IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10, OCTOBER 2005

FIFO-Based Multicast Scheduling Algorithm for

Virtual Output Queued Packet Switches

Deng Pan, Student Member, IEEE, and Yuanyuan Yang, Senior Member, IEEE

Abstract—Many networking/computing applications require high speed switching for multicast traffic at the switch/router level to save
network bandwidth. However, existing queuing-based packet switches and scheduling algorithms cannot perform well under multicast
traffic. While the speedup requirement makes the output queued switch difficult to scale, the single input queued switch suffers from
head of line (HOL) blocking, which severely limits the network throughput. An efficient yet simple buffering strategy to remove the
HOL blocking is to use the virtual output queued (VOQ) switch structure, which has been shown to perform well under unicast traffic.
However, the traditional VOQ switch is impractical for multicast traffic because a VOQ switch for multicast traffic has to maintain an
exponential number of queues in each input port (i.e., 2V — 1 queues for a switch with IV output ports). In this paper, we give a novel
queue structure for the input buffers of a multicast VOQ switch by separately storing the address information and data information of a
packet so that an input port only needs to manage a linear number (N) of queues. In conjunction with the multicast VOQ switch, we
present a first-in-first-out based multicast scheduling algorithm, FIFO Multicast Scheduling (FIFOMS), and conduct extensive
simulations to compare FIFOMS with other popular scheduling algorithms. Our results fully demonstrate the superiority of FIFOMS in
both multicast latency and queue space requirement.

Index Terms—Multicast, scheduling, virtual output queued (VOQ) switch, head of line (HOL) blocking, crossbar switch, multicast
switch.

<+

INTRODUCTION AND BACKGROUND

1283

MULTICAST is an operation to transmit information from
a single source to multiple destinations and is a
requirement in high performance networks [1]. Many
networking/computing applications require high speed
switching for multicast traffic at the switch/router level to
save network bandwidth. Scheduling multicast traffic on
packet switches has received extensive attention in recent
years, see, for example, [5], [6], [7], [8], [9], [11], [21].
Although there have been many scheduling algorithms
proposed for different types of packet switches, how to
efficiently organize and schedule multicast packets remains
a challenging issue.

In general, packet switches can be divided into two
broad categories: output queued (OQ) switches and input
queued (IQ) switches, based on where the blocked packets
are queued at the switch. Readers may refer to [4] for a good
taxonomy of queuing-based switch architectures. A typical
OQ switch, as shown in Fig. 1a, has a first-in-first-out (FIFO)
queue at each output port to buffer the packets destined to
that output port. OQ switches are shown to be able to
achieve unity throughput and can easily meet different
QoS requirements, such as delay and bandwidth, by
applying various scheduling algorithms. However, since
there is no buffer at the input side, if the packets arriving at
different input ports are destined to the same output port,

e D. Pan is with the Department of Computer Science, State University of
New York at Stony Brook, Stony Brook, NY 11794.
E-mail: pandeng@cs.sunysb.edu.

e Y. Yang is with the Department of Electrical and Computer Engineering,
State University of New York at Stony Brook, Stony Brook, NY 11794.
E-mail: yang@ece.sunysb.edu.

Manuscript received 25 May 2004; revised 2 Nov. 2004; accepted 19 Nov.
2004; published online 16 Aug. 2005.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0176-0504.

0018-9340/05/$20.00 © 2005 IEEE

all the packets must be transmitted simultaneously. There-
fore, in order for OQ switches to work at full throughput, the
switching speed of the internal fabric and the receiving speed
of the output port must be N times faster than the sending
speed of the input port in an N x N switch. This speedup
requirement makes OQ switches difficult to scale. In
particular, when the switch has a large number of input
ports or the speed of a single input port increases to gigabit/s,
it is impractical to achieve the IV speedup [10], [25].

On the other hand, for IQ switches, the switching fabric
and the output port only need to run at the same speed as
that of the input port and, therefore, IQ switches have been
the main research focus of high speed switches. The single
input queued switch, as shown in Fig. 1b, has a FIFO queue
at each input port to store the incoming packets waiting for
transmission. Since only the packet at the head of line
(HOL) of each input queue can participate in the schedul-
ing, the packets behind the HOL packet suffer from the so-
called “head of line” blocking, which means that, even
though their destination output ports may be free, they
cannot be scheduled to transfer because the HOL packet is
blocked. Furthermore, it was proven in [27] that, when N is
large, a single input queued switch running under the
unicast i.i.d. Bernoulli traffic can reach a maximum
throughput of approximately 58.6 percent and, under
bursty traffic, the throughput can be even lower [18].

Ahuja et al. [11] proposed a multicast scheduling
algorithm called TATRA, based on the single input queued
switch structure, by mapping the general multicast switch-
ing problem onto a variant of the popular block packing
game, Tetris. The basic idea of TATRA is to schedule
HOL packets in such a way that it leaves the residue, i.e.,
the set of packets that lose contention for output ports and
remain at the HOL of the input queues, on the smallest
number of input ports. Therefore, more new packets in
input queues can participate in the scheduling process in
the next time slot. However, the performance of TATRA is

Published by the IEEE Computer Society

1284

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10, OCTOBER 2005

(@)

Fig. 1. Packet switches can be divided into two categories based on where the unserved packets are buffered. (a) Output queued switch. (b) Single

input queued switch. (c) Multiple input queued switch.

restricted by the HOL blocking with the single input
queued structure, especially when the incoming traffic has
mixed multicast and unicast packets or the multicast
packets have a relatively small average number of destina-
tions (or fanout).

An efficient yet simple buffering strategy to remove the
HOL blocking is to adopt the multiple input queued switch
structure, which was introduced in [26]. A typical multiple
input queued switch has a separate FIFO queue corre-
sponding to each output port at each input port, resulting in
a total of N? input queues, as shown in Fig. lc. It is also
called the virtual output queued (VOQ) structure since each
queue stores those packets which have arrived at a given
input port and are destined to the same output port.
HOL blocking is eliminated because a packet cannot be held
up by a packet ahead of it that goes to a different output. It
is known that the VOQ switch structure can achieve
100 percent throughput for all independent arrival pro-
cesses by using the maximum weight matching algorithm
[3] or by using other maximum matching algorithms with
speedup [14], [15], [16], [17]. The traditional VOQ structure
buffers packets to different destinations in different queues.
However, since a multicast packet may be destined to
multiple output ports, it has 2 — 1 possible destinations.
This means that a VOQ switch for multicast traffic needs to
maintain 2V — 1 separate queues at each of its input ports,
which is obviously infeasible, especially for a large V.

Based on the VOQ switch structure, a lot of scheduling
algorithms have been proposed, such as iSLIP [2], PIM [25],
2DRR [19], and SERENA [12], [13], but most of them are
mainly designed for unicast traffic because, as stated above,
the traditional VOQ switch cannot handle multicast traffic
efficiently.

ESLIP [22] adopts the VOQ structure to buffer unicast
packets and puts all the multicast packets in a special single
queue at each input port. It uses a variant of the iSLIP [2]
algorithm to schedule mixed unicast and multicast traffic.
As can be expected, ESLIP eliminates the HOL blocking for
unicast traffic, but not for multicast traffic. In an extreme
situation, where all the incoming packets are multicast
packets, ESLIP cannot benefit from the VOQ structure and
it is actually working on the single input queued switch in
this case.

In order to eliminate the HOL blocking and, at the same
time, to make the VOQ structure practical for multicast
traffic, in this paper, we present a novel scheme to organize
the packets in the input buffers of a VOQ switch by
separately storing the address information and the data
information of a packet. In conjunction with the new

structure of the multicast VOQ switch, we present a first-in-
first-out-based multicast scheduling algorithm, called FIFO
Multicast Scheduling (FIFOMS). As will be seen, FIFOMS
fully uses the multicast capability of a crossbar fabric, does
not suffer from the HOL blocking, and performs well under
both multicast traffic and unicast traffic. It can provide
fairness guarantee and can achieve 100 percent throughput
under uniformly distributed traffic. Our simulation results
show that FIFOMS significantly outperforms other schedul-
ing algorithms for input queued switches on average packet
delay and buffer space requirement.

As discussed in [22], fixed length packet scheduling has
significant advantages over variable length packet schedul-
ing and most of the implemented high speed switches
internally operate on fixed length packets as well, such as
Cisco 12000 GSR [22], MGR [23], Tiny Tera [24], and AN2 [25].
Therefore, we make the same assumption in this paper. For
variable length packets, they can be segmented into fixed size
units to schedule and transfer across the switch and the
segmentations can be reassembled back into variable length
packets at the output ports before being transmitted on the
outline. In the following, we assume a switch model of
N input ports and N output ports with a multicast capable
crossbar as its switching fabric. The switch runs in a
synchronous time slot mode and the incoming traffic includes
fixed length unicast and multicast packets.

The rest of the paper is organized as follows: Section 2
presents the new scheme to organize multicast packets in
the input buffer of a VOQ switch. Section 3 describes the
corresponding multicast scheduling algorithm FIFOMS.
Section 4 discusses some implementation issues and the
complexity of the algorithm and Section 5 presents the
simulation results. Finally, Section 6 concludes the paper.

2 QUEUE STRUCTURE FOR MuLTICAST VOQ
SWITCHES

As mentioned above, under the existing queuing scheme of a
VOQ switch, each input port needs to maintain 2V — 1
separate queues to handle multicast packets, which makes
the VOQ structure impractical for multicast scheduling. In
the following, we describe a new scheme for organizing
packets in the input buffers of a multicast VOQ switch so that
the number of queues at each input port can be reduced to N.

In general, the main task of a switch includes two
separate functions:

e Scheduling: Deciding for each input port which
output port the packet should be sent to and

PAN AND YANG: FIFO-BASED MULTICAST SCHEDULING ALGORITHM FOR VIRTUAL OUTPUT QUEUED PACKET SWITCHES

Buffer Space
(Data Cells)

Virtual Output Queues
(Address Cells)

1285

Output 0

Output 1

Output 2

Output 3

InputO0 Input1 Input2 Input3

Fig. 2. An example of a 4 x 4 multicast VOQ switch. The left part shows the details of input port 0.

arbitrating when more than one input port requests
for the same output port.

e Data forwarding: Sending the packet data from
input ports to output ports according to the
scheduling decision.

Accordingly, the information that a packet carries can be
divided into two parts. The first part is the data content to
be transferred. The second part is the destination address
information of the packet, which is also used by the switch
to make scheduling decisions. When the switch handles
only unicast traffic, where the data content of a packet
needs to be sent only once from an input port to a single
output port, it is natural to combine the two functions into a
single unit and use it for both scheduling and transmission.
However, when multicast traffic is involved, a packet may
need to be sent to multiple output ports. Although the
destinations are different, the data content to be sent is the
same. Therefore, there is no need to store multiple copies of
the same data content. A more efficient way would be to
store the address and data content of a packet separately:
The data are stored once and used for all destination
addresses of the packet.

We use two different types of cells to store the two parts
of a packet: the data cell to store the data content of the
packet and the address cell to store the destination
information of the packet.

A new data cell is created to store the payload when a
new packet arrives at the switch. Its data structure can be
described as follows:

DataCell {
binary dataContent;
int fanoutCounter;

}

The dataContent field stores the data content of a packet.
Since we assume the incoming traffic includes only fixed
length packets, it can be implemented as a fixed size field.
The fanoutCounter field records the number of destination
output ports that the dataContent is going to be sent to.

When a packet arrives at the switch, the fanoutCounter field
of its data cell is equal to the fanout of the packet. As the
dataContent is sent to part or all of the destinations of the
packet, the number in the fanoutCounter field is decre-
mented accordingly. When it becomes 0, it means that all
the destination output ports have been served and, there-
fore, the data cell can be destroyed so as to return the buffer
space to the switch.

The address cell stores the destination address informa-
tion of a packet. Specifically, an address cell represents one
of the destination output ports of the packet and serves as a
place holder in the virtual output queue corresponding to
that output port. When a new packet with fanout k enters
the switch, k address cells are created for these destination
output ports. The data structure of an address cell can be
described as follows:

AddressCell {
int timeStamp;
pointer pDataCell;
)

The timeStamp field records the arrival time of the
packet that the address cell is related to. It also has extra
precision digits to differentiate the multiple packets of a
single input port arriving in the same time slot. In such a
case, an arbitrary order is given to these packets by
assigning different values to their extra precision digits.
The timeStamp field will be used by the scheduling
algorithm FIFOMS for two purposes: On the one hand,
because all the address cells of the same packet have the
same arrival time, the timeStamp field can be used to
identify the address cells that belong to the same multicast
packet. On the other hand, the time stamp value can be
used as a scheduling criterion of the first-in-first-out
principle, where the address cells of earlier arrived packets
have smaller values.

The pDataCell field is a pointer to the data cell that the
address cell corresponds to. Each address cell points to
exactly one data cell and each data cell may be pointed to by
one or more address cells due to multicast traffic. When an

1286

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10, OCTOBER 2005

TABLE 1
Packet Preprocessing Algorithm

for i=0;i < N;i++) {

if (newPacket.dest[i] == true)
ac = new AddressCell();
ac.timeStamp = currentSlot;
ac.pDataCell = dc;
queueli].enqueue(ac);

Input: A new packet with destination vector dest[/V], in which dest[:] = true means
output port ¢ is one of its destinations.

Output: One data cell in the buffer, and k£ address cells in the virtual output queues,
where £ is the fanout of the multicast packet.

dc = new DataCell(); // generate a new data cell

dc.dataContent = newPacket.payload; // set the dataContent field
dc.fanoutCounter = newPacket.fanout; // set the fanoutCounter field

/I generate the address cell for output port i, and enqueue it

address cell is scheduled to transfer, the input port will
actually send to the corresponding output port the
dataContent of the data cell that the address cell’s
pDataCell field points to.

After explaining the two types of cells used, we now
present the entire picture of the queue structure in a multicast
VOQ switch. In each input port, there is a buffer used to store
the data cells and there are IV virtual output queues to store
the address cells for the NV output ports. All the address cells
in the same virtual output queue are destined for the same
output port and only the address cells at the head of the
queues can be scheduled. If an address cell receives the grant
from a particular output portin the scheduling, the crosspoint
connecting the corresponding input port and output port will
be set and the data cell that the address cell’s pDataCell field
points to will be transferred. After the data are sent, this
address cell is removed from the head of its queue and the
fanoutCounter field of the corresponding data cell is
accordingly decreased by one.

Fig. 2 gives an example of a 4 x 4 multicast VOQ switch.
The input ports and output ports are connected by a
crossbar fabric and the incoming packets are buffered at the
input side. The details of input port 0 are shown in the left
part of the figure, in which there is a buffer for data cells
and four virtual output queues for address cells. The
shaded area of the data cell represents the dataContent field
and the number is the current value of the fanoutCounter.
The number in the address cell stands for the timeStamp
field and the arrow points to its related data cell. Input
port 0 has four packets that have not been fully transferred,
and the packets entered the switch at the first, third, fourth,
and seventh time slots, respectively. The fanout of the first
slot packet is 3 and the packet still needs to be sent to output
ports 0, 1, and 2, the destinations of the third slot packet are
output ports 0 and 3, the destinations of the fourth slot
packet are output ports 2 and 3, and the seventh slot packet
is a unicast packet to output port 1.

3 FIRST-IN-FIRST-OUT MULTICAST SCHEDULING
ALGORITHM (FIFOMS)

By using the modified queue structure, the VOQ switch
can now efficiently handle multicast packets. However,

no appropriate algorithms are available for scheduling
multicast traffic on the VOQ switch. On the one hand,
existing multicast scheduling algorithms for input queued
switches, such as TATRA [11], are based on the single
input queued switch structure and, therefore, suffer from
the HOL blocking. On the other hand, current scheduling
algorithms for VOQ switches, see, for example, iSLIP [2],
PIM [25], 2DRR [19], and SERENA [13], were mainly
designed for unicast traffic because the traditional
VOQ switch queue structure is not suitable for multicast
traffic. The scheduling principle of these scheduling
algorithms is that an input port can only send its packet
to one output port in a single time slot.

In this section, we propose a new multicast scheduling
algorithm, called FIFO Multicast Scheduling (FIFOMS), for
working with the multicast VOQ switch. As will be seen,
the multicast VOQ switch structure completely removes the
HOL blocking and enables FIFOMS to achieve 100 percent
throughput under uniformly distributed traffic. And, at the
same time, FIFOMS utilizes the multicast capability of a
crossbar switch to send a multicast packet to all its
destination output ports in the same time slot whenever
possible, which significantly reduces the multicast latency.

It should be mentioned that, for any multicast scheduling
algorithm, there is an inherent conflict in scheduling. In
order to make use of the multicast characteristics and
achieve short average packet delay, it is preferred that a
multicast packet be sent to all its destination output ports in
the same time slot or, in other words, all the output ports
should choose the same multicast packet in the scheduling
arbitration. However, for the sake of fast scheduling, each
output port should make arbitration concurrently. Then, the
question is: How could the independently made decisions
choose the same packet? FIFOMS solves this problem by
adopting the first-in-first-out rule. It assigns every incoming
packet a timestamp with the value equal to its arrival time
and uses the timestamp as a criterion in the scheduling
arbitration. The timestamp criterion makes the multicast
packets which arrived earlier have a better chance of being
chosen by all their destination output ports when the output
ports make scheduling decisions independently. Next, we

PAN AND YANG: FIFO-BASED MULTICAST SCHEDULING ALGORITHM FOR VIRTUAL OUTPUT QUEUED PACKET SWITCHES

1287

TABLE 2
First-In-First-Out Multicast Scheduling Algorithm

Output: Scheduling decision.

// initialization

do {
/] request step
for all input ports do {
if the input port is free {

for all HOL address cells {

t
}
}
}

// grant step
for all output ports do {

// data transmission
set the crosspoints of the switch fabric;
for all input ports do {

// post-transmission processing
for all input ports do {
for each scheduled address cell {

destroy the data cell;

Input: Input ports with address cell queues and data cell buffers.

initially, all input and output ports are free;

smallestTimeStamp = the smallest timeStamp of all HOL address cells
whose corresponding output ports are free;

if the address cell’s corresponding output port is free AND
its timeStamp is equal to smallestTimeStamp {
the address cell sends a request to the corresponding output port,
with its timeStamp as the weight;

select the smallest time stamp from all its requests;

if there are more than one such requests, randomly select one;

grant the address cell corresponding to the selected request;

mark the output port and the input port of the granted address cell as reserved;

} while some input port and output port pairs match in this round;

find the data cell through the pDataCell pointer field of the scheduled address cell;
send the data cell to all the scheduled output ports;

decrease the fanoutCounter field of the related data cell by 1;
if the data cell’s fanoutCounter field becomes 0 {

remove the address cell from the head of queue;

will describe FIFOMS and its associated packet preproces-
sing algorithm.

3.1 Preprocessing Incoming Packets
In order to fit into the multicast VOQ switch queue
structure, a multicast packet needs to be preprocessed
upon arriving. One data cell is generated in the data buffer
to store the content of the packet. A separate address cell is
generated for each of the destination output ports, with its
timeStamp field assigned the value of the current time slot,
and is put at the end of the corresponding queue.

Details of the packet preprocessing algorithm are
described in Table 1.

3.2 First-In-First-Out Multicast Scheduling
Algorithm (FIFOMS)

Similarly to iSLIP [2] or PIM [25], FIFOMS is an iterative

algorithm, and each iterative round consists of two steps:

e Request—Address cells at each input port make
requests to their destination output ports for
possible transmission.

e Grant—Each output port selects one request from all
the requests it received and grants the transmission
to the corresponding address cell.

However, differently from iSLIP and PIM, the accept
step is not needed in FIFOMS because, in our request step,
all the address cells that make requests must point to the
same data cell. Therefore, only one of the data cells in an
input port can be granted the transmission and there is no
potential conflict in which an input port needs to send more
than one data cell in a single time slot. Thus, in a scheduling
round, FIFOMS has one fewer operational step and less
data exchange between input ports and output ports.

Initially, all the input ports and output ports are free.
After an iterative round, some pairs of input ports and
output ports are matched and marked as “reserved” so that
they are no longer considered in future rounds of the

1288 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10, OCTOBER 2005

Q3

[-] [e
-] [
[-]
[-] [
-]
(-] []
-]

1
H Vo
[
i
.\1 -
[
i
H .
[
H l
. H
==y
H pet o
[
e
-1
H H

Input 0
Ql Q2

Input 1
Q3 Q0 Ql Q2

LI E E B B] R L

..

Q

Qo0

Input 2 Input 3
1 Q2 Q3 Q0 Ql Q2

L) Led | L]

=] [
=] [
(S

-] [2]

Input 2 Input 3
Ql Q2 Q3 Qo Ql Q2 Q3

I G B B B B L | L
Lo | Lol | L Led | B | L

Fig. 3. A simple FIFOMS scheduling example for a 4 x 4 switch. (a) Before scheduling. (b) Request step. (c) Grant step. (d) After transmission.

current time slot. The FIFOMS scheduling algorithm is
described in Table 2 and we will explain each step in more
detail next.

3.2.1 Request Step

In the request step, an input port finds the earliest HOL
address cells of free input ports and gives them priorities to
send transmission requests. There are two possible cases:

1. If the input port is free in the current iterative round,
it simply selects the HOL address cells whose time
stamps are the smallest and whose corresponding
output ports are free. Then, the selected address cells
send requests to their output ports with the
scheduling weight being its time stamp. Note that,
in an input port, there may be more than one such
address cell with the same smallest time stamp
which came from the same multicast packet.

2. Otherwise, if the input port is reserved and some
address cells have been scheduled to transfer in the
earlier rounds of the current time slot, it means that
all the other HOL address cells with the same time
stamp, if there are any, must have made requests in
the earlier rounds but were not selected by the

output ports. Since one input port can send at most
one data cell in a single time slot, the input port can
no longer make requests.

3.2.2 Grant Step

After the request step, each free output port has collected
some requests with different weights. Following the first-in-
first-out rule, an output port grants the request with the
smallest time stamp. It is possible that several requests have
the same smallest time stamp. In this case, the output
randomly selects one to grant.

The iterative rounds of the request and grant steps
continue until there are no possible matchable pairs of free
input ports and free output ports.

3.2.3 Data Transmission

After the scheduling decisions are generated during the
iterative matching rounds in the form of matched input and
output pairs, the corresponding crosspoints connecting the
scheduled input ports and output ports are set and the
input port begins to send the data cell. Note that an input
port may be connected to more than one output port
simultaneously. Thus, the algorithm can fully use the built-
in multicast capability of the crossbar switching fabric.

PAN AND YANG: FIFO-BASED MULTICAST SCHEDULING ALGORITHM FOR VIRTUAL OUTPUT QUEUED PACKET SWITCHES

Control unit

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

\

1289

Data forwarding unit

... Control signals for
vy ¢ setting corsspoints

*—% x

= Output 0

X XK

>X—= Output |

| Comparator | |Comparator | «++ [Comparator | | Control signals
for sending
], Tl T | e as L
! bt }
Virutal output queues with address cells Buffer space with data cells
T _ |
|| - |
|Address Data | |Address Data | see |Addres§ Data |
L L L
Input 0 Input 1 Input N-1

Fig. 4. The overall FIFOMS scheduler can be logically divided into two units, the control unit on the left and the data forwarding unit on the right.

3.2.4 Posttransmission Processing

After the transmission is completed, some postprocessing
work needs to be performed to update the address cells and
data cells that have been transferred. The served HOL
address cells are removed from the heads of their queues
and the fanoutCounter fields of the related data cells are
decreased accordingly. If a data cell’s fanoutCounter field
becomes 0, i.e., it has been sent to all destination output
ports, the data cell is destroyed to return the buffer space.

3.3 A Scheduling Example

Fig. 3 gives a simple example of FIFOMS for a 4 x 4
multicast VOQ switch. For clarity, data cells are not shown
in the figure. Each input port includes four queues of
address cells. The number on each address cell indicates its
time stamp value. Fig. 3a shows the status of the four input
ports after the incoming packets of the current time slot
have arrived. Fig. 3b explains the request step. The address
cells in dashed lines are the earliest HOL address cells in
each input port and each of them makes a request to the
corresponding output port. As a result, output port 0
receives a total of three requests from input ports 0, 1, and 3,
output port 1 receives two requests from input ports 0 and
1, output port 2 receives two requests from input ports 0
and 1, and output port 3 receives one request from input
port 3. Fig. 3c shows the result of the grant step in which
each output port independently selects one of its requests to
grant and makes a random arbitration if there is any
contention. The address cells in gray are the address cells
that receive grants. Since, in this case, all four of the output
ports have made their grant decisions in a single round of
FIFOMS, the algorithm converges and the scheduling for
the current time slot is completed. Otherwise, more rounds
of matching may be needed. At the end of the time slot, the
data cells that the scheduled address cells point to are sent
to the corresponding output ports and the address cells are
removed from the HOL of their queues, as shown in Fig. 3d.

4 HARDWARE IMPLEMENTATION AND COMPLEXITY
ANALYSIS

In this section, we discuss some implementation and
performance issues of the newly proposed scheduling
algorithm and analyze the complexity of the algorithm.

4.1 Hardware Implementation

One important property of a practical scheduling algorithm
is that it should be easy to implement. In the following, we
briefly discuss the hardware implementation of the FIFOMS
scheduler. As can be seen, FIFOMS can be fairly easy to
implement in hardware and, thus, achieves high speed
switching in practice.

The scheduler can be logically divided into two units, as
shown in Fig. 4, corresponding to the scheduling function-
ality and data forwarding functionality, respectively.

In the control unit on the left, the input side consists of all
the address cell queues because the information provided
by the address cells is used for making scheduling
decisions. A comparator is used at each input port to select
the HOL address cells with the smallest time stamp. Since
the comparison operations of each input port do not depend
on each other, it can be performed in parallel. The selected
address cells send their requests with timestamps as
weights to the corresponding output ports. Then, each
output port uses a comparator to select the request with the
smallest timestamp and grants the transmission to the
corresponding address cell. Finally, before the next iterative
round of FIFOMS can start, the grant results of the current
round are fed back to the input ports.

The data forwarding unit consists of the data cell buffer
space and the crossbar switching fabric. The scheduling
decisions made by the control unit are forwarded to the
data forwarding unit as control signals. The output of the
comparator of each input port is used to select, from the
buffer space, which data cell should be sent. And, the
output of the comparator of each output port controls which

1290 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10, OCTOBER 2005

16x16 Switch, Bernoulli Traffic (busyRatio = 0.5)

100 100
¢ OQFIFO S OQFIFO
-©- FIFOMS -©- FIFOMS
> _ || -5 TATRA % .|| = TATRA
& 80 ISLIP 1 8% ISLIP
[a)
el
B B
8 60 4 1 £ 60
e} / o
= =
2 o
2 {1 3 40
= e}
(=] Q
8 &
s @
2 1 22

(@)

16x16 Switch, Bernoulli Traffic (b = 0.5)

50

-¢ OQFIFO

-©- FIFOMS

-5 TATRA
- ISLIP

N
o
N

wW
(=]

Average Queue Size
n
(=]

101

(©

Fig. 5. Simulation results for a 16 x 16 switch under Bernoulli traffic with b
(c) Average queue size. (d) Maximum queue size.

16x16 Switch, Bernoulli Traffic (b = 0.5)

16x16 Switch, Bernoulli Traffic (b = 0.5)

¥ 0.8
Effective Load
(b)
16x16 Switch, Bernoulli Traffic (b = 0.5)

- OQFIFO

- FIFOMS

-E- TATRA
ISLIP

150

34

P

-
(=]
o

Maximum Queue Size
(44
S

4 05 06 07 08 09 1
Effective Load

()

= 0.5. (a) Average input oriented delay. (b) Average output oriented delay.

16x16 Switch, Bernoulli Traffic (b = 0.5)

10 — 10
¢ OQFIFO >« OQFIFO
-©- FIFOMS -©- FIFOMS

> || -5 TATRA | & .|| = TATRA

& ISLIP = 8 ISLIP

(=)

3 3

2 £

3 6 1 & 6

g g

= 3

=1 o

2 4 1 5 a4t

< o]

(=] (0]

g &

s 8

z 2 12

8.4 0.5 0.6 0.7 0.8 0.9 1
Effective Load

(@)

4 0.5 0.6 0.7 0.8 0.9 1
Effective Load

(b)

Fig. 6. Under light traffic load, the average input oriented packet delay of TATRA is slightly shorter than that of FIFOMS, but FIFOMS always
outperforms TATRA on the average output oriented packet delay. (a) Average input oriented delay. (b) Average output oriented delay.

crosspoint should be set to connect a particular input port
with this output port.

4.2 Space Complexity of the Algorithm

As has been seen, by separately storing the data and address
information of a packet, a VOQ switch is able to handle
multicast traffic efficiently. The multicast VOQ switch saves
buffer space by storing only one copy of the data content of a
multicast packet. Compared to the single input queued

switch, the multicast VOQ switch consumes slightly more
storage space. The main cost comes from the separately stored
multiple address cells of a packet, in which case, a single
packet may need up to N times the size of an address cell.
Fortunately, the data structure of an address cell only
includes an integer field and a pointer field and a small

constant number of bytes should be sufficient.

PAN AND YANG: FIFO-BASED MULTICAST SCHEDULING ALGORITHM FOR VIRTUAL OUTPUT QUEUED PACKET SWITCHES

4.3 Time Complexity of the Algorithm

The time complexity for preprocessing an arriving packet is
O(N) because, when a multicast packet arrives at the
switch, up to N address cells may need to be created.
Stiliadis [28] pointed out the potential memory speedup
problem, but, since the destinations of a packet are
independent and an address cell is comprised of only a
few bytes, the operation can be done in parallel by
hardware to achieve O(1) complexity. Furthermore, the
preprocessing of new packets can be overlapped with the
scheduling and the switching in the switch. Thus, it would
not introduce extra time delay.

The most time consuming operation in each iterative
round of FIFOMS is for an input port to find the smallest
time stamp from those of all the HOL address cells and for
an output port to select the request with the smallest
timestamp. If the operation is executed in a serial fashion,
the time complexity is O(N). If we use the parallel
comparators as in the WBA scheduler [20], the time
complexity can be reduced to O(1).

The convergence time has been a major concern for
iterative matching algorithms like FIFOMS. In the worst
case, FIFOMS runs N rounds to converge because, in each
round, at least one output port is scheduled for receiving a
data cell from an input port and will not be considered any
more in the future rounds of the current time slot. But, as
will be seen later in the simulation results section in Fig. 7,
for the average case, the convergence rounds of FIFOMS is

1291

16x16 Switch, Bernoulli Traffic (b = 0.5)

_

6
-©- FIFOMS
A ISLIP

- - -
o N S

(2]

Average Rounds for Convergence
[ec]

O AN

0. 0.7 08 0.9 1

Effective Load
Fig. 7. Average convergence rounds of FIFOMS and iSLIP for a 16 x 16
switch under Bernoulli Traffic with b = 0.5.

much smaller than N. And, we have an interesting
observation that FIFOMS and iSLIP require almost the
same number of rounds to converge under a relatively light
traffic load.

5 SIMULATION RESULTS

We have conducted extensive simulations to compare the
performance of FIFOMS with three other scheduling

16x16 Switch, Bernoulli Traffic (b = 0.2)

100 100
- OQFIFO - OQFIFO
-©- FIFOMS . -©- FIFOMS

- -5 TATRA 3 -5 TATRA

& 80y ISLIP = 8] ISLIP

= -

@ 2

E 60 _é 60

2 s

- -

= o

2 40 3 40

Q

=) [}

g &

g 20 g 20

< 2 7

Y 07 o
Effective Load

(@)

16x16 Switch, Bernoulli Traffic (b = 0.2)
50 :

- OQFIFO

-©- FIFOMS

-5 TATRA
ISLIP

N
o

W
o

n
o

Average Queue Size

—_
o

16x16 Switch, Bernoulli Traffic (b = 0.2)

0.6 7 0.
Effective Load
(b)
16x16 Switch, Bernoulli Traffic (b = 0.2)

—*- OQFIFO

-©- FIFOMS

-5 TATRA
ISLIP

100

50

Maximum Queue Size

05 “ 07 o8
Effective Load

(©

0.6 0.7 i
Effective Load

(@)

Fig. 8. Simulation results for a 16 x 16 switch under Bernoulli traffic with b = 0.2. (a) Average input oriented delay. (b) Average output oriented delay.

(c) Average queue size. (d) Maximum queue size.

1292

16x16 Switch, Uniform Traffic (maxFanout = 1)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10,

OCTOBER 2005

16x16 Switch, Uniform Traffic (maxFanout = 1)

100 — 100 —

- OQFIFO - OQFIFO

-©- FIFOMS -S- FIFOMS
> - TATRA > -5 TATRA
& 80j ISLIP = 80j ISLIP
a
3 8
5 60 & 60
5 5 ‘
-1 3
= a
£ 40 g 40
(]
(=] Q
g &
[e 2 g
>) [}
z 20 ,/)/" z 2

o Bra.,
‘,3_,_\,_&‘/}['\ 2 r_\—J—ua‘—’(')'(" P e P W .

874 05 06 0.7
Effective Load

()

16x16 Switch, Uniform Traffic (maxFanout = 1)

50

0.8 0.9 1

"~ 06 0.7 0.8
Effective Load

(b)

16x16 Switch, Uniform Traffic (maxFanout = 1)

QFIFC 150 .
- OQFIFO . sES
g g -©- FIFOMS
iiaaieling -5 TATRA
1SLP ISLIP
8 (0]
N 8
% o 100}
2 30f 0
g [
5 =
g G
S £
(=] L
g 20 5
2 % 50
= =
10+
a3 a/rEi /_J—\'f-\——(—‘/r:' F- - A:__C//V\,J-\—/—’\/e’@
g‘.4 05 6 8 0.9 1 84 0.5 0.6 0.7 0.8 0.9 1

0. 0.7 0.
Effective Load

(©

Effective Load

(d)

Fig. 9. Simulation results for a 16 x 16 switch under uniform traffic with maxFanout = 1. (a) Average input oriented delay. (b) Average output oriented
delay. (c) Average queue size. (d) Maximum queue size.

algorithms: TATRA [11], iSLIP [2], and a simple FIFO
scheduling algorithm on the output queued switch structure:

TATRA is a multicast scheduling algorithm based on
the single input queued switch structure. By mini-
mizing the number of input ports with the set of cells
that lose contention for output ports and remain at
the HOL of the input queues in each cycle, it
achieves short multicast latency and is free of
starvation as well. Through the comparison with
TATRA, we demonstrate that FIFOMS successfully
removes the HOL blocking, which restricts the
maximum throughput TATRA can reach.

iSLIP is a scheduling algorithm mainly designed for
unicast traffic based on the VOQ switch structure.
iSLIP was originated from PIM [25] and achieves
better performance by desynchronizing round-robin
schedules. Under heavy load, the round-robin
pointers of different input/output ports automati-
cally point to different output/input ports so that
there is no conflict and fast scheduling decisions can
be made. In the simulations, iSLIP schedules a
multicast packet as separate (independent) unicast
packets. Through the comparison with iSLIP, we
show that FIFOMS can make use of the character-
istics of multicast traffic and take advantage of the
multicast capability of the crossbar switch. As a
result, FIFOMS has much shorter average packet
delay than iSLIP for multicast traffic.

In
statis

As discussed in the introduction section, the output
queued switch structure is known to be superior to
the input queued structure in performance, but
requires N times faster switching ability. Despite its
much stronger hardware requirement, in our simu-
lations, we also include a simple FIFO scheduling
algorithm on the output queued structure (OQFIFO)
as an ultimate performance benchmark for FIFOMS.

the simulations, we collect the following four types of
tics:

Average input oriented delay: A multicast packet may
be transmitted to its different destination output ports
at different time slots. Input oriented delay is the
longest delay among all the destinations of a multicast
packet and represents the transmission latency from
the sender’s point of view. Consequently, average
input oriented delay is the average maximum delay
for all the packets entering the switch.

Average output oriented delay: Average output
oriented delay represents the transmission latency
from the receiver’s point of view. It can be computed
as the average of the arrival-to-departure time
intervals of all the packets.

Average queue size: Average queue size tells how
long a new incoming packet needs to wait before
transmission and it also reflects the space require-
ment of the algorithm. Since TATRA is based on the
single input queued switch, its queue size is the

PAN AND YANG: FIFO-BASED MULTICAST SCHEDULING ALGORITHM FOR VIRTUAL OUTPUT QUEUED PACKET SWITCHES

16x16 Switch, Uniform Traffic (maxFanout = 8)

1293

16x16 Switch, Uniform Traffic (maxFanout = 8)

100

-©- FIFOMS
| = TATRA
ISLIP

> OQFIFO r

@
o

D
o

N
o

Average Input Oriented Delay

Effective Load

(a)

16x16 Switch, Uniform Traffic (maxFanout = 8)
50

- OQFIFO

- FIFOMS

-E- TATRA
ISLIP

N
o

W
o

Average Queue Size
n
o

—_
o

100

> OQFIFO
-©- FIFOMS
> -5 TATRA
= 80] ISLIP
kel
ki
& 60
o]
=
o
g 40
[}
g F
2 20
< d

(b)

16x16 Switch, Uniform Traffic (maxFanout = 8)

150 T
- OQFIFO
-~ FIFOMS
-B- TATRA
ISLIP

[

N

(2]

[}

=

[}

>

€}

£

=]

£

<

I}

=

06 _ 07
Effective Load

(©

Fig. 10. Simulation results for a 16 x 16 switch under uniform traffic with

oriented delay. (c) Average queue size. (d) Maximum queue size.

length of the single queue of each input port. For
FIFOMS and iSLIP, the queue size is defined as the
number of data cells in the buffer of an input port, in
the sense of how many unsent packets an input port
needs to hold.

e Maximum queue size: Maximum queue size gives
the maximum buffer space for an algorithm to work
without dropping packets at the input side and is
equal to the longest length of all the queues
throughout the simulation run.

All the simulated switches are assumed to operate in a
discrete time slot manner with fixed size packets. In each
simulation run, there is a sufficient warmup period
(typically half of the total simulation time) to obtain stable
statistics. The simulation runs for a fixed amount of
simulation time (10%) unless the switch becomes unstable
(i.e., the switch reaches a stage where it is not able to sustain
the offered load).

In order to compare the performance of the algorithms in
various networking environments, we consider several
different types of traffics, including Bernoulli traffic, uni-
form traffic, geometric traffic, and burst traffic.

5.1 Simulation Results under Bernoulli Traffic

The Bernoulli traffic is one of the most widely used traffic
models in the simulation of scheduling algorithms. A
Bernoulli traffic can be described using two parameters, p
and b. p is the probability that an input port is busy at a time

0.6 0.7
Effective Load

(d)

maxFanout = 8. (a) Average input oriented delay. (b) Average output

slot, i.e., the probability an input port has some packet to
arrive at the beginning of a time slot. (p in the description of
other traffic models has the same meaning.) And, a packet
has the probability of b of being addressed to each output
port. Therefore, for an N x N switch, the average fanout of
a multicast packet is b x N and the effective load is
pxbxN.

The simulation results for a 16 x 16 switch under the
Bernoulli traffic with b =0.5, which means that the
incoming packet is uniformly distributed over all possible
multicast destinations and a series of different p values, are
shown in Fig. 5. As can be seen from the figure, in terms of
input and output oriented average packet delays, FIFOMS
closely matches OQFIFO, which has the best performance.
In addition, FIFOMS outperforms all three of the other
algorithms in terms of both average queue size and
maximum queue size. On the other hand, due to the HOL
blocking in the single input queued switch structure that
TATRA is based on, when the effective load goes beyond
90 percent, the delay of TATRA increases dramatically and
it becomes unstable. It can also be observed that iSLIP has a
much longer average packet delay than all the other
algorithms. This is because iSLIP is a scheduling algorithm
specially designed for unicast traffic.

Although it is hard to notice, we would like to point out
that, under a light traffic load, the average input oriented
packet delay of TATRA is slightly better than that of
FIFOMS, as shown in Fig. 6a. The reason is that TATRA

1294

16x16 Switch, Uniform Traffic (maxFanout = 16)
100

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10,

OCTOBER 2005

16x16 Switch, Uniform Traffic (maxFanout = 16)

— OQFIFO
-&- FIFOMS
| -5 TATRA
ISLIP

o]
o

(o2}
o

I
o

Average Input Oriented Delay

(a)

16x16 Switch, Uniform Traffic (maxFanout = 16)
50 T T : .

—> OQFIFO

-5~ FIFOMS

-=- TATRA
ISLIP

N
o

wW
o

n
o

Average Queue Size

—_
o

S0k

100

-5~ FIFOMS
-5 TATRA
ISLIP

> OQFIFO ‘ /

@
o

[o2]
o

N
o

Average Output Oriented Delay

n
o

" Effective Load
(b)

16x16 Switch, Uniform Traffic (maxFanout = 16)
150 :

> OQFIFO |
-© FIFOMS
-5 TATRA
ISLIP

Q

N

n

[0

=

[

3

5

£

-

£

x

©

s

E 0.7 0.8
Effective Load
(c)

Fig. 11. Simulation results for a 16 x 16 switch under uniform traffic with
oriented delay. (c) Average queue size. (d) Maximum queue size.

does not adopt a strict FIFO discipline and the cells in its
Tetris box can move back and forth. The Tetris box of
TATRA is comprised of N x N small blocks and each of its
columns holds cells to a specific output port. The column of
the Tetris box is different from the ordinary FIFO queue and
a cell is allowed to jump ahead of other cells in the same
column if necessary. For all HOL packets, a cell is inserted
into the column corresponding to each destination output
port of the packet. When an HOL multicast packet cannot
be sent to all its destinations in a single time slot, its cells
can be moved backward to make space for those packets
that can fully pass the switch in the time slot. This operation
does not increase the input-oriented delay of the original
packet, but can accelerate the transmission of other packets.
However, if we take a look at the average output oriented
packet delay in Fig. 6b, FIFOMS always outperforms
TATRA under any traffic loads, which justifies the multicast
scheduling mechanism of FIFOMS.

Fig. 7 compares the convergence rounds between
FIFOMS and iSLIP. We can see that, when the load is less
than 90 percent, the convergence rounds of both FIFOMS
and iSLIP are not sensitive to the increase of the traffic and
are much smaller than N (= 16). Also, it is interesting to
notice that FIFOMS and iSLIP take roughly the same
number of iterative rounds to converge. To be more specific,
FIFOMS outperforms iSLIP until the effective load reaches
above 90 percent, under which iSLIP has become unstable.

(d)

maxFanout = 16. (a) Average input oriented delay. (b) Average output

The simulation results for a 16 x 16 switch under the
Bernoulli traffic with b = 0.2 is shown in Fig. 8. We can see
that, as b decreases, the performance of TATRA is more
affected by the HOL blocking, which leads TATRA to
saturate at about 80 percent effective load.

5.2 Simulation Results under Uniform Traffic

In real-world applications, the fanout of most multicast
connections is limited by some upper bound value instead
of being uniformly distributed over all the possible
destinations. In this case, we can use the uniform traffic
with a restricted maximum fanout to capture these
characteristics.

Uniform traffic can be described using two parameters, p
and maxFanout, where maxFanout is the maximum
possible fanout of any incoming packet. The fanout of a
packet is uniformly distributed from 1 to mazFanout and
the individual destination output ports are randomly
selected from all the N output ports. Thus, for an N x N
switch, the average fanout is (1 + mazFanout)/2 and the
effective load is p x (1 + mazFanout)/2.

Fig. 9 shows the simulation results when maxz Fanout is set
to 1, which makes the traffic become the pure unicast traffic.
There is no doubt that the well-known unicast scheduling
algorithm iSLIP achieves short average packet delay.
Although mainly designed for multicast traffic, FIFOMS
manages to match and even surpass iSLIP on average packet
delay and is the best in terms of buffer requirement. On the
contrary, the performance of TATRA is severely affected by

PAN AND YANG: FIFO-BASED MULTICAST SCHEDULING ALGORITHM FOR VIRTUAL OUTPUT QUEUED PACKET SWITCHES

16x16 Switch, Geometric Traffic (q = 0.5)

1295

16x16 Switch, Geometric Traffic (q = 0.5)

100 : 100 ,
¢ OQFIFO ¢ OQFIFO
-©- FIFOMS -©- FIFOMS
-5 TATRA -5 TATRA
80y, ISLIP 80y, ISLIP

60

40

Average Input Oriented Delay

60

40

Average Output Oriented Delay

20 20
A gl
f—a—a—= Gt ‘
§a 05 8% 05 0.6 0.7 0.8 0.9 1
Effective Load
(a) (b)
I 16x16 Switch, Geometric Traffic (q = 0.5) 16x16 Switch, Geometric Traffic (q = 0.5)
; ‘ ‘ ‘ 150 ‘ ‘
- OQFIFO >~ OQFIFO
-© FIFOMS -© FIFOMS
a0l 5 TATRA 5 TATRA
ISLIP ISLIP
I 2
17} @ 100
230 2
[[}
-) =
s} <}
@ €
g2 :
3 é 50)|
10)
B : .) ‘ ‘
4 4 0.5 0.6 0.7 0.8 0.9 1

©

Effective Load

(d)

Fig. 12. Simulation results for a 16 x 16 switch under geometric traffic with ¢ = 0.5. (a) Average input oriented delay. (b) Average output oriented

delay. (c) Average queue size. (d) Maximum queue size.

the HOL blocking; it can only reach a maximum effective load
of about 55 percent, which is consistent with the theoretical
analysis result of 58.6 percent in [27].

Simulations are also conducted under the uniform traffic
with mazFanout equal to 8 and 16 and the corresponding
results are shown in Fig. 10 and Fig. 11, respectively. In all
cases, FIFOMS consistently gives a satisfactory perfor-
mance. It has the shortest average packet delay (both input
oriented and output oriented) among the three input
queued scheduling algorithms and even excels OQFIFO
on buffer requirement. It also can be observed that, as the
maxFanout value becomes larger, TATRA has better
performance because it has more choices of where to move
the cells in the Tetris box.

5.3 Simulation Results under Geometric Traffic

Alternatively, the geometric traffic can be used to simulate
the behavior of different algorithms under small fanout
dominated multicast traffic. The fanout of an incoming
packet follows the following truncated geometric distribu-
tion and the individual destination output ports are
randomly selected from all the NV output ports. A truncated
geometric traffic can be described using two parameters p
and ¢, where ¢ is the ratio of the probability of the packets
with fanout £ to the probability of the packets with fanout
E—1(1<k<N).

U-de §f1<k<N
Pr{fanout = k} = 0 =% othererise.

Thqrefore, for an N x N switch, the average fanout is

e KL= q)" /(1= ¢") = 1/(1 - q) — Ng"/(1 — ¢) and
the effective load is p x (1/(1 —q) — N¢" /(1 —¢")).

The simulation results for a 16 x 16 switch under the
geometric traffic with ¢ = 0.5 are shown in Fig. 12. FIFOMS
and OQFIFO have the shortest average packet delay and the
smallest buffer requirement, whereas the HOL blocking
makes the TATRA the first algorithm to become unstable at
an effective load of about 70 percent. Although iSLIP has a
relatively large packet delay, it is not so sensitive to the
increasing load of the traffic compared to TATRA.

5.4 Simulation Results under Burst Traffic

In practice, network packets are usually highly correlated
and tend to arrive in a burst mode. For a discrete time slot
switch, we generally use a two state Markov process which
alternates between the off and on states to describe the burst
nature. In the off state, there is no packet to arrive. In the on
state, packets arrive at every time slot and all have the same
destinations. At the end of each slot, the traffic can switch
between the off and on states independently. A burst traffic
can be described using three parameters, E,, E,,, and b.
Eopy is the average length of the off state or, alternatively,
the probability of switching from the off state to the on state
is 1/Eys. E,p is the average length of the on state or the
probability of switching from the on state to the off state is
1/E,,. b is the probability of a packet being addressed to a
specific output port. Therefore, for an N x N switch, the

1296

16x16 Switch, Burst Traffic (b = 0.5)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10,

OCTOBER 2005

16x16 Switch, Burst Traffic (b = 0.5)

100 : 100 :

% OQFIFO % OQFIFO
-©- FIFOMS . -©- FIFOMS

> -5 TATRA > - TATRA

& 80y ISLIP z 8 ISLIP

e b

Q 2

5 60 § 60

S S

-— o 4

= Qo

g a0t 3 40f

S ©

g g

5 g

Z 20 E 20¢

%

0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 0.7
Effective Load Effective Load
(a) (b)
16x16 Switch, Burst Traffic (b = 0.5) 16x16 Switch, Burst Traffic (b = 0.5)
50 . T : . .) E
150 : ! : - .
%~ OQFIFQ — OQFIFO
-©- FIFOMS -©- FIFOMS
40 -5~ TATRA = TATRA
ISLIP
[0} ()
N N
7] ® 106
230 g
[()
3 =3
a a
) £
) =]
o £
g e
< =

Effective Load

(©)

0.2 0.3 0.4 0.5 0.6
Effective Load

(d)

0.7

Fig. 13. Simulation results for a 16 x 16 switch under burst traffic with b = 0.5. (a) Average input oriented delay. (b) Average output oriented delay.

(c) Average queue size. (d) Maximum queue size.

average fanout is b x N, the arrival rate is E,, /(E,fr + Eon),
and the effective load is b x N x E,,/(E,s; + E,y). For easy
comparison, we set E,, to be the same value, 16, as in [11].

The simulation results fora 16 x 16 switch with b = 0.5 are
shown in Fig. 13. Due to the burst nature, iSLIP saturates at so
small a value that it cannot even be seen in the first two
graphs, which is consistent with the theoretical analysis of
[18]. As to average packet delay, FIFOMS outperforms
TATRA, butis not as good as OQFIFO. As under other traffic
modes, FIFOMS has the smallest queue space.

6 CONCLUSIONS

In this paper, we first gave a novel scheme to organize the
multicast packets in input buffers of a VOQ switch. By
separately storing the address and data of a packet, the new
queue structure enables the VOQ switch to handle multicast
traffic efficiently because it reduces the number of queues
an input port needs to manages from exponential to linear
and, at the same time, it keeps all existing advantages of the
VOQ switch.

In conjunction with the multicast VOQ switch, we also
designed a multicast scheduling algorithm, FIFO Multicast
Scheduling (FIFOMS). The main features of FIFOMS can be
summarized as follows:

e Performs well under both multicast and unicast
traffic: FIFOMS is designed for scheduling multicast

traffic and fully uses the inherent multicast cap-
ability of the crossbar switch. Furthermore, even
under the pure unicast traffic, the performance of
FIFOMS can also match the specifically designed
unicast scheduling algorithms.

e Achieves 100 percent throughput under uniformly
distributed traffic: Under uniform 100 percent
offered load, all the N x N virtual output queues
have sustaining backlogs. As a result, each output
port can receive one data cell in each time slot and,
therefore, FIFOMS achieves 100 percent throughput.

e Starvation free: Because of the FIFO property, FIFOMS
provides a fairness guarantee. In other words, the time
a packet can stay in the switch is bounded by a
maximum value since an address cell will definitely
get scheduled after all its competitors are served,
which includes the earlier address cells in the other
queues of the same input port and the earlier address
cells in the virtual queues corresponding to the same
output port of the other input ports.

e Enables fanout splitting: The destination output
ports of a multicast packet can be served in separate
time slots. It is allowed to send the data cell to some
output ports in a slot and leave others for later slots.
Fanout splitting is necessary for an algorithm to
achieve high throughput under multicast traffic.

We have conducted extensive simulations to compare
the performance of FIFOMS with other popular scheduling

PAN AND YANG: FIFO-BASED MULTICAST SCHEDULING ALGORITHM FOR VIRTUAL OUTPUT QUEUED PACKET SWITCHES

algorithms. And, the results fully demonstrate the super-
iority of FIFOMS in both the average packet delay and the

queue space requirement.

ACKNOWLEDGMENTS

This research was supported in part by the US National
Science Foundation under grant numbers CCR-0073085,
CCR-0207999, and ECS-0427345.

REFERENCES

[1] H. Eriksson, “MBONE: The Multicast Backbone,” Comm. ACM,
vol. 37, no. 8, pp. 54-60, 1994.

[2] N.McKeown, “The iSLIP Scheduling Algorithm for Input-Queued
Switches,” IEEE/ACM Trans. Networking, vol. 7, no. 2, pp. 188-201,
1999.

[3] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand,
“Achieving 100% Throughput in an Input Queued Switch,” IEEE
Trans. Comm., vol. 47, no. 8, pp. 1260-1267, 1999.

[4] R. Sivaram, C.B. Stunkel, and D.K. Panda, “HIPIQS: A High-
Performance Switch Architecture Using Input Queuing,” IEEE
Trans. Parallel and Distributed Systems, vol. 13, no. 3, pp. 275-289,
Mar. 2002.

[5] H. Chao, B. Choe, J. Park, and N. Uzun, “Design and
Implementation of Abacus Switch: A Scalable Multicast ATM
Switch,” IEEE . Selected Areas in Comm., vol. 15, no. 5, pp. 830-843,
1997.

[6] W. Chen, C. Huang, Y. Chang, and W.-Y. Hwang, “An Efficient
Cell-Scheduling Algorithm for Multicast ATM Switching Sys-
tems,” IEEE/ACM Trans. Networking, vol. 8, no. 4, pp. 517-525,
2000.

[71 M. Andrews, S. Khanna, and K. Kumaran, “Integrated Scheduling
of Unicast and Multicast Traffic in an Input-Queued Switch,” Proc.
IEEE INFOCOM 99, vol. 3, pp. 1144-1151, Mar. 1999.

[8] G.Han and Y. Yang, “A Random Graph Approach for Multicast
Scheduling and Performance Analysis,” Proc. IEEE Int’l Conf.
Computer Comm. and Networks (ICCCN '03), pp. 270-275, Oct. 2003.

[9] Z.Zhang and Y. Yang, “Multicast Scheduling in WDM Switching
Networks,” Proc. IEEE Int’l Conf. Comm. (ICC '03), pp. 1458-1462,
May 2003.

[10] S. Keshav and R. Sharma, “Issues and Trends in Router Design,”
IEEE Comm. Magazine, vol. 36, no. 5, pp. 144-151, 1998.

[11] R. Ahuja, B. Prabhakar, and N. McKeown, “Multicast Scheduling
Algorithms for Input-Queued Switches,” IEEE]. Selected Areas in
Comm., vol. 15, no. 5, pp. 855-866, 1997.

[12] P. Giaccone, B. Prabhakar, and D. Shah, “An Efficient Rando-
mized Algorithm for Input-Queued Switch Architecture,” Proc.
IEEE Hot Interconnects 9, Aug. 2001.

[13] P. Giaccone, B. Prabhakar, and D. Shah, “Towards Simple, High
Performance Schedulers for High-Aggregate Bandwidth
Switches,” Proc. IEEE INFOCOM 02, June 2002.

[14] J.G. Dai and B. Prabhakar, “The Throughput of Data Switches
with and without Speedup,” Proc. IEEE INFOCOM '00, vol. 2,
pp- 556-564, Mar. 2000.

[15] D. Shah, “Maximal Matching Scheduling Is Good Enough,” Proc.
IEEE INFOCOM ’03, Dec. 2003.

[16] E.Leonardi, M. Mellia, M. Ajmone Marsan, and F. Neri, “Stability
of Maximal Size Matching Scheduling in Input-Queued Cell
Switches,” Proc. IEEE Int’l Conf. Comm. (ICC '00), vol. 3, pp. 1758-
1763, June 2000.

[17] E. Leonardi, M. Mellia, F. Neri, and M.A. Marson, “Bounds on
Average Delays and Queue Size Averages and Variances in Input-
Queued Cell-Based Switches,” Proc. IEEE INFOCOM 01, vol. 2,
pp- 1095-1103, Aug. 2001.

[18] S. Li, “Performance of a Nonblocking Space-Division Packet
Switch with Correlated Input Traffic,” IEEE Trans. Comm., vol. 40,
no. 1, pp. 97-108, 1992.

[19] R. LaMaire and D. Serpanos, “Two Dimensional Round-Robin
Schedulers for Packet Switches with Multiple Input Queues,”
IEEE/ACM Trans. Networking, vol. 2, pp. 471-482, 1994.

[20] B. Prabhakar, N. McKeown, and R. Ahuja, “Multicast Scheduling
for Input-Queued Switches,” IEEE]. Selected Areas in Comm.,
vol. 15, no. 5, pp. 855-866, 1997.

1297

[21] N. McKeown and B. Prabhakar, “Scheduling Multicast Cells in an
Input Queued Switch,” Proc. IEEE INFOCOM ’96, vol. 1, pp. 261-
278, Mar. 1996.

[22] N. McKeown, “A Fast Switched Backplane for a Gigabit Switched
Router,” Business Comm. Rev., vol. 27, no. 12, 1997.

[23] C. Partridge et al., “A 50-Gb/s IP Router,” IEEE/ACM Trans.
Networking, vol. 6, no. 3, pp. 237-248, 1998.

[24] N. McKeown, M. Izzard, A. Mekkittikul, B. Ellesick, and M.
Horowitz, “The Tiny Tera: A Packet Switch Core,” IEEE Micro,
vol. 17, no. 1, pp. 26-33, Feb. 1997.

[25] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High-Speed
Switch Scheduling for Local-Area Networks,” ACM Trans.
Computer Systems, vol. 11, no. 4, pp. 319-352, Nov. 1993.

[26] Y. Tamir and G. Frazier, “High Performance Multi-Queue Buffers
for VLSI Communication Switches,” Proc. 15th Ann. Symp.
Computer Architecture, pp. 343-354, June 1988.

[27] M.]. Karol, M.]. Hluchyj, and S.P. Morgan, “Input versus Output
Queueing on a Space-Division Packet Switch,” IEEE Trans. Comm.,
vol. 35, pp. 1347-1356, 1987.

[28] D. Stiliadis, “Efficient Multicast Algorithms for High-Speed
Routers,” Proc. IEEE Workshop High Performance Switching and
Routing (HPSR '03), pp. 117-122, June 2003.

Deng Pan received the BS and MS degrees in
computer science from Xian Jiaotong Univer-
sity, China, in 1999 and 2002, respectively. He
is currently studying toward the PhD degree in
computer science at the State University of
New York at Stony Brook. His research inter-
ests include multicast scheduling and QoS
guaranteed scheduling. He is a student member
of the IEEE.

Yuanyuan Yang received the BEng and MS
degrees in computer science and engineering
from Tsinghua University, Beijing, China, and
the MSE and PhD degrees in computer science
from Johns Hopkins University, Baltimore,
Maryland. She is a professor of computer
engineering and computer science at the State
University of New York at Stony Brook. Dr.
Yang’s research interests include parallel and
distributed computing and systems, high-speed
networks, optical and wireless networks, and high-performance
computer architecture. Her research has been supported by the US
National Science Foundation (NSF) and US Army Research Office
(ARO). Dr. Yang has published extensively in major journals and
refereed conference proceedings and holds six US patents in these
areas. She is an editor for the IEEE Transactions on Parallel and
Distributed Systems and an editor for the Journal of Parallel and
Distributed Computing. She has served on NSF review panels and the
program/organizing committees of numerous international conferences
in her areas of research. She is a senior member of the IEEE and a
member of the IEEE Computer Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

