
A Constant Complexity Fair Scheduler with O(log N) Delay Guarantee

Deng Pan 1 and Yuanyuan Yang 2

1 Deptment of Computer Science
State University of New York at Stony Brook, Stony Brook, NY 11790
dengpan@cs.sunysb.edu
2 Depart of Electrical and Computer Engineering
State University of New York at Stony Brook, Stony Brook, NY 11790
yang@ece.sunysb.edu

Abstract. Many Internet multimedia applications require the support of network services with
fairness and delay guarantees. Currently, there are two types of fair schedulers in the literature.
The time stamp based schedulers achieve good fairness and delay guarantees but have high
O(log N) time complexity, where N is the number of incoming flows. While the round robin
based schedulers reach O(1) complexity, their delay guarantees are O(N). Aiming at constant
time complexity as well as good fairness and delay guarantees, we design a new fair scheduler
suitable for variable length packets in this paper. Fast Credit Based (FCB) fair scheduling,
the algorithm we propose, provides O(log N) fairness and delay guarantees, by tracking and
minimizing the difference between the service a flow reserves and that it actually receives. It
reduces the time complexity to O(1) by utilizing approximation and synchronization. To compare
FCB with other fair schedulers on their end-to-end delay performance, simulations are conducted
in NS2 for various packet lengths, and the results show that FCB achieves short end-to-end delay
and handles variable length packets efficiently.
Keywords: Fair scheduling, shared output link, bandwidth guarantee, delay guarantee.

1 Introduction

The booming Internet multimedia applications require the next generation of networks to provide
services with bandwidth and delay guarantees, besides the traditional best effort services. A fair
scheduler works at a shared output link or gateway to provide incoming flows with guaranteed
bandwidth and delay performance. It ensures that the difference between the services that any
flow reserves and that it actually receives is bounded within a specified range, regardless of the
length of the time interval.

Fair schedulers in the literature can be classified into three types: 1)Time stamp based. Time
stamp based fair schedulers, such as WFQ [1] and WF 2Q [2], compute time stamps for each
incoming packet, and schedule packets in the order of the time stamps. They usually provide
excellent fairness and delay guarantees, but have high O(log N) time complexity due to the
operation to sort packets, where N is the number of flows of the gateway. 2) Round robin
based. Round robin based fair schedulers, such as DRR [3] and SRR [4], serve the flows in a
round robin manner, so that each flow has an equal opportunity of consuming bandwidth. They

achieve O(1) time complexity, but have poor delay bounds, usually proportional to N , as each
flow has to wait for all other flows before transmitting the next packet. 3) Combination of both.
Some recently proposed algorithms, such as BSFQ [5] and Stratified Round Robin [6], attempt
to obtain the tight delay bound of time stamp schedulers as well as the low complexity of round
robin schedulers, by adopting a basic round robin like scheduling policy plus time stamp based
scheduling on a reduced number of units. They improve the time complexity by reducing the
number of items that need to be sorted, but still have O(N) worst case delay because of the
round robin nature.

The following factors must be considered to design a good fair scheduler. 1) Bandwidth
guarantee. The scheduler should ensure each flow its reserved bandwidth, so that well-behaved
flows can be protected from malicious behavior. 2) Delay guarantee. Bandwidth guarantee should
be obtained in an efficient way, and therefore well-behaved flows can have short and bounded
packet delay. 3) Low complexity. The scheduler should have low time complexity to achieve
high speed scheduling. Especially, constant time complexity enables the scheduler to maintain
performance when the number of flows increases. 4) Capability to schedule variable length packets.
Some schedulers, such as SRR [4], consider only fixed length packets, and can not handle variable
length packets efficiently. They have to segment the incoming variable length packets into fixed
length cells before scheduling, and the receivers also need extra buffer space to reassemble the
segmentations back to the original packets.

In this paper we aim at designing a fair scheduler for variable length packets with constant
time complexity as well as good fairness and delay guarantees. Fast Credit Based (FCB) fair
scheduling, the algorithm we propose, adopts a credit based policy, and provides fairness and
delay guarantees by tracking and minimizing the difference between the service a flow should
receive and that it has actually received in the algorithm. FCB achieves O(1) complexity by
utilizing approximation and synchronization, and we theoretically prove that FCB provides
O(log N) fairness and delay guarantees. To compare FCB with other fair schedulers on their
end-to-end delay performance, simulations are conducted in NS2 with packet length following
different statistical distributions, and the results show that FCB matches WFQ with reduced
complexity, and that FCB handles variable length packets efficiently.

2 Fast Credit Based Fair Scheduling

In this section, we present the Fast Credit Based (FCB) fair scheduling algorithm. We first
introduce some definitions, and then describe the algorithm. In the following, a gateway (or
shared output link) with N incoming flows {f1, . . . , fN} is considered.

2.1 Terminologies
The reservation ri of flow fi is its reserved bandwidth normalized with respect to the total
bandwidth of the gateway. By the definition, we have that 0 < ri ≤ 1, and to avoid overbooking,∑N

i=1 ri ≤ 1.
The credit ci(t) of flow fi is the rate that the flow should ideally receive bandwidth from the

gateway according to its reservation at time t, i.e.,

ci(t) =

(
ri(t)P

j∈∆(t) rj(t)
, flow fi is backlogged at time t

0, otherwise

where ∆(t) is the set of backlogged flows at time t.
There may be the case that the sum of the reservations of all the backlogged flows is less

than the total bandwidth of the gateway. As in the ideal GPS [7] fairness system, the excessive
bandwidth is reallocated to avoid wasting available transmission capacity. Therefore, if there is

at least one backlogged flow at time t, after the reallocation of the excessive bandwidth, the sum
of the credits of all the flows is equal to unit, i.e.,

∑N
i=1 ci(t) = 1.

The debit di(t) of flow fi is the rate that the flow actually consumes bandwidth at time t.
At any time, either the gateway is idle, or one of the flows is transmitting a packet through it.
In the latter case, the transmitting flow exclusively consumes all the available bandwidth, and
all other flows do not use any bandwidth, thus

di(t) =

(
1, if flow fi is transmitting a packet through the gateway at time t

0, otherwise

To achieve fairness, “balance” is defined to record the up-to-date bandwidth usage of each
flow.

The balance bi(t) of flow fi is the accumulated difference of its reserved bandwidth and
actually received bandwidth till time t, i.e., bi(t) =

∫ t
0 ci(x)dx− ∫ t

0 di(x)dx. From the definition,
it is easy to see that the following equation holds, bi(t′) = bi(t) +

∫ t′
t ci(x)dx− ∫ t′

t di(x)dx.
We define a busy period to be the longest interval during which the gateway is never idle. It

is sufficient to consider only one busy period, since the system state can be safely re-initialized
at the beginning of the next busy period. Assuming that t0, t1, t2, . . . are the time points within a
busy period that a new packet begins transmission through the gateway, we call them the schedul-
ing points. Or, in other words, during the interval between any two sequential scheduling points,
a single packet is transmitted through the gateway. Use L to denote the maximum packet length.
Generally, we have L ≥ ta+1−ta, since ta+1−ta =

∫ ta+1

ta
1dx = length of the transmitted packet ≤

L.

2.2 Algorithm Description
FCB achieves fairness and delay guarantees by restricting the absolute value of the balance. Since
the balance of a flow records the up-to-date difference of its reserved bandwidth and actually
received bandwidth, maintaining a small difference helps to ensure the fairness property of the
algorithm. Consequently, the ideal strategy is to always choose the backlogged flow with the
largest balance to transmit, so that it can have “debit” and reduce its balance. And for the flows
that use more bandwidth than what they deserve and have negative balances, they should be
penalized and not allowed to transmit in order to recover their balances.

Unfortunately, always choosing the largest balance will incur high O(log N) time complexity.
FCB utilizes approximation to simplify the operation. When FCB selects a flow to transmit, it
does not need to have the largest balance, but instead, its balance could be g less than the largest
one, where g is the granularity of the approximation. The value of g affects the performance of
FCB, and usually a smaller value of g leads to better fairness and delay guarantees. In order
to achieve the approximation, d2L+g

g e synchronization “holes” are used in FCB, as shown in
Figure 1. Each hole can hold only one flow whose balance is in a specific range. Suppose the
most recently scheduled flow is fk, which is scheduled at time ta−1, and define lastB to be its
balance at ta−1, i.e., lastB = bk(ta−1). Then, at time ta, i.e., the next scheduling point, a flow
with its balance in the range (lastB − L + (u− 1)g, lastB − L + ug] can be placed into the uth

hole.
Figure 2 describes FCB using pseudo code, and the detailed explanation follows. Before

the scheduling, the balance of each flow is initialized to zero (bi = 0). Each time when the
algorithm needs to select a flow to transmit, all the holes are first set to empty (hole[j] = −1).
Then each flow tests if the hole (hole[d bi−lastB+L

g e]) corresponding to its balance value is free
(hole[d bi−lastB+L

g e] == −1), and if yes, fills the hole with itself by setting hole[d bi−lastB+L
g e] = i.

Theorem 1 assures that at least one hole must be filled, and it also may happen that there
are more than one filled holes. Next, the flow with the largest balance is selected from all the

hole[u]:

2L+g
g

2L+g
g

2L+g
g

lastB−L

lastB−L+g

lastB−L+2g
hole[2]:

hole[1]:

lastB−L+(u−1)g

lastB−L+ug

hole[]:
lastB−L+(−1)g

lastB−L+ g
−1

i

−1

−1

for each flow fi do {
initialize balance bi = 0;

}
lastB = 0;
while true {

for (j = 1; j ≤ d 2L+g
g
e);+ + j) {

hole[j] = −1;
}
for each flow fi do {

if (hole[d bi−lastB+L
g

e] == −1)

hole[d bi−lastB+L
g

e] = i;

}
k = −1;

for (j = 1; j ≤ d 2L+g
g
e);+ + j) {

if (hole[j] 6= −1) k = hole[j];
}
flow fk sends a packet through the gateway,

say, from ta to ta+1;
lastB = bk;
for each flow fi do {

update balance by

bi+ =
R ta+1

ta
ci(x)dx− R ta+1

ta
di(x)dx;

}
}

Fig. 1. FCB uses synchronization holes to achieve
approximation. The flows whose balances are in the
same range compete for a single hole.

Fig. 2. Pseudo code description of the FCB fair
scheduling algorithm.

filled holes and granted to transmit a packet, and its balance value is assigned to lastB for the
next round of scheduling. After the packet transmission, the balance of each flow is updated
accordingly. Although the balance update formula includes integral computation, which seems
not efficient to implement, the credit and debit values are actually fixed during each scheduling
point interval ([ta, ta+1)), and therefore the integral can be simply computed as multiplication.
Theorem 1 If lastB is at most g less than the largest balance of all the flows at time ta−1, then
the largest balance at time ta is in the range (lastB − L, lastB + L + g].
Proof. Suppose that at time ta−1, flow fj has the largest balance, bj(ta−1) ≥ bi(ta−1) for any
1 ≤ i ≤ N , and fk is selected to transmit. Then, lastB = bk(ta−1) for time ta, and because
bk(ta−1) is at most g less than bj(ta−1), we obtain lastB + g ≥ bj(ta−1).

Also suppose that at time ta, flow fl has the largest balance, bl(ta) ≥ bi(ta) for any 1 ≤ i ≤ N .
We prove that lastB − L < bl(ta) ≤ lastB + L + g.

On the one hand, when t ∈ [ta−1, ta), dj(t) ≤ 1, and we have

bl(ta) ≥ bj(ta) = bj(ta−1) +

Z ta

ta−1

cj(x)dx−
Z ta

ta−1

dj(x)dx > bj(ta−1)−
Z ta

ta−1

dj(x)dx ≥ bj(ta−1)− L

And by bj(ta−1) ≥ bk(ta−1), it follows that bl(ta) > bk(ta−1)− L = lastB − L.
On the other hand, when t ∈ [ta−1, ta), dl(t) ≥ 0, and we can obtain

bl(ta) = bl(ta−1) +

Z ta

ta−1

cl(x)dx−
Z ta

ta−1

dl(x)dx ≤ bl(ta−1) +

Z ta

ta−1

cl(x)dx ≤ bl(ta−1) + L

Using the fact that bl(ta−1) ≤ bj(ta−1) and bj(ta−1) ≤ lastB+g, we obtain bl(ta) ≤ lastB+L+g.
Next, we show that the precondition of the theorem, that the balance of the scheduled flow

is at most g less than the largest balance, is always guaranteed by FCB. Since the balance value
of all the holes is in the range (lastB − L, lastB − L + d2L+g

g eg], and lastB − L + d2L+g
g eg ≥

lastB + L + g, from the above proof, we know that the balance bl(ta) of fl must be in the

corresponding range of one of the holes, say, hole[u]. If hole[u] is filled by fl, there is no doubt
that fl is scheduled at time ta, because it has the largest balance. If hole[u] is filled by another
flow, say, fm, then fm is scheduled, because all the holes with greater corresponding ranges must
be empty. Since fm and fl belong to the same hole, the difference of their balances must be less
than g.

The holes can be implemented by synchronization locks available in most operating systems.
At the beginning, every lock is free. A flow tests if the lock is free before grabs it. If the lock
is free, the flow sets the lock, and thereafter this lock is no longer available to other flows. Due
to the approximation mechanism and the synchronization locks, FCB only needs to compare
at most d2L+g

g e flows in the filled holes, and d2L+g
g e is a constant when g is fixed. Thus, FCB

achieves O(1) time complexity.

3 Performance Analysis

In this section, we analyze the fairness and delay performance of FCB by considering their
relationship to the range of the balance. As will be seen, FCB provides O(log N) fairness and
delay guarantees.

3.1 Bounds on Balance
The balance represents the difference between the services that a flow requests and that it
actually consumes, and its value range is closely related to the fairness performance of FCB.
First, we have the following lemma.

Lemma 1 At any time, the sum of the credits of all the flows is equal to the sum of the debits
of all the flows, i.e.,

∑N
i=1 ci(t) =

∑N
i=1 di(t),

Proof. We prove the lemma by considering two possible cases.
Case 1: There is at least one backlogged flow at time t. In this case, the full bandwidth utilization
property applies, i.e.,

∑N
i=1 ci(t) = 1. On the other hand, since FCB is work conservative and

there is a backlogged flow, the gateway should be busy, and one backlogged flow, say, fk, is
transmitting a packet through the gateway. Thus,

∑N
i=1 di(t) = dk(t) = 1.

Case 2: There is no backlogged flow at time t. By the definition, the credit of any flow is
0, and

∑N
i=1 ci(t) = 0. Also, since there is no backlogged flow, the gateway must be idle, i.e.,∑N

i=1 di(t) = 0.
In both cases, we have

∑N
i=1 ci(t) =

∑N
i=1 di(t).

Theorem 2 At any time, the sum of the balances of all the flows is 0, i.e.,
∑N

i=1 bi(t) = 0.
Proof. By the definition of the balance,

NX
i=1

bi(t) =

NX
i=1

�Z t

0

ci(x)dx−
Z t

0

di(x)dx

�
=

Z t

0

NX

i=1

ci(x)−
NX

i=1

di(x)

!
dx

And using Lemma 1, we have
∑N

i=1 bi(t) = 0.
It should be noted that, if a flow ends with non-zero balance, the theorem will be jeopardized.

For a purely technical reason, a flow should not be assigned credit when its balance equals its
queue length.

The following theorem shows that the balance of any flow is lower bounded by a constant.

Theorem 3 The lower bound of the balance of any flow is (−g − L), i.e., bi(t) ≥ −g − L.

Proof. The balance of a flow only decreases when it has debit, or in other words, when the flow
is transmitting a packet. Therefore, to compute the lower bound of the balance, we only need
to consider the time that a flow finishes transmitting a packet.

Suppose that flow fk transmits a packet during the interval [ta−1, ta). According to the
scheduling policy, bk(ta−1) is at most g less than the largest balance at time ta−1, and from
Theorem 2, the largest balance at any time should be greater than or equal to zero. Therefore,
we have bk(ta−1) ≥ −g. And bk(ta) = bk(ta−1) +

∫ ta
ta−1

ck(x)dx− ∫ ta
ta−1

dk(x)dx. It is obvious that∫ ta
ta−1

ck(x)dx ≥ 0 and
∫ ta
ta−1

dk(x)dx ≤ L, and we obtain bk(ta) ≥ −g − L.
Next, we derive the upper bound of the balance. In order to simplify the problem, in the rest

of this section, we assume that each flow is always backlogged and its credit is kept as a constant
ci(t) = ci. Because the excessive bandwidth of the idle flows is reallocated to other backlogged
flows which we are considering, this assumption does not weaken the generality of the results,
but it makes the analysis much easier.

Similar to the fact that the balance of a flow decreases as it is transmitting a packet, its
balance increases when it is idle, because it has positive credit and zero balance. Thus, in order
to compute the upper bound of the balance, we only need to consider the time when a flow
begins sending a packet.

The basic idea of the proof is to assume that the maximum value of the balance is reached
by one flow at a specific time point, and consider the sum of the balances of the flows that have
been recently scheduled before that specific time point. We trace back by including one more
flow into consideration each time, until finally there is only one flow outside of the set of flows
we are considering. Then, Theorem 3 can be applied to derive the bound of the maximum value
we assumed.

First, we explain the notations to be used in the proof.
M : the maximum value of the balance.
tm: the time that the maximum balance is reached.
F (ta, tm): the set of flows that begin to transmit packets at scheduling points ta, ..., tm, where

ta ≤ tm. Without loss of generality, we assume that flow f1 reaches the maximum balance M
at time tm. Then, f1 must begin to transmit at tm, otherwise b1(tm+1) = b1(tm) +

∫ tm+1

tm
c1dx−∫ tm+1

tm
d1(x)dx = M +

∫ tm+1

tm
c1dx > M . Also assume that the sequence of the flows added into

F (ta, tm) when considering the sum of the balances is f1, f2, . . . , fN . In other words, when we
look back from the scheduling point tm, f2 is the most recently scheduled flow. For example,
if f2 was most recently scheduled at tb(tb < tm) before time tm, we have F (tm, tm) = {f1},
F (tb+1, tm) = {f1}, and F (tb, tm) = {f1, f2}. If f3 was most recently scheduled at tc(tc < tb),
then F (tc+1, tm) = {f1, f2} and F (tc, tm) = {f1, f2, f3}.

T (ta, tm): the sum of the balances of all the flows in F (ta, tm) at time ta, i.e., T (ta, tm) =∑
fi∈F (ta,tm) bi(ta).
We next introduce some supporting lemmas. Due to space limitation, the proofs of these

lemmas are omitted.
Lemma 2 Suppose F (ta, tm) = {f1, . . . , fk} and F (ta−1, tm) = {f1, . . . , fk, fk+1}. Then,

T (ta−1, tm) ≥ k + 1

k

T (ta, tm)− L

kX
i=1

ci

!
− g

Lemma 3 Suppose F (ta, tm) = {f1, . . . , fk} and F (ta−1, tm) = F (ta, tm) = {f1, . . . , fk}. Then,

T (ta−1, tm) ≥ T (ta, tm)

Lemma 4 Suppose F (tm, tm) = {f1} and F (ta, tm) = {f1, . . . , fk}. Then,

T (ta, tm) ≥ kM − kL

k−1X
i=1

ci

k−1X
j=i

1

j

!
− kg

k−1X
i=1

1

i + 1

The upper bound on the balance is given in the following theorem.

Theorem 4 The upper bound of the balance of any flow is ((L + g) ln N + C), i.e., bi(t) <
(L + g) ln N + C, where C is a constant.

Proof. Suppose at time ta, F (ta, tm) = {f1, . . . , fN−1}, and at time ta−1, F (ta−1, tm) = {f1, . . . , fN}.
By Lemma 4,

T (ta, tm) ≥ (N − 1)M − (N − 1)L

N−2X
i=1

ci

N−2X
j=i

1

j

!
− (N − 1)g

N−2X
i=1

1

i + 1

On the one hand, since only fN transmits a packet during the interval [ta−1, ta), when
t ∈ [ta−1, ta), di(t) = 0 for any 1 ≤ i ≤ N − 1, and bi(ta−1) = bi(ta)−

∫ ta
ta−1

cidx ≥ bi(ta)− Lci.
Thus,

N−1X
i=1

bi(ta−1) ≥ T (ta, tm)− L

N−1X
i=1

ci ≥ (N − 1)M − (N − 1)L

N−1X
i=1

ci

N−1X
j=i

1

j

!
− (N − 1)g

N−2X
i=1

1

i + 1

On the other hand, since flow fN is selected to transmit at time ta−1, bN (ta−1) ≥ −g.
Applying Theorem 2, we have

N−1X
i=1

bi(ta−1) = −bN (ta−1) ≤ g

Combining the above two inequalities, we obtain

(N − 1)M − (N − 1)L

N−1X
i=1

ci

N−1X
j=i

1

j

!
− (N − 1)g

N−2X
i=1

1

i + 1
≤ g

or,
M ≤ g

N − 1
+ g

N−2X
i=1

1

i + 1
+ L

N−1X
i=1

ci

N−1X
j=i

1

j

!
≤ g

N − 1
+ g

N−2X
i=1

1

i + 1
+ L

N−1X
i=1

ci

!
N−1X
j=1

1

j

!
Since

∑N−1
i=1 ci < 1, it follows that

M <
g

N − 1
+ g

N−2X
i=1

1

i + 1
+ L

N−1X
j=1

1

j

!
=

g

N − 1
− g + (g + L)

N−1X
j=1

1

j

In the above inequality,
∑N−1

j=1
1
j is the (n − 1)th harmonic number [8], and

∑N−1
j=1

1
j = lnN +

γ− εN where γ is the Euler’s constant and there exists a constant K such that for a sufficiently
large N , |εN | < K

N . Since the value of (g
N−1−g) is bounded, we can obtain M < (g+L) ln N +C

where C is a constant.

3.2 Fairness Guarantee

Two fairness measures are commonly used: Golestani measure [9] and Bennet-Zhang measure
[2]. While the former compares the relative amount of service received by two different flows,
the latter compares the absolute amount of service a flow would receive in the ideal model
and the service it receives in the designed algorithm. In this paper we adopt the more accurate
Bennet-Zhang measure for analyzing the fairness performance of FCB, and we have the following
theorem.
Theorem 5 During any time interval, the difference between the bandwidth a flow reserves and
that it actually receives in FCB is bounded by

−g − L < service difference < (L + g) ln N + C

Proof. By the definitions of the credit and balance, credit ci(t) is the bandwidth flow fi should
receive at time t according to its reservation, and debit di(t) is the bandwidth that fi actually
consumes at time t. Therefore, the balance is exactly the accumulated service difference, and
the bounds of the balance are also the bounds of the service difference.

3.3 Delay Guarantee

Besides fairness, packet delay is another important performance measure for a practical fair
scheduling algorithm. The delay of a packet is the interval from the time when a packet enters
the queue of its flow to the time it is sent through the gateway. The following theorem gives the
packet delay of FCB.
Theorem 6 The packet delay of flow fi in FCB is bounded by

max

�
0,
−g − L− (L + g) ln N − C + q

ci

�
< packet delay <

(L + g) ln N + C + g + L + q

ci

where q is the queue length of fi after the packet arrives.
Proof. Suppose that a packet of flow fi arrives at time ta and leaves the gateway at time tb,
and that the queue length is q after this packet is put in the queue. Then, by the definition of
the balance, we have

bi(tb)− bi(ta) =

Z tb

ta

cidx−
Z tb

ta

di(x)dx = ci(tb − ta)− q

Because −g − L− (L + g) ln N − C < bi(tb)− bi(ta) < (L + g) ln N + C + g + L, we obtain
−g − L− (L + g) ln N − C + q

ci
< tb − ta <

(L + g) ln N + C + g + L + q

ci

Since the packet delay is always greater than 0, the lower bound should be adjusted if it is
smaller than 0.
4 Simulation Results

We compare FCB with other fair schedulers on their end-to-end delay performance by simulation
in NS2 [10]. Two implementations of FCB with g = L/10 and g = L/3 respectively are included
to see the effect of the granularity value on the algorithm. Also, since FCB is designed to
handle variable length packets, we conducted the simulations under the traffic with packet length
following different statistical distributions: constant packet length (Figure 4(a)), packet length
following uniform distribution (Figure 4(b)), and packet length following normal distribution
(Figure 4(c)). The maximum packet length L is set to 300 bytes in all the situations. WFQ

1

����
����
����
���� 900K bps, 2 ms

600K bps, 1 ms

���
���
���
���

���
���
���
���

N1

N2 N3 N4

N5

M M2

Fig. 3. The network topology in the simulations.

and DRR are used as the comparison counterparts. WFQ is the earliest and a typical time
stamp based fair scheduler. Although WFQ has good fairness and delay guarantees, it has
a high O(log N) time complexity. By comparing with WFQ, we show that FCB matches the
performance of WFQ with reduced complexity. DRR is a representative of the round robin based
scheduler family. It has O(1) time complexity but O(N) worst case delay. By comparing with
DRR, we demonstrate that, with the same complexity, FCB achieves better performance than
DRR.

The network topology for the simulations is illustrated in Figure 3. We set up ten CBR
flows between N1 and N5 with reserved bandwidth from 10K bps to 100K bps in an increment

50 100 150 200 250 300 350
0

0.5

1

1.5

Packet length (bytes)

P
ro

ba
bi

lit
y

(1
00

%
)

Constant packet length

50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

x 10
−3

Packet length (bytes)
P

ro
ba

bi
lit

y
(1

00
%

)

Packet length following uniform distribution

50 100 150 200 250 300 350
0

0.01

0.02

Packet length (bytes)

P
ro

ba
bi

lit
y

(1
00

%
)

Packet length following normal distribution

(a) (b) (c)

Fig. 4. The packet length distributions. (a) Constant packet length. (b) Packet length following uniform distri-
bution. (c) Packet length following normal distribution.

0 20 40 60 80 100
0

20

40

60

80

100

Reserved bandwidth (K bps)

A
ve

ra
ge

 d
el

ay
 (

m
s)

Constant packet length

WFQ
DRR
FCB(g=L/10)
FCB(g=L/3)

0 20 40 60 80 100
0

20

40

60

80

100

Reserved bandwidth (K bps)

A
ve

ra
ge

 d
el

ay
 (

m
s)

Packet length following uniform distribution

WFQ
DRR
FCB(g=L/10)
FCB(g=L/3)

0 20 40 60 80 100
0

20

40

60

80

100

Reserved bandwidth (K bps)

A
ve

ra
ge

 d
el

ay
 (

m
s)

Packet length following normal distribution

WFQ
DRR
FCB(g=L/10)
FCB(g=L/3)

(a) (b) (c)

Fig. 5. Average end-to-end delay of the normal flows in different algorithms. (a) Constant packet length. (b)
Packet length following uniform distribution. (c) Packet length following normal distribution.

step of 10. The ten flows behave normally and generate packets at rates equal to their reserved
bandwidths. Another five ill-behaved flows are designed to congest the network, each of which
is assigned 10K bps reserved bandwidth but generates data at 100K bps. Two of the ill-behaved
flows are from N1 to N5, and three are from M1 to M2.

We are interested in the average end-to-end packet delay of the ten normal flows under dif-
ferent schedulers. Figure 5(a) gives the simulations results when the packet length is constant.
As can be seen, the two FCB implementations and WFQ have similar performances, and their
delay is shorter than that of DRR. Between the two FCB implementations, the one with larger
granularity value has relatively longer delay for flows with large reserved bandwidths and shorter
delay for flows with small reserved bandwidths, which can be explained by the fact that, with
larger granularity of approximation, flows with small balances have better chances to be sched-
uled. Under DRR, flows with different reserved bandwidths have roughly the same delay, and
the reason is that, due to the round robin policy, each flow has to wait a full cycle before sending
packets. Figure 5(b) and Figure 5(c) show the average delay when packet length follows uniform
distribution and normal distribution, respectively. Similar conclusions can be drawn that FCB
matches the performance of WFQ with reduced complexity, and that DRR has relatively larger
delay which is not sensitive to the reserved bandwidth of a flow. The results also show that
FCB is robust in handling variable length packets, in the sense that the delay does not increase
dramatically comparing with that under constant packet length.

5 Conclusions

In this paper, we have proposed the new Fast Credit Based (FCB) fair scheduling algorithm.
FCB ensures the reserved bandwidth of a flow by tracking and minimizing the difference be-

tween the service the flow should receive and actually receives. By introducing approximation
and synchronization, FCB successfully reduces the time complexity to O(1). Also, we theoreti-
cally prove that FCB provides O(log N) fairness and delay guarantees. Finally, simulations are
conducted to compare the end-to-end delay performance of FCB with those of WFQ and DRR,
and the results show that FCB matches the performance of WFQ with reduced complexity, and
that FCB is able to efficiently schedule variable length packets.

Acknowledgement

The research work was supported in part by the U.S. National Science Foundation under grant
numbers CCR-0073085 and CCR-0207999.

References

1. A. Demers, S. Keshav, S. Shenker, “Analysis and simulation of a fair queueing algorithm,”
ACM SIGCOMM ’89, vol. 19, no. 4, pp. 3-12, Austin, TX, Sep. 1989.

2. H. Zhang, “WF2Q: worst-case fair weighted fair queueing,” IEEE INFOCOM ’96, pp. 120-
128, San Francisco, CA, Mar. 1996.

3. M. Shreedhar, G. Varghese, “Efficient fair queuing using deficit round robin,” IEEE/ACM
Trans. Networking, vol. 4, no. 3, pp. 375-385, Jun. 1996.

4. C. Guo, “SRR: an O(1) time complexity packet scheduler for flows in multi-service packet
networks,” ACM SIGCOMM ’01, pp. 211-222, San Diego, CA, Aug. 2001.

5. S. Cheung and C. Pencea, “BSFQ: bin sort fair queuing,” IEEE INFOCOM ’02, pp. 1640-
1649, New York, Jun. 2002.

6. S. Ramabhadran, J. Pasquale, “Stratified round robin: a low complexity packet scheduler
with bandwidth fairness and bounded delay,” ACM SIGCOMM ’03, pp. 239-250, Karlsruhe,
Germany, Aug. 2003.

7. A. Parekh, R. Gallager, “A generalized processor sharing approach to flow control in inte-
grated services networks: the single node case,” IEEE/ACM Trans. Networking, vol. 1, no.
3, pp. 344-357, Jun. 1993.

8. J. Conway, R. Guy, The Book of Numbers, New York: Springer-Verlag, pp. 143 and 258-259,
1996.

9. S. Golestani, “A self-clocked fair queueing scheme for broadband applications,” IEEE INFO-
COM ’94, pp. 636-646, Toronto, Canada, Jun. 1994.

10. http://www.isi.edu/nsnam/ns/

