With the rapid development of Internet multimedia applica-
tions, the next generation of networks is required to provide
services of different qualities for various types of traffic with
different performance requirements. Network services can be
broadly classified into two categories: guaranteed performance
services and best effort services. For guaranteed performance
services, resources are reserved for an allocated transmission
rate, and the performance, such as bandwidth, delay and
delay jitter, is bounded within prespecified ranges. Best effort
services, as implied by the name, make use of the available
transmission capacity and try the best to forward user traffic,
but provide no service quality guarantee. The constant bit
rate (CBR) and unspecified bit rate (UBR) services in ATM
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Fig. 1. A fair scheduler considers a gateway with incoming guaranteed
performance flows and best effort flows, and schedules packets in a way that
is able to ensure the requested bandwidths of guaranteed performance flows.

networks [1] belong to the guaranteed performance category
and the best effort category, respectively.

Efficiently scheduling guaranteed performance traffic and
best effort traffic in the integrated service networks is an
important and critical research issue, because the scheduling
algorithms employed by the gateways/routers largely deter-
mine the service quality a network can provide. Ideal fair
scheduling models, such as Generalized Processor Sharing
(GPS) [3], usually consider a gateway (shared output link)
with several incoming links, as shown in Fig. 1. Each link
may include multiple guaranteed performance traffic flows
or best effort traffic flows, and each flow has its (logically)
independent queue to buffer the packets that have not been
transmitted. The traditional FCFS algorithm schedules packets
in the order of the packet arrival time, and is not able to protect
a guaranteed performance flow from being affected by other
ill-behaved flows. On the contrary, a fair scheduler can ensure
a guaranteed performance flow the bandwidth it requests, and
during any time interval the difference between the service
a flow requests and it actually receives is bounded within a
specified range, regardless of the length of the interval.

To design a good fair scheduling algorithm, one must take
into consideration the following properties of the algorithm.
1) Bandwidth guarantee - The scheduler should limit each
user to use only its share of bandwidth, so that ill-behaved
users can be isolated from affecting normal users. 2) Delay
and delay jitter guarantees - The scheduler should also make
the bandwidth guarantee in an efficient way, so that the well-
behaved users can have good and guaranteed delay and delay
jitter performance. 3) Low complexity - In order to be applied
to high speed backbone routers, the scheduler should have
low time complexity, and in most cases, constant complexity
is preferred so that the performance will not degrade as the
number of users increases.

The fair scheduling problem has received a considerable
amount of attention in the networking research communi-
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ty, and several mechanisms have been proposed [3] - [13].
There are generally two types of fair schedulers: time stamp
based and round robin based. Time stamp based schedulers
can achieve good bandwidth and delay guarantees, but have
O(log N) time complexity, where N is the number of flows.
On the other hand, round robin based schedulers have O(1)
time complexity, but can provide only O(N) delay guarantee.

In this paper we aim at designing a new fair scheduling
algorithm with constant time complexity as well as good
fairness and delay guarantees. We will first present a new
fair scheduling algorithm, called Most Credit First (MCF).
Different from the two types of existing fair schedulers,
MCF adopts a credit/balance based policy, and provides the
bandwidth and delay guarantees by tracking and minimizing
the difference between the service a flow should receive in
the ideal fairness model and that it receives in the algorithm.
We will theoretically prove that MCF can provide O(log N)
fairness, delay and delay jitter guarantees, and demonstrate
experimentally that it actually can achieve O(1) guarantees.
In order to reduce the O(log N) time complexity of MCF,
we further present a more efficient variant of MCF, called
Fast Most Credit First (FMCF). FMCF achieves O(1) time
complexity by utilizing approximation and synchronization,
and at the same time preserves the O(log N) theoretical
fairness, delay and delay jitter guarantees of MCF. We also
implemented MCF and FMCF in NS2 simulator to compare
the end to end delay performance with other fair scheduling
algorithms. Our experimental results demonstrate that MCF
outperforms two commonly used fair schedulers, and FMCF
is able to closely match the performance of MCF with reduced
time complexity.

II. RELATED WORK

In this section, we briefly review some fair schedulers in
the literature.

Time stamp based schedulers - A time stamp based sched-
uler computes a time stamp for each packet upon its arrival,
and schedules packets in the order of the computed time
stamps. Weighted Fair Queuing (WFQ) [3] is the first such
time stamp based fair scheduler. It emulates the ideal Gen-
eralized Processor Sharing (GPS) [2] model by computing
a starting service time flag and a finishing service time flag
according to the scheduling effect of this packet in GPS, and
transmitting packets in the increasing order of their finishing
service time flags. Worst-case Fair Weighted Fair Queueing
[4] [5] addresses the service discrepancy between WFQ and
GPS, and achieves “worst case fairness”. Similar to WFQ,
Start-time Fair Queuing [6] associates a start tag and a finish
tag with each packet, but schedules packets in the order of
their start tags, and therefore improves the delay for low
throughput flows. Other variants of WFQ include Self-Clocked
Fair Scheduling [7] and Virtual Clock [8], which do not need
to maintain a reference GPS server and hence can compute
the time stamp in a more efficient way. Time stamp based
fair schedulers are proved to have good fairness and delay
guarantee [14] - [19]. However, because they need to sort

packets in the order of their time stamps, they have at least
O(log N) time complexity, which makes the time stamp based
schedulers not suitable for links with many incoming flows or
very high speed networks.

Round robin based schedulers - The fundamental scheduling
principle of the round robin scheduler is to serve the flows
one by one, so that each flow has equal opportunity being
served. For example, in Deficit Round Robin (DRR) [9], each
flow is assigned a quantum size proportional to its weight,
and has a deficit counter to record the current unused portion
of the allocated bandwidth. A backlogged flow is allowed to
send packets up to the amount of the sum of its quantum and
deficit counter. Once a flow is served, it needs to wait for other
N −1 flows to be served before its next turn, which leads to a
highly burst output for each flow. Smoothed Round Robin [10]
and Uniform Round Robin [11] were proposed to improve the
short term fairness property of DRR. Round robin based fair
schedulers achieve O(1) time complexity, but have poor delay
bounds, usually proportional to N , as each flow has to wait
for all other flows before transmitting the next packet.

Combination of both - Some recently proposed algorithms
attempt to obtain the tight delay bound of time stamp based
schedulers as well as the low time complexity of round robin
based schedulers. They usually adopt a basic round robin
like scheduling policy plus time stamp based scheduling on
a reduced number of units. Bin Sort Fair Queueing [12] puts
each packet into one of the bins according to its virtual time
stamp, and the packets in the same bin are not sorted and
scheduled in a FIFO manner. Thus, each packet is sched-
uled approximately by its virtual time stamp with reduced
sorting cost. Stratified Round Robin [13] groups flows into
flow classes according to their weights, and uses the round
robin approach for inter-class scheduling and the time stamp
approach for intra-class scheduling. Although these schedulers
improve the time complexity by reducing the number of items
that need to be sorted, they still have O(N) worst case delay
due to the round robin nature.

III. AN IDEAL FAIR SCHEDULING MODEL

Before presenting our algorithms, we first explain an ideal
fair scheduling model in this section. As WFQ emulates GPS,
our proposed MCF and FMCF algorithms make scheduling
decisions according to this ideal fairness model.

The model considers a gateway (or a shared output link), as
shown in Fig. 1, of bandwidth Φ with N backlogged incoming
flows F = {f1, . . . , fN}. Among them, one flow, say, f1,
is for best effort services, and others provide guaranteed
performance services. (If there are more than one best effort
flows, they can be grouped into one flow, and their packets can
be buffered in the same queue.) Each guaranteed performance
flow fi (2 ≤ i ≤ N ) reserves a portion of the gateway
bandwidth φi (0 < φi ≤ Φ), and all the best effort traffic
packets are put in a FIFO queue of flow f1 to make use
of the bandwidth left by other flows. To avoid overbooking,
admission control is adopted to make sure

∑N
i=2 φi ≤ Φ. E-

quivalently, for easy representation, we can assign the leftover
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Fig. 2. Each flow has its logically independent transmission channel in the
ideal fairness model. (a) Flow f1, f2 and f3 have separate logical channels.
(b) When flow f2 is idle, its bandwidth is reallocated to f1 and f3 to make
fully use of the available bandwidth of the gateway.

bandwidth 1 −∑N
i=2 φi to f1 as its reserved bandwidth.

In this ideal fairness model, each flow logically has a
separate and independent channel to transfer its packets as
shown in Fig. 2(a), and hence it is straightforward to determine
the transmission of the packets of each flow. For example,
assume that all the packets have the same length l, and a new
packet arrives at flow fi at time t and is placed at the kth

position in the queue. Also assume that at time t, the head of
line packet of fi has not been served. Then the packet will
begin to be served at time t + (k−1)l

φi
and pass the gateway at

time t + kl
φi

.
In the model, a flow is not allowed to accumulate bandwidth

for future use. When a flow temporarily does not have any
packet to transmit, its portion of the logical channel is idle. In
such a case, in order to ensure high throughput and make fully
use of the available bandwidth, the excessive idle bandwidth is
reallocated according to some strategies, as shown in Fig. 2(b),
such that

∑N
i=1 φi = Φ. The reallocation of the excessive

bandwidth can be done in different ways for different purposes.
For example, the excessive bandwidth can be allocated to each
flow proportional to its existing reserved bandwidth. Or, the
excessive bandwidth can be assigned to the best effort service
flow to increase its transmission capacity when the reserved
bandwidth of other flows is guaranteed.

IV. MOST CREDIT FIRST FAIR SCHEDULING

In this section, we present the Most Credit First (MCF) fair
scheduling algorithm. MCF achieves the bandwidth and delay
guarantees by tracking and minimizing the difference between
the bandwidth a flow would receive in the above ideal fairness
model and that it actually uses in MCF.

A. Terminologies and Algorithm Description

In the following discussions, we assume a gateway (or
shared output link) of R bandwidth with N flows F =
{f1, . . . , fN}. All the flow packets have the same fixed size,
and the gateway runs in a time slotted manner. Similar to
the ideal model, in MCF each flow claims a portion of
the bandwidth as its reserved bandwidth by negotiating with
the gateway before transmission. We first introduce some
definitions and properties, and then describe the algorithm.

A slot is a unit of the time for one packet to pass through
the gateway. Slots are numbered 0, 1, 2, . . . , and the gateway
starts to run at slot 0.

The reservation ri(t) of flow fi at slot t is the amount of
bandwidth the flow reserves at this time slot. It is a function
of the time slot index, because the reserved bandwidth of a
flow may change at different time slots. The reservation of a
flow satisfies that 0 < ri(t) ≤ R.

For representational convenience, the total bandwidth of the
gateway can be considered as one unit, and the reserved band-
width of each flow is normalized as a ratio of its reservation
to the total bandwidth of the gateway.

The credit ci(t) of flow fi at slot t is the fraction of the
output bandwidth flow fi reserves at this time slot, i.e., ci(t) =
ri(t)

R , and by the definition of the reservation, we have 0 <
ci(t) ≤ 1.

As in the ideal fairness model, if there is any excessive
idle bandwidth, it is reallocated to avoid wasting available
transmission capacity. Therefore, we have the following full
bandwidth utilization property for normalized credits.

Property 1: If there is at least one backlogged flow, after
the reallocation of the excessive idle bandwidth, the sum of
the credits of all the flows is equal to unit, i.e.,

N∑
i=1

ci(t) = 1 (1)

While “credit” stands for the reserved bandwidth of a flow,
the term “balance” is borrowed to define the actual bandwidth
a flow consumes at a given time slot.

The balance bi(t) of a flow fi at slot t is the actual
bandwidth it uses at this time slot. For a gateway, at each
time slot, either it is idle, or one of the flows is scheduled
to send a packet through the gateway. In the latter case, the
scheduled flow exclusively uses all the available bandwidth at
this slot, and the rest of the flows do not use any bandwidth,
thus

bi(t) =

{
1, if flow fi is scheduled at slot t

0, otherwise

Since MCF is a fairness oriented scheduling algorithm, we
define the “accumulated credit” to record the up to date
bandwidth usage of each flow.

The accumulated credit Ai(t) of flow fi till slot t is
recursively defined as follows

Ai(t) =

{
0, t = 0
Ai(t − 1) + ci(t − 1) − bi(t − 1), t ≥ 1

Ai(t) is the accumulated difference between the reserved
bandwidth and the actually used bandwidth of flow fi up to
slot t. It is initialized to 0 in the sense that no flow can pre-own
credits before the beginning of the scheduling.

On the other hand, the “available credit” defines the usable
credit of a flow at a given slot. It is used as the scheduling
criterion in MCF.

The available credit Vi(t) of flow fi at slot t is the sum of
its accumulated credit and the credit at this slot, i.e., Vi(t) =
Ai(t) + ci(t).

We have the following property regarding the relationship
between the accumulated credit and the available credit.
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TABLE 1

MOST CREDIT FIRST FAIR SCHEDULING ALGORITHM

for each flow fi do {
initialize accumulated credit Ai = 0;

}

while true do {
for each flow fi do {

compute available credit Vi = (Ai = Ai + ci);
}

select a flow, say, fk , with the largest available credit,
Vk ≥ Vi for 1 ≤ i ≤ N ;

flow fk sends a packet through the gateway;
flow fk updates its accumulated credit by Ak = Ak − 1;

}

Property 2: Based on the definitions of the accumulated
credit and available credit, the following equations hold.

Ai(t) =
t−1∑
s=0

(
ci(s) − bi(s)

)
=

t−1∑
s=0

ci(s) −
t−1∑
s=0

bi(s) (2)

Ai(t + 1) = Vi(t) − bi(t) (3)
MCF makes fairness and delay guarantees by restricting

the absolute value of the accumulated credit. Its scheduling
principle is to make the balances of a flow equal to its credits,
in the sense that each flow consumes the same amount of
bandwidth as it reserves. Therefore, MCF grants the flow with
the most available credit to transmit, so that the flow can have
“balance” and reduce its accumulated credit. On the other
hand, the flows that use more bandwidth than they deserve
in the previous slots and have negative available credits are
penalized and not allowed to transmit in order to recover their
accumulated credits.

The most credit first fair scheduling algorithm is formally
described in Table 1. In the initialization stage, the accumu-
lated credit of each flow is set to 0 before the scheduling.
At the beginning of each time slot, each flow computes its
available credit by adding its accumulated credit and the credit
at this slot. Then, one flow is granted to transmit by using the
available credit as the criterion. After the transmission, the
accumulated credit of the scheduled flow is decreased by one.
Since the reserved bandwidth of an idle flow is reallocated,
the flow with the largest available credit, i.e. the scheduled
flow, must be a backlogged flow. We will discuss the issue of
reallocating excessive idle bandwidth in detail in Section VIII.

B. An Example of MCF Scheduling

To help understand how MCF works, we give a simple
scheduling example here. There are three flows f1, f2, and
f3, with fixed credits c1(t) = c1 = 0.1, c2(t) = c2 = 0.2,
and c3(t) = c3 = 0.6. Table 2 gives the scheduling decisions
for the first eleven slots. The available credits in bold are the
largest available credit of each time slot, and the corresponding
flows get scheduled at each slot respectively. It can be seen
that the slots any flow gets scheduled are roughly evenly
distributed, e.g., slots 1, 5, and 8 for flow f2. It is also
interesting to note that after ten slots, each flow consumes the
same amount of bandwidth as it reserves, and the accumulated
credit of each flow goes back to zero, and thus fairness is
achieved.

TABLE 2

A SCHEDULING EXAMPLE OF MCF

f1 f2 f3

ci 0.1 0.3 0.6
Ai(0) 0.0 0.0 0.0
Vi(0) 0.1 0.3 0.6
Ai(1) 0.1 0.3 −0.4
Vi(1) 0.2 0.6 0.2
Ai(2) 0.2 −0.4 0.2
Vi(2) 0.3 −0.1 0.8
Ai(3) 0.3 −0.1 −0.2
Vi(3) 0.4 0.2 0.4
Ai(4) −0.6 0.2 0.4
Vi(4) −0.5 0.5 1.0
Ai(5) −0.5 0.5 0.0
Vi(5) −0.4 0.8 0.6
Ai(6) −0.4 −0.2 0.6
Vi(6) −0.3 0.1 1.2
Ai(7) −0.3 0.1 0.2
Vi(7) −0.2 0.4 0.8
Ai(8) −0.2 0.4 −0.2
Vi(8) −0.1 0.7 0.4
Ai(9) −0.1 −0.3 0.4
Vi(9) 0.0 0.0 1.0

Ai(10) 0.0 0.0 0.0
Vi(10) 0.1 0.3 0.6

C. Bounds on Accumulated Credit

In order to see the fairness performance of MCF, we now
derive bounds for the accumulated credit. From its definition,
we know that the accumulated credit represents the difference
between the service a flow requests and that it actually
consumes. Thus, the range of its value is closely related to
the fairness performance of MCF. First, we have the following
lemma.

Lemma 1: In any single slot interval, the sum of the credits
of all the flows is equal to the sum of the balances of all the
flows, in the sense that the total bandwidth all the flows use
in one time slot is equal to the total bandwidth all the flows
are able to use, i.e.,

N∑
i=1

ci(t) =
N∑

i=1

bi(t)

Proof. Consider two possible cases of the lemma.
Case 1: There is at least one backlogged flow. The full
bandwidth utilization property (1) applies,

∑N
i=1 ci(t) = 1.

On the other hand, since the MCF is work conservative and
there is a backlogged flow, the gateway should be busy at this
slot, and one backlogged flow, say, fk, is granted to transmit
a packet. Thus,

∑N
i=1 bi(t) = bk(t) = 1.

Case 2: There is no backlogged flow. Because MCF does not
allow flows to accumulate credits for future use, the credit of
any flow should be 0, and

∑N
i=1 ci(t) = 0. Also, since there

is no backlogged flow, the gateway must be idle at the slot,
and therefore

∑N
i=1 bi(t) = 0.

Hence, in each case, we have
∑N

i=1 ci(t) =
∑N

i=1 bi(t).
Theorem 1: The sum of the accumulated credits of all the

flows at any time slot is 0, i.e.,
N∑

i=1

Ai(t) = 0

Proof. By the definition of the accumulated credit, it records
the difference between the bandwidth a flow is able to use and
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that it actually uses. For all the N flows of the gateway, the
sum of the difference at any time slot should be zero, which
means that the actual bandwidth used by all the flows is always
equal to the total available bandwidth.

From the non-recursive definition of the accumulated credit
(3) of Property 2,

N∑
i=1

Ai(t) =
N∑

i=1

(
t−1∑
s=0

(
ci(s) − bi(s)

))

=
t−1∑
s=0

(
N∑

i=1

ci(s) −
N∑

i=1

bi(s)

)

And using Lemma 1, we have
∑N

i=1 Ai(t) = 0.
Corollary 1: If there is at least one backlogged flow, the

sum of the available credits of all the flows is 1, i.e.,
N∑

i=1

Vi(t) = 1

Proof. From the definition of the available credit, we have
N∑

i=1

Vi(t) =
N∑

i=1

(
Ai(t) + ci(t)

)
=

N∑
i=1

Ai(t) +
N∑

i=1

ci(t)

If there is at least one backlogged flow, the full bandwidth
utilization property (1) applies. Combining this with Theorem
1, it follows that

∑N
i=1 Vi(t) = 0 + 1 = 1.

The following theorem shows that the accumulated credit
of any flow in MCF is lower bounded by a constant.

Theorem 2: In MCF, the accumulated credit of any flow at
any time slot is greater than or equal to 1

N − 1, i.e.,

Ai(t) ≥ 1
N

− 1 > −1
Proof. Since the accumulated credit of a flow only decreases
after the flow gets scheduled, we only need to consider
scheduled flows when computing the lower bound of the
accumulated credit.

Suppose that flow fk is scheduled at slot t, bk(t) = 1. Thus,
there is at least one backlogged flow at slot t and Corollary
1 applies. Furthermore, according to the scheduling policy, fk

has the largest available credit among all flows at slot t, and
therefore Vk(t) ≥ 1

N . Using (3) of Property 2, we have,

Ak(t + 1) = Vk(t) − bk(t) = Vk(t) − 1 ≥ 1
N

− 1 > −1

Thus, we have proved that the lower bound of the available
credit is 1

N − 1.
The next step is to derive the upper bound of the accumulat-

ed credit. In order to simplify the problem, in the rest of this
section, we assume that each flow is always backlogged and its
credit is kept as a constant ci(t) = ci. While the assumption
does not weaken the generality of the results, it makes the
analysis much easier.

We have an interesting observation from our simulation
experiments (see Table 3 for an example) that the accumulated
credit of any flow is always less than 2. In conjunction with
the above proved lower bound 1

N − 1(> −1), this reveals
a nice property of MCF that the accumulated credit of any
flow is in a constant range and is not sensitive to the increase
of the number of flows. Accordingly, MCF should provide

TABLE 3

EXAMPLES OF MCF FLOW AND CREDIT CONFIGURATIONS AND

CORRESPONDING MAXIMUM ACCUMULATED CREDITS

Max Ac.
N Credit Configuration Cycle Credit

10 c1..10 = 0.1 10 0.9
10 c1 = 0.91, c2..10 = 0.01 102 0.9

c1 = 0.21, c2 = 0.31, c3 = 0.41
10 c4..10 = 0.01 102 1.12
10 c1..2 = 0.46, c3..10 = 0.01 102 1.18
10 c1..3 = 0.31, c4..10 = 0.01 102 1.32
102 c1..10 = 0.091, c11..102 = 0.001 103 1.629
102 c1..20 = 0.046, c21..102 = 0.001 103 1.628
103 c1..10 = 0.0901, c11..103 = 0.0001 104 1.728
103 c1..30 = 0.0301, c31..103 = 0.0001 104 1.826
104 c1..100 = 0.00901, c101..104 = 0.00001 105 1.879
104 c1..200 = 0.00451, c151..104 = 0.00001 105 1.879

c1..1000 = 0.000901
105 c1001..105 = 0.000001 106 1.889

constant fairness and delay performance guarantees. However,
it is difficult to formally prove this constant upper bound.
A simple intuitive explanation is the follows. For a flow
with small credit, once it is scheduled and has a balance,
it needs a long time to recover its accumulated credit to
be scheduled again, and therefore has a small chance to
reach a very large value. For a flow with large credit, its
available credit increases very quickly, and becomes the largest
within a short period. Thus the flow has a big chance to be
scheduled, and the corresponding large balances will prevent
its accumulated credit from reaching too high. Although it
is of course impossible to enumerate all the flow and credit
configurations in MCF, we list in Table 3 several different
cases to give some evidence of this constant upper bound. For
the simulation configurations in the table, after the algorithm
runs for a fixed number of slots, the accumulated credit of each
flow goes back to zero, similar to the case in Table 2, because
the total balances of each flow become equal to its total credits.
Hence, the scheduling has a cycle, and it is possible to obtain
the maximum value of the accumulated credit.

Fortunately, at least we can theoretically derive a looser
O(log N) upper bound for the accumulated credit. The basic
idea is to assume that the maximum value of the accumulated
credit is reached by one flow at a specific slot, and consider
the sum of the accumulated credits of the flows that have been
recently scheduled before that specific time slot. We trace back
by including one more flow into consideration each time, until
finally there is only one flow outside of the set of flows we
are considering. Then, Theorem 2 can be applied to derive the
bound of the maximum value we assumed.

First, we explain the notations to be used in the proof.
s: the time slot that the maximum accumulated credit

reached.
M : the maximum value of the available credit.
F (t, s): the set of flows that are scheduled in the inclusive

time interval [t, s] where t ≤ s. Without loss of the generality,
we assume that flow f1 reaches the maximum accumulated
credit M at slot s. Then, f1 must be scheduled at slot s,
otherwise A1(s + 1) = A1(s) + c1 − b1(s) = M + c1 >
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M . Also assume that the sequence of the flows added into
F (t, s) when considering the sum of the accumulated credits
is f1, f2, . . . , fN . In other words, when we look back from
slot s, f2 is the most recently scheduled flow. For example, if
f2 was most recently scheduled at slot t2(t2 < s) before slot s,
we have F (s, s) = {f1}, F (t2 +1, s) = {f1}, and F (t2, s) =
{f1, f2}. If f3 was most recently scheduled at t3(t3 < t2),
then F (t3 + 1, s) = {f1, f2} and F (t3, s) = {f1, f2, f3}.

T (t, s): the sum of the accumulated credits of all the flows
in F (t, s) at slot t, i.e.,

T (t, s) =
∑

fi∈F (t,s)

Ai(t)

We next introduce some supporting lemmas needed in the
proof of the accumulated credit upper bound.

Lemma 2: Suppose F (t, s) = {f1, . . . , fk} and F (t −
1, s) = {f1, . . . , fk, fk+1} for k ≥ 1. Then,

T (t − 1, s) ≥ k + 1
k

T (t, s) −
k+1∑
i=1

ci

Proof. By the definition of F (t, s) and F (t− 1, s), flow fk+1

was scheduled at slot t− 1. Since Vk+1(t− 1) was the largest
among all available credits at slot t − 1, it should be greater
than or equal to the average of the rest, i.e.,

Vk+1(t − 1) ≥ 1
k

k∑
i=1

Vi(t − 1)

Moreover, since only fk+1 got scheduled, we have bk+1(t−
1) = 1 and bi(t − 1) = 0 for any 1 ≤ i ≤ k, and therefore,
by (3) of Property 2, Vi(t − 1) = Ai(t) − bi(t − 1) = Ai(t).
Thus,

k+1∑
i=1

Vi(t − 1) =
k∑

i=1

Vi(t − 1) + Vk+1(t − 1)

≥ k + 1
k

k∑
i=1

Vi(t − 1) =
k + 1

k

k∑
i=1

Ai(t) =
k + 1

k
T (t, s)

Also, by the definition of available credit, Ai(t−1) = Vi(t−
1) − ci for any 1 ≤ i ≤ k + 1. Therefore,

T (t − 1, s) =
k+1∑
i=1

Ai(t − 1) =
k+1∑
i=1

(
Vi(t − 1) − ci

)

=
k+1∑
i=1

Vi(t − 1) −
k+1∑
i=1

ci ≥ k + 1
k

T (t, s) −
k+1∑
i=1

ci

Lemma 3: Suppose F (t, s) = {f1, . . . , fk} and F (t −
1, s) = F (t, s) = {f1, . . . , fk} for k ≥ 1. Then,

T (t − 1, s) ≥ T (t, s)
Proof. By the definition of F (t, s) and F (t − 1, s), at slot
t − 1, the scheduled flow fj belongs to the set {f1, . . . , fk},
and therefore,

∑k
i=1 bi(t−1) = bj(t−1) = 1. By the recursive

definition of the accumulated credit, we have

T (t, s) =
k∑

i=1

Ai(t) =
k∑

i=1

(
Ai(t − 1) + ci − bi(t − 1)

)

=
k∑

i=1

Ai(t − 1) +
k∑

i=1

ci −
k∑

i=1

bi(t − 1)

= T (t − 1, s) +
k∑

i=1

ci − 1

Since
∑k

i=1 ci ≤ 1 by the full bandwidth utilization property
(1), we obtain T (t − 1, s) ≥ T (t, s).

Lemma 4: Suppose F (s, s) = {f1} and F (t, s) =
{f1, . . . , fk} for k ≥ 1. Then

T (t, s) ≥ k(M + c1) − k

k∑
i=1


ci

k∑
j=i

1
j




Proof. By induction on the number of flows in set F (t, s),
Base case: F (s, s) = {f1}, and T (s, s) = A1(s) = M ≥
(M + c1) − c1.
Inductive hypothesis: Suppose at slot t1, F (t1, s) =
{f1, . . . , fk} and

T (t1, s) ≥ k(M + c1) − k

k∑
i=1


ci

k∑
j=i

1
j




We will prove that if at slot t3(t3 < t1), F (t3, s) =
{f1, . . . , fk, fk+1}, then

T (t3, s) ≥ (k + 1)(M + c1) − (k + 1)
k+1∑
i=1


ci

k+1∑
j=i

1
j




Assume that at slot t2(t3 < t2 ≤ t1), F (t2, s) =
{f1, . . . , fk}, and F (t2−1, s) = {f1, . . . , fk, fk+1}, i.e., flow
fk+1 was scheduled or added into F (t, s) at slot t2−1. Then,
by Lemma 3, T (t2, s) ≥ T (t1, s), and by Lemma 2,

T (t2 − 1, s) ≥ k + 1
k

T (t2, s) −
k+1∑
i=1

ci

≥ k + 1
k

T (t1, s) −
k+1∑
i=1

ci

Using the inductive hypothesis,
T (t2 − 1, s)

≥ k + 1
k


k(M + c1) − k

k∑
i=1


ci

k∑
j=i

1
j




−

k+1∑
i=1

ci

= (k + 1)(M + c1) − (k + 1)
k+1∑
i=1


ci

k+1∑
j=i

1
j




Since F (t3, s) = F (t2 − 1, s) = {f1, . . . , fk, fk+1}, again
by Lemma 3, we have

T (t3, s) ≥ T (t2 − 1, s)

≥ (k + 1)(M + c1) − (k + 1)
k+1∑
i=1


ci

k+1∑
j=i

1
j




0-7803-8968-9/05/$20.00 (c)2005 IEEE



The upper bound on the accumulated credit is given in the
following theorem.

Theorem 3: In MCF, the accumulated credit of any flow is
less than ln N + C, where C is a constant, i.e.,

Ai(t) ≤ ln N + C
Proof. Suppose at slot t, F (t, s) = {f1, . . . , fN−1}, and at
slot t − 1, F (t − 1, s) = {f1, . . . , fN}. By Lemma 4,

T (t, s) ≥ (N − 1)(M + c1) − (N − 1)
N−1∑
i=1


ci

N−1∑
j=i

1
j




On the one hand, since only fN gets scheduled at slot t,
bi(t − 1) = 0 for any 1 ≤ i ≤ N − 1, and by the recursive
definition of the accumulated credit, Ai(t− 1) = Ai(t)− ci +
bi(t − 1) = Ai(t) − ci. Thus,

N−1∑
i=1

Ai(t − 1) =
N−1∑
i=1

(
Ai(t) − ci

)

=
N−1∑
i=1

Ai(t) −
N−1∑
i=1

ci = T (t, s) −
N−1∑
i=1

ci

≥ (N − 1)(M + c1) − (N − 1)
N−1∑
i=1


ci

N−1∑
j=i

1
j


−

N−1∑
i=1

ci

On the other hand, since VN (t − 1) is the largest available
credit at slot t1, from Corollary 1, VN (t−1) ≥ 1

N , and by the
definition of the available credit, AN (t−1) = VN (t−1)−cN ≥
1
N − cN . Applying Theorem 1, we have

N−1∑
i=1

Ai(t − 1) = −AN (t − 1) ≤ cN − 1
N

Combining the above two inequalities, we obtain

(N − 1)(M + c1) − (N − 1)
N−1∑
i=1


ci

N−1∑
j=i

1
j


−

N−1∑
i=1

ci

≤ cN − 1
N

and,

(N − 1)(M + c1) ≤
N∑

i=1

ci − 1
N

+ (N − 1)
N−1∑
i=1


ci

N−1∑
j=i

1
j




Because
∑N

i=1 ci ≤ 1, it follows that

M ≤ 1
N

− c1 +
N−1∑
i=1


ci

N−1∑
j=i

1
j




<
1
N

− c1 +
N−1∑
i=1


ci

N−1∑
j=1

1
j




=
1
N

− c1 +

(
N−1∑
i=1

ci

)N−1∑
j=1

1
j


 <

1
N

− c1 +
N−1∑
j=1

1
j

∑N−1
j=1

1
j is the (n − 1)th harmonic number [20], and

N−1∑
j=1

1
j

= ln N + γ − εN

where γ is the Euler’s constant and there exists a constant K
such that for a sufficiently large N , |εN | < K

N .
Because both the values of 1

N and c1 are bounded (0 <
1
N ≤ 1, 0 < c1 ≤ 1), we can obtain,

M <
1
N

− c1 +
N−1∑
j=1

1
j
≤ ln N + C

where C is a constant.
Now, we summarize the bounds for the available credit of

MCF as follows:
Lower bound: LBMCF = 1

N − 1 (theoretically)
Upper bound: UBMCF = 2 (experimentally), and

= ln N + C (theoretically)
It should be mentioned that although the theoretical O(log N)
upper bound is good enough, as can be seen, it is quite loosely
proved, and thus MCF can be reasonably expected to have
better performance than the bound.

V. FAST MOST CREDIT FIRST FAIR SCHEDULING

As mentioned in the introduction section, low time com-
plexity is a requirement for a good fair scheduling algorithm.
Although MCF exhibits good fairness guarantee by the tight
bounds of the accumulated credit as shown in the last section,
it still has the same time complexity as most time stamp based
schedulers. That is, the time complexity of MCF is O(log N),
where N is the number of flows, since it needs to find the flow
with the largest available credit at each scheduling time slot.
In order to reduce the time complexity of the algorithm and
make it more practical to implement, in this section we further
propose an efficient approximation of MCF, called Fast Most
Credit First (FMCF).

The basic idea of FMCF is to use approximation to achieve
the simplicity of the operations. In FMCF, the scheduled
flow does not need to have the largest available credit. On
the contrary, its available credit could be g less than the
largest available credit, where g is the granularity of the
approximation. Its value affects the performance of FMCF,
and usually a smaller value of g leads to a closer match to
MCF. In order to achieve the approximation, � 2+g

g � “holes”
are used in FMCF, as shown in Fig. 3. Each hole can hold
only one flow whose available credit is in a specific range.
Let lastV denote the available credit of the scheduled flow at
slot t − 1. Then a flow with its available credit satisfying

lastV − 1 + (u − 1)g < Vi(t) ≤ lastV − 1 + ug

at slot t can be placed into the uth hole.
Table 4 gives the pseudo code description of FMCF, and the

details are explained as follows. At the beginning of each time
slot, all the holes are set to empty (i.e., hole[j] = −1). After
each flow computes its available credit, it tests if the hole
(hole[�Vi−lastV +1

g �]) corresponding to its available credit is
free (i.e., hole[�Vi−lastV +1

g �] == −1), and if yes, fills the
hole with itself by setting hole[�Vi−lastV +1

g �] = i. Theorem
4 assures that at least one hole must be filled at each slot. It
also should be noted that it is possible that the available credits
of several flows are in the range (lastV − 1, lastV + 1 + g],
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lastV−1

lastV−1+g

lastV−1+2g
hole[2]:

hole[1]:

hole[u]:
lastV−1+(u−1)g

lastV−1+ug

lastV−1+           g

lastV−1+(           −1)g
−1

−1

−1

i

Fig. 3. � 2+g
g

� “holes” are used in FMCF to achieve approximation. Each
hole can hold only one flow whose available credit is in a specific range.

TABLE 4

FAST MOST CREDIT FIRST FAIR SCHEDULING ALGORITHM

for each flow fi do {
initialize accumulated credit Ai = 0;

}

lastV = 0;

while true do {
for (j = 1; j ≤ � 2+g

g
�);+ + j) {

hole[j] = −1;
}

for each flow fi do {
compute available credit Vi = (Ai = Ai + ci);
if (hole[�Vi−lastV +1

g
�] == −1)

hole[�Vi−lastV +1
g

�] = i;
}

k = −1;
for (j = 1; j ≤ � 2+g

g
�);+ + j) {

if (hole[j] �= −1) k = hole[j];
}

flow fk sends a packet through the gateway;
lastV = Vk;
flow fk updates its accumulated credit by Ak = Ak − 1;

}

and there are more than one filled holes. The next step is to
select the flow with the largest available credit from the filled
holes, grant it to transmit a packet, and assign its available
credit value to lastV for the next slot scheduling. At the end,
the accumulated credit of the scheduled flow is decreased by
one as in MCF.

The correctness of FMCF is guaranteed by the following
theorem.

Theorem 4: In FMCF, if the available credit of the sched-
uled flow at each time slot is at most g less than the maximum
available credit at that slot, then the maximum available credit
is in the range (lastV − 1, lastV + 1 + g], where lastV is
the available credit of the flow scheduled at the previous time
slot.
Proof. Suppose that at slot t − 1, flow fj has the largest

available credit, Vj(t − 1) ≥ Vi(t − 1) for any 1 ≤ i ≤ N ,
and fk gets scheduled. By the definition of lastV , lastV =
Vk(t − 1) for slot t, and Vk(t − 1) is at most g less than
Vj(t − 1), i.e., lastV + g ≥ Vj(t − 1).

Also, suppose that at slot t, flow fl has the largest available
credit, Vl(t) ≥ Vi(t) for any 1 ≤ i ≤ N . Next, we prove that
lastV − 1 < Vl(t) ≤ lastV + 1 + g.

On the one hand, since bj(t − 1) ≤ 1, we have
Vl(t) ≥ Vj(t) = Vj(t − 1) − bj(t − 1) + cj(t)

≥ Vj(t − 1) − 1 + cj(t)

And by Vj(t − 1) ≥ Vk(t − 1), it follows that
Vl(t) ≥ Vk(t−1)−1+cj(t) = lastV −1+cj(t) > lastV −1

On the other hand, since bl(t − 1) ≥ 0, we can obtain
Vl(t) = Vl(t − 1) − bl(t − 1) + cl(t) ≤ Vl(t − 1) + cl(t)

Using the fact that Vl(t − 1) ≤ Vj(t − 1) and Vj(t − 1) ≤
lastV + g, we have
Vl(t) ≤ Vj(t−1)+ cl(t) ≤ lastV +g + cl(t) ≤ lastV +g +1

In addition, we need to show that the precondition of the
theorem, that the available credit of the scheduled flow is at
most g less than the maximum available credit, is always
guaranteed by FMCF. Since the range of available credits
of all the holes is (lastV − 1, lastV − 1 + � 2+g

g �g], and
lastV − 1 + � 2+g

g �g ≥ lastV + 1 + g, from the above
proof, we know that the available credit of fl must be in
the corresponding range of one of the holes, say, hole[u]. If
hole[u] is filled by fl, there is no doubt that fl is scheduled
at slot t, because it has the largest available credit. Then the
precondition holds. If hole[u] is filled by another flow, say,
fm, then fm is scheduled at slot t, because all the holes with
greater corresponding ranges must be empty. Since fm and
fl belong to the same hole, the difference of their available
credits must be less than g.

The holes can be implemented by synchronization locks
available in most operating systems. At the beginning of
each slot, every lock is free. A flow tests if the lock is free
before grabs it. If the lock is free, the flow sets the lock, and
thereafter this lock is no longer available to other flows. Due to
the approximation mechanism and the synchronization locks,
FMCF only needs to compare at most � 2+g

g � flows in the filled
holes, and � 2+g

g � is a constant when g is fixed. Therefore, the
time complexity of FMCF is reduced to O(1).

Note that although with reduced complexity, FMCF still has
an equivalent available credit range as MCF:

Lower bound: LBFMCF = 1
N − g − 1.

Upper bound: UBFMCF = (1 + g) ln N + C ′

which we summarize into the following theorems.
Theorem 5: In FMCF, the accumulated credit of any flow

at any time slot is greater than or equal to 1
N − 1 − g, i.e.,

Ai(t) ≥ 1
N

− g − 1
Proof. It is easy to see that although the scheduling policy
has been changed, Theorem 1 and Corollary 1 still apply to
FMCF. The proof is similar to that of Theorem 2. Suppose
that at slot t, flow fj has the largest available credit and flow
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fk is scheduled. We have fj ≥ 1
N by Corollary 1, bk(t) = 1

by the definition of balance, and Vk(t) ≥ Vj(t) − g by the
scheduling principle of FMCF. Thus,

Ak(t + 1) = Vk(t) − bk(t) = Vk(t) − 1

≥ Vj(t) − g − 1 ≥ 1
N

− g − 1

Theorem 6: In FMCF, the accumulated credit of any flow
at any time slot is less than (1 + g) ln N + C ′, where C ′ is a
constant, i.e.,

Ai(t) < (1 + g) ln N + C ′

To prove Theorem 6, we need the following variants of Lemma
2 and Lemma 4 (Lemma 3 still holds for FMCF). All the
variables used below have the same meaning as in Section
IV.

Lemma 5: Suppose F (t, s) = {f1, . . . , fk} and F (t −
1, s) = {f1, . . . , fk, fk+1} for k ≥ 1. Then,

T (t − 1, s) ≥ k + 1
k

T (t, s) −
k+1∑
i=1

ci − g

The proof is similar to that of Lemma 2 and omitted.
Lemma 6: Suppose F (s, s) = {f1} and F (t, s) =

{f1, . . . , fk} for k ≥ 1. Then,

T (t, s) ≥ k(M + c1 + g) − k
k∑

i=1


ci

k∑
j=i

1
j


− kg

k∑
j=1

1
j

The proof is similar to that of Lemma 4 and omitted.
We now prove Theorem 6.

Proof. Suppose that at slot t, F (t, s) = {f1, . . . , fN−1}, and
at slot t − 1, F (t − 1, s) = {f1, . . . , fN}. By Lemma 6,

T (t, s) ≥ (N − 1)(M + c1 + g)

− (N − 1)
N−1∑
i=1


ci

N−1∑
j=i

1
j


− (N − 1)g

N−1∑
j=1

1
j

and, N−1∑
i=1

Ai(t − 1) = T (t, s) −
N−1∑
i=1

ci

≥ (N − 1)(M + c1 + g) − (N − 1)
N−1∑
i=1


ci

N−1∑
j=i

1
j




− (N − 1)g
N−1∑
j=1

1
j
−

N−1∑
i=1

ci

Also, since VN (t − 1) ≥ 1
N − g, by Theorem 1,

N−1∑
i=1

Ai(t − 1) = −AN (t − 1) ≤ cN − (
1
N

− g)

Combining the above two inequalities and using the full
bandwidth utilization property (1), we obtain

(N − 1)(M + c1 + g) − (N − 1)
N−1∑
i=1

(ci

N−1∑
j=i

1
j
)

− (N − 1)g
N−1∑
j=1

1
j
−

N−1∑
i=1

ci ≤ cN − (
1
N

− g)

Hence, M < 1
N −c1−g+(1+g)

∑N−1
j=1

1
j ≤ (1+g) ln N+C ′.

VI. FAIRNESS, DELAY AND DELAY JITTER MEASURES

In the previous sections, we have obtained the bounds on
the accumulated credit for MCF and FMCF. In this section, we
will analyze the fairness, delay and delay jitter properties by
considering their relationship to the range of accumulates cred-
its. As will be seen, MCF and FMCF can provide O(log N)
fairness, delay and delay jitter guarantees.

A. Fairness

There are two commonly used fairness measures in the
literature: Golestani measure [7] and Bennet-Zhang measure
[4]. While the former compares the relative amount of service
received by two different flows, the latter compares the abso-
lute amount of service a flow would receive in the ideal model
and the service it receives in the designed algorithm. In this
paper we adopt the more accurate Bennet-Zhang measure for
analyzing the fairness property of MCF and FMCF.

We have the following theorem regarding the fairness prop-
erties of the two algorithms.

Theorem 7 (Fairness guarantee): During any time interval,
the difference between the service a flow would receive in
MCF or FMCF and that in the ideal fairness model is bounded
by

1
N

− 1≤ service difference in MCF < ln N + C or,

1
N

− g − 1≤ service difference in FMCF < (1 + g) ln N + C ′

Proof. By the definitions of credit and balance, credit ci(t)
is the bandwidth flow fi would receive at slot t in the ideal
model, and balance bi(t) is the bandwidth fi actually uses at
slot t in MCF or FMCF. Therefore, the accumulated credit is
exactly the service difference, and the bounds of the available
credit are also the bounds of the service difference.

B. Delay

Besides fairness, packet delay is another important perfor-
mance measure for a practical fair scheduling algorithm. The
delay of a packet is the time interval from the slot when a
packet enters the queue of its flow to the slot it is sent through
the gateway. The following theorem gives the packet delay of
MCF and FMCF.

Theorem 8 (Delay guarantee): The packet delay of flow fi

in MCF or FMCF is bounded by

max
{

0,
1
N − 1 − ln N − C + k

ci

}

< packet delay in MCF <
ln N + C − 1

N + 1 + k

ci
or,

max
{

0,
1
N − g − 1 − (1 + g) ln N − C ′ + k

ci

}
< packet delay in FMCF

<
(1 + g) ln N + C ′ − 1

N + g + 1 + k

ci

where k is the position of the packet when it enters the queue
of fi.
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Proof. The proof for FMCF is similar to that for MCF, and
we use LB and UB to represent the lower bound and upper
bound respectively, of the available credit in MCF or FMCF.

Suppose that a packet of flow fi arrives at slot t1 is placed
at the kth position of the queue, and leaves the gateway at slot
t2. Then, by (3) of Property 2,

Ai(t2 + 1) − Ai(t1 + 1) = C − B

where C is the sum of the credit in the inclusive interval
[t1 + 1, t2], C = (t2 − t1) × ci, and B is the sum of the
balances in the same interval, B = k. Thus,

(t2 − t1) × ci − k = Ai(t2 + 1) − Ai(t1 + 1)

LB − UB + k

ci
< t2 − t1 <

UB − LB + k

ci

Since the packet delay is always greater than 0, the low bound
should be adjusted to max

{
0, LB−UB+k

ci

}
. Replacing LB

and UB with the actual bounds of MCF or FMCF, we obtain
the above results.

C. Delay Jitter

In the ideal fairness model, after a packet enters the queue
of the flow, its departure time can be accurately predicated
because each flow has a logically separate and independent
transmission channel. When a practical scheduler is used, the
scheduling sequence cannot be predetermined, and therefore
the time from the packet enters the queue until it leaves the
gateway may vary from packet to packet. Delay jitter describes
the fluctuation of transmission time of packets, and is defined
as the difference between the delay of a packet in MCF or
FMCF and the delay in the ideal fairness model.

Theorem 9 (Delay jitter guarantee): The delay jitter of any
packet of flow fi is in MCF or FMCF is bounded by

1
N − 1 − ln N − C

ci
< delay jitter in MCF

<
ln N + C − 1

N + 1
ci

or,

1
N − g − 1 − (1 + g) ln N − C ′

ci
< delay jitter in FMCF

<
(1 + g) ln N + C ′ − 1

N + g + 1
ci

Proof. The proof for FMCF is similar to that for MCF, and
again we use LB and UB to represent the lower bound and
upper bound respectively, of the available credit in MCF or
FMCF.

Suppose a packet of flow fi arrived at slot t1 is placed at
kth position of the queue, and leaves the gateway at slot t2.
Then, in the ideal model, t2 − t1 = k

ci
. And by the definition,

delay jitter = packet delay − k

ci

Applying Theorem 8,
LB − UB

ci
< delay jitter <

UB − LB

ci

Replacing LB and UB with the actual bounds of MCF or
FMCF, we obtain the above results.
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N N N N N

N

1 2 3 4 5
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M M

1

2 3

Fig. 4. The network configuration of the simulation experiments.

VII. SIMULATION RESULTS

We implemented MCF and FMCF in NS2 simulator [21]
to compare the end to end delay of the algorithms with
other fair scheduling algorithms. For FMCF, we have several
different implementations with different granularity value g to
see its effect to the performance of the algorithm. Two existing
algorithms, WFQ [3] and DRR [9], are compared.

As mentioned in Section II, WFQ belongs to the category of
time stamp based fair scheduling algorithms. Although WFQ
has good performance in fairness and delay guarantee, its time
complexity is O(log N), and therefore is impractical for a
large number of flows. As will be seen, compared to WFQ,
our simulation results demonstrate that MCF has better end
to end delay with the same complexity, and FMCF achieves
comparable performance with constant complexity.

DRR is a round robin based fair scheduling algorithm, as
implied by its name. Because of the round robin nature, the
time complexity of DRR is O(1), but its delay guarantee is
O(N). Compared to DRR, we demonstrate that FMCF has
much better performance even with the same complexity.

The network configuration of our simulation experiment is
shown in Fig. 4. There are eleven nodes, N0 to N6 and M0

to M3. The duplex links N0N1, N1N2, N4N5, N5N6, M0N1,
M1N2, M2N4, and M3N5 have bandwidth of 700K bps and
delay of 1ms, and the duplex links N2N3 and N3N4 have
bandwidth of 1M bps and delay of 2ms. We tested the end to
end delay of eleven CBR flows from N0 to N6 with reserved
bandwidth from 5K bps to 105K bps in an increment step
of 10. The eleven CBR flows behave properly and generate
data in the rates equal to their reserved bandwidths. In order
to congest the network, we also added three other CBR flows
from M0 to M3, from M0 to M2, and from M3 to M1. All the
three ill-behaved flows have traffic rate of 100K bps, but are
only assigned reserved bandwidth of 10K bps. The excessive
bandwidth of a link is allocated to each flow proportional to
its reserved bandwidth.

The comparison of the average end to end delay is shown in
Fig. 5(a). Since the curves of MCF and FMCF in Fig. 5(a) are
very close, we give a more detailed view in Fig. 5(b) to show
the differences. It can be seen that MCF outperforms both
WFQ and DRR. The performance of FMCF with g = 0.1 is
almost identical to that of MCF, while it achieves O(1) time
complexity. When the approximation granularity g of FMCF
becomes larger, the average end to end delay of the flows with
small reserved bandwidth decreases while that of the flows
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TABLE 5

VARIANT OF MCF FOR SCHEDULING VARIABLE LENGTH PACKETS

for each flow fi do {
initialize accumulated credit Ai = 0;

}

while true do {
find a flow, say, fk , with the largest accumulated credit,

Ak ≥ Ai for 1 ≤ i ≤ N ;
flow fk sends a packet with length l through the gateway;

for each flow fi do {
update accumulated credit by Ai = Ai + ci × l;

}

flow fk updates its accumulated credit by Ak = Ak − l;
}

with large reserved bandwidth increases. The reason is that
the flows with small reserved bandwidth have better chances
to be scheduled because of the approximation. Even when
g = 1, which means that FMCF needs only � 2+g

g � = 3 holes
and is cheaply implementable, its performance is comparable
to WFQ and much better than DRR. However, in WFQ, as the
reserved bandwidth decreases, the average end to end delay
increases dramatically. The reason is that WFQ schedules
packets in the order of their leaving time in the ideal model,
and if two packets with the same size arrive at the same
time, the packet of the flow with smaller reserved bandwidth
leaves the gateway later. We observe that the flows with
different reserved bandwidths under DRR have roughly the
same average delay. This is because that the scheduling runs
in a round robin mode, and each flow has to wait for a full
cycle before sending packets.

The maximum end to end delay comparison is shown in Fig.
5(c). The result is similar to that of the average delay. MCF
outperforms WFQ and DRR, and FMCF closely matches MCF
with lower time complexity. WFQ favors large bandwidth
flows, while DRR is not sensitive to the reserved bandwidth
of a flow.

VIII. SOME DISCUSSIONS

In this section, we discuss some issues related to the gen-
eralizations of MCF and FMCF and the excessive bandwidth
processing in MCF and FMCF.

A. Generalization to Variable Length Packet Scheduling

Until now, we have only discussed the scheduling of fixed
length packets. However, MCF (or FMCF) can also be easily
adapted to apply to variable length packets, as described in
Table 5. The only modifications are to use the accumulated
credit instead of the available credit as the selection criterion,
and to scale the effective credit and balance by a factor of the
length of the transmitted packet.

B. Dealing with Excessive Bandwidth

When a flow temporarily does not have packets to send,
its reserved bandwidth cannot be utilized. We call the unused
bandwidth of an idle flow the excessive bandwidth. In our
earlier analysis, we assume that the available bandwidth of

the gateway is fully utilized. Therefore, when the sum of the
credit of a flow and its accumulated credit is larger than the
queue length, i.e., Ai(t) + ci(t) > queue length, we need to
adjust the credit c′i(t) = queue length−Ai(t), so as to let the
flow have the exact amount of available credit to transmit its
packets. And the excessive bandwidth should be reallocated
to fully utilize the potential transmission capacity.

In fact, MCF or FMCF (with a slight modification of putting
a flow fi with Vi(t) > lastV −1+g×� 2+g

g � into hole[� 2+g
g �])

can work well without reallocating the excessive bandwidth,
since they have the property of self-converge. It is possible
that an idle flow temporarily may accumulate some credit,
and a flow with negative available credit may continue to
consume the bandwidth and decrease the accumulated credit
further. However, as soon as the idle flow becomes backlogged
again, it will consistently gets scheduled and its accumulated
credit will decrease accordingly due to its large accumulated
credit. On the contrary, those flows with negative accumulated
credits will not be allowed to transmit, so as to recover their
accumulated credits. This way, the accumulated credits of both
types of flows are heading towards zero.

Even the excessive bandwidth is to be reallocated, it can
be done in O(1) time. For example, a simple way is to
assign credit only to the guaranteed performance flows (fi, i �=
1) corresponding to their requested bandwidth, and not to
give the best effort service flow f1 any credit. Accordingly,
the guaranteed performance flows are given higher priority
and are scheduled as long as they have positive available
credits. Only when all the guaranteed performance flows have
negative available credits, the best effort flow can be sched-
uled. Therefore, all the excessive bandwidth is automatically
assigned to the best effort flow, while other flows also receive
guaranteed services. And this approach requires only constant
time complexity.

IX. CONCLUSIONS

In this paper, we have proposed a new fair scheduling
algorithm, Most Credit First (MCF). MCF emulates the ideal
fairness model by tracking the bandwidth usage difference
between that a flow would receive in the ideal model and that it
actually receives in MCF. MCF exhibits nice O(1) fairness and
delay guarantees in simulations, and has theoretical O(log N)
performance guarantees. In addition, to further lower the time
complexity of MCF, we proposed an approximation algorithm
of MCF, Fast Most Credit First (FMCF). By utilizing ap-
proximation and synchronization techniques, FMCF achieves
O(1) time complexity, and at the same time preserves the
theoretical O(log N) performance guarantees of MCF. We also
analyzed the fairness, delay and delay jitter properties of MCF
and FMCF by considering their relationship to the range of
the accumulated credit. We implemented MCF and FMCF in
NS2 simulator to compare their end to end delay with other
existing fair scheduling algorithms. Our experimental results
demonstrate that MCF outperforms WFQ and DRR in the end
to end delay performance, and FMCF successfully matches
the performance of MCF with constant time complexity.
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Fig. 5. The average delay and maximum delay of CBR flows in different fair scheduling algorithms
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