
Buffer Management for Lossless Service in Network Processors

Deng Pan and Yuanyuan Yang

ABSTRACT

Fair scheduling and buffer management are two typical
approaches to provide differentiated service. Fair scheduling
algorithms usually need to keep a separate queue and maintain
associated state variables for each incoming flow, which make
them difficult to operate and scale in high speed networks. On
the contrary, buffer management and FIFO scheduling need only
a constant amount of state information and processing, and can
be efficiently implemented. In this paper, we consider using
buffer management to provide lossless service for guaranteed
performance flows in network processors. We investigate the
buffer size requirement and buffer allocation strategies by starting
with the single output network processor and then extending
the analytical results to the general multiple output network
processor. A universally applicable buffer allocation method for
assuring lossless service is obtained, and the correctness of the
theoretical results is verified through simulations.
Keywords: Buffer management, network processor, differenti-
ated service, lossless service

I. I NTRODUCTION

There has been a lot of research in providing differentiated ser-
vice, focusing on fair scheduling and buffer management. Fair
scheduling algorithms [1] [2] [3] organize incoming packets on
a per flow basis, and emulate the ideal GPS [4] model to fairly
schedule the packets of each flow according to its reserved band-
width. By using different methods, such as time stamp or round
robin, they can reach different levels of fairness guarantee with
different costs. However, it has been reported in [5] that there ex-
ists a fundamental tradeoff between the delay bound that an algo-
rithm can achieve and its computational complexity, which means
that fair schedulers either suffer from long worst case delay or
high complexity. Furthermore, fair scheduling algorithms have
to keep a separate queue and maintain associated state variables
for each flow. This requirement makes them difficult to scale or
implement in high speed networks. The traditional FIFO sched-
uler can perform scheduling quickly, but may not schedule the
flows in a fair way. However, in conjunction with proper buffer
management methods, the simple FIFO scheduler can also pro-
vide differentiated service [6] [7]. (Unfortunately, Proposition 2
and its consequent results in Section 2 of [6] were wrong, which
we provide corrections in this paper.) Buffer management offers
protection to guaranteed performance flows as the first defense
line, by preventing other flows from injecting excessive number
of packets. The FIFO scheduler and buffer management typically
require only a constant amount of processing and state informa-
tion [6], and are able to work in a high speed environment.

On the other hand, network processors [8] [9] [10] have been
demonstrating advantages as specialized equipment for efficiently
processing packet admission, classification and transmission. Due

This research was supported by the U.S. National Science Foundation under
grant numbers CCR-0073085 and CCR-0207999.

Deng Pan is with Dept. of Computer Science, State University of New York,
Stony Brook, NY 11794, USA.

Yuanyuan Yang is with Dept. of Electrical and Computer Engineering, State
University of New York, Stony Brook, NY 11794, USA.

to their special characteristics, network processors are required to
work with high speed and be cheaply implementable and easily
scalable. In this paper, we discuss using buffer management to
provide lossless service in network processors. The considered
network processor may have a single output or multiple outputs.
Each output runs a simple FIFO scheduler, and transmits pack-
ets from a shared buffer, where the packets of all the incoming
flows are stored. Among the incoming flows, some are guaran-
teed performance flows that are compliant to specific traffic shap-
ing schemes and require lossless service. The rest incoming flows
are best effort flows, which may be aggressive and inject packets
to any empty space it can access.

There have been some buffer management methods [11] [12]
[13] proposed in the literature, but they mostly target improving
buffer utilization and minimizing packet loss. Our objective in
this paper is to ensure lossless service for the guaranteed per-
formance flows by investigating the buffer size requirement and
buffer allocation strategies. Our analysis starts with the the single
output network processor, and extends to the more general case
where the network processor may have multiple outputs and mul-
ticast incoming flows. A universally applicable buffer allocation
solution for ensuring lossless service is obtained, and its correct-
ness is verified by simulation.

II. PRELIMINARIES

In this section, we give some definitions and properties that will
be used in this paper.

A. Traffic Shaping Schemes

Traffic shaping is necessary for the guaranteed performance
flow when lossless service is considered. It is obvious that if a
flow has unrestricted input rate or it can have burst arrival of arbi-
trary size, there is no way to ensure lossless service. Instead, the
incoming guaranteed performance flow should be compliant with
or restricted by some traffic shaping scheme. In this paper, we
consider two traffic shaping schemes: the peak rate scheme and
the leaky bucket scheme.

We say a flow is peak rateρ compliant if during any time in-
terval of lengtht, the amount of traffic that it injects into the net-
work is less than or equal toρt. In other words, the flow has a
maximum input rateρ, and in order to ensure lossless service, a
reserved bandwidthρ is required along the transmission path of
the flow.

Another more efficient traffic shaping scheme is the leaky
bucket scheme [14]. A flow is said to be leaky bucket(ρ, σ)
compliant if during any time interval of lengtht, the traffic that
it injects into the network is less than or equal toρt + σ. As in-
dicated by the formula,ρ represents the long term average trans-
mission rate of the flow, whileσ defines the maximum size of an
instantaneous burst. Since real network traffic is usually in a burst
mode, the leaky bucket scheme is more efficient than the peak rate
scheme in the sense that it can use the bucket to hold the burst and
requires lower reserved bandwidth.

It is interesting to note that the peak rate scheme can be viewed
as a special case of the leaky bucket scheme with the burst size
equal to zero.

Property 1: A peak rateρ compliant flow is leaky bucket(ρ,0)
compliant.

B. Logical Traffic Combination
In order to simplify the analysis of a group of flows destined

to the same destination, we define the combination of multiple
flows to be a logical flow whose traffic is the sum of the traffic of
each individual physical flow, i.e., the outgoing (incoming) pack-
ets of this logical flow is the outgoing (incoming) packets of all
the member flows. We have the following properties regarding the
combination of peak rate compliant flows or leaky bucket compli-
ant flows.

Property 2: Assume that flow f1, . . . , fn are peak rate
ρ1, . . . , ρn compliant, respectively. The logical combination of
the flows is peak rate

∑n
i=1 ρi compliant.

Property 3: Assume that flowf1, . . . , fn are leaky bucket
(ρ1,σ1), . . . ,(ρn,σn) compliant, respectively. The logical combi-
nation of the flows is leaky bucket(

∑n
i=1 ρi,

∑n
i=1 σi) compliant.

Similarly, a group of best effort flows, which may be unregu-
lated, can also be viewed as a logical combined best effort flow.

C. Buffer Threshold Setting
Buffer threshold setting methods define the way that each in-

dividual flow utilizes the buffer space. The simplest method is
complete sharing, in which the incoming packets of all the flows
are put into the same buffer, and a new packet can be accepted as
long as there is space in the common buffer. Complete sharing en-
ables efficient buffer usage, but cannot provide isolation between
flows. On the contrary, complete partitioning permanently divides
the entire buffer space among different flows, and each flow can
only use its assigned share. Complete partitioning prevents differ-
ent flows from affecting each other, but may not make full use of
the entire buffer.

In order to combine the advantages of both methods, in this
paper we partition buffer space into two parts, one for the guaran-
teed performance flows and the other for the best effort flows, and
each part is shared by all the flows in that group. Since best ef-
fort flows are likely to be aggressive, assigning them an exclusive
buffer offers protection to the guaranteed performance flows. On
the other hand, the buffer utilization improves by enabling group
members to share the common buffer space.

III. L OSSLESSSERVICE IN

SINGLE OUTPUT NETWORK PROCESSOR

In this section, we discuss buffer management for providing
lossless service in a single output network processor. The con-
sidered network processor has buffer spaceB and a single output,
which has bandwidthR and runs a FIFO scheduler. The incoming
flows include a set of guaranteed performance flowsf1, . . . , fn,
which will be treated as a logical combined flowfg, and a set
of best effort flows, which are combined asfe. As indicated in
Section II, the buffer spaceB is partitioned into two partsBg

for fg andBe for fe, whereBg + Be = B. All the guaranteed
performance flows shareBg while all the best effort flows share
Be. The objective is to assure lossless service for the guaranteed
performance flows under any traffic arrival.

A. Peak Rate Compliant Flows
First, we consider the case where all the guaranteed perfor-

mance flows are peak rate compliant.
Theorem 1:Assume that flow f1, . . . , fn are peak rate

ρ1, . . . , ρn compliant, respectively. In order for the single output

network processor to assure lossless service, the guaranteed per-
formance flows should be assigned a buffer with size proportional
to the sum of their peak rates, i.e.,

Bg =
∑n

i=1 ρi

R
B

Proof. By Property 2,fg, the logical combination off1, . . . , fn,
is peak rateρg =

∑n
i=1 ρi compliant.

A fluid model is adopted to effectively analyze the behavior
of flows, in which the traffic of a flow arrives and leaves on an
infinitesimal bit basis. We define a set of critical time points
t0, t1, . . . , tp, t0(= 0) is the initial state, andtp+1 is the time
that the last bit attp in Bg andBe leaves the buffer, or in other
words, the buffered content attp clears from the buffer attp+1.
Since the output schedules traffic in a FIFO manner and the flows
are served on an infinitesimal bit basis, traffic arriving atBg and
Be at the same time is transmitted at the same time as well. Be-
causefg is regulated andfe is aggressive, we can safely assume
thatBg is empty andBe is full at t0.

DefineBg(t) to be the amount of the actually buffered content
of fg at timet, andBg = max{Bg(t)} is the buffer size offg in
order to ensure lossless service. It is easy to prove by induction
that

Bg(tp) = Be

p∑
q=1

(ρg

R

)q

The proof is omitted due to space limitation.
SinceBg(tp+1) > Bg(tp) andBg(tp) has a limit whenp goes

to infinity, we have
Bg = max{Bg(t)}= lim

p→∞
Bg(tp) = Be

ρg

R− ρg

By Bg +Be = B, we can obtainBg = ρg

R B, or Bg =
Pn

i=1 ρi

R B.

As indicated by Theorem 1, when all the guaranteed perfor-
mance flows are peak rate compliant,Bg =

Pn
i=1 ρi

R B is sufficient
and also necessary to guarantee lossless service for the guaran-
teed performance flows. It is sufficient becausefg will never have
more thanρg

R B buffered content. On the other hand, it is neces-
sary becauseBg(t) may infinitely approach this value.
B. Leaky Bucket Compliant Flows

We now look at the situation where the guaranteed performance
flows are leaky bucket compliant.

Theorem 2:Assume that flowf1, . . . , fn are leaky bucket
(ρ1,σ1), . . . ,(ρn,σn) compliant, respectively. In order for the sin-
gle output network processor to assure lossless service, the guar-
anteed performance flows should be assigned a buffer of size

Bg =
n∑

i=1

σi +
∑n

i=1 ρi

R

(
B −

n∑

i=1

σi

)

Proof: By Property 3,fg, the logical combination off1, . . . , fn,
is leaky bucket(ρg =

∑n
i=1 ρi,σg =

∑n
i=1 σi) compliant.

A leaky bucket compliant flow is different from a peak rate
compliant flow in the way that it may have an instantaneous
burst. In the following, we analyze the effect of a burst to the
buffer space requirement of the guaranteed performance flows.
We assume that the size of the burst isσ and arrives at timet
wherets−1 ≤ t < ts. Comparing with the previous case where
all the guaranteed performance flows are peak rate compliant,
an immediate result of the burst is that the buffered content
of fg at ts should take the burst into considerationBg(ts) =
Be

∑s
q=1

(ρg

R

)q +σ.

During [ts, ts+1), the transmission of the traffic is the same as
that with the peak rate compliant flows except for the burst. By
the FIFO principle, when the burst is transmitted, it exclusively
consumes all the bandwidthR, since the burst was injected in-
stantaneously. Therefore, when the burst is being transmitted,fe

cannot accept new traffic because no existing content is leaving
and its buffer is still full. On the other hand,fg keeps injecting
traffic with rateρg, and during the time interval that the burst is
being transmitted,fg has σ

Rρg new content to be buffered. Thus,

Bg(ts+1) = Be

∑s+1
q=1

(ρg

R

)q + σ
ρg

R . We can see that the effect of
the burst to the buffer space requirement diminishes as time goes
by. It is easy to prove that

Bg(tp) =

{
Be

∑p
q=1

(ρg

R

)q
, tp < ts

Be

∑p
q=1

(ρg

R

)q +σ
(ρg

R

)p−s
, tp ≥ ts

SinceBg(tp) > Bg(tq) for anytq < ts ≤ tp, in order to obtain
Bg, we only need to considerBg(tp) wherep≥ s. Givenp≥ s,

dBg(tp)
dp

=
(ρg

R

)p

ln
ρg

R

(
σ(ρg

R

)s −
Beρg

R− ρg

)

and
(ρg

R

)p ln ρg

R < 0. Therefore,Bg(tp) for p ≥ s may be an
increasing, decreasing, or equivalent function depending on the
values ofσ ands, i.e., the size of the burst and its arriving time.
In any case, the maximum value ofBg(tp) is obtained when either
p = s or p =∞, i.e.,

Bg = max{Bg(tp)}= max{Bg(ts), lim
p→∞

Bg(tp)}

= max

{
Be

s∑
q=1

(ρg

R

)q

+σ,
Beρg

R− ρg

}
<

Beρg

R− ρg
+σ

Thus,Bg = Beρg

R−ρg
+σ is sufficient to assure lossless service when

fg has a burst of sizeσ. It is also necessary. Considering that the
burst comes at a time whens is approaching infinity,

lim
s→∞

Bg(ts) = lim
s→∞

Be

s∑
q=1

(ρg

R

)q

+ σ =
Beρg

R− ρg
+ σ

The above analysis applies to arbitrary burst sizeσ. As dis-
cussed earlier, the effect of the burst to the buffer space require-
ment diminishes as time goes by. Thus, if the burst arrives as
different parts at different time, say,σ′ coming att′ andσ′′ at t′′

andσ′+σ′′ = σ, it is easy to see thatBg = Beρg

R−ρg
+σ is still suffi-

cient to ensure lossless service. For the logical guaranteed perfor-
mance flowfg, it has a maximum possible burst of sizeσg, and
thereforeBg = Beρg

R−ρg
+ σg. SinceBg + Be = B, we haveBg =

σg + ρg

R (B−σg), or Bg =
∑n

i=1 σi +
Pn

i=1 ρi

R (B−∑n
i=1 σi).

IV. L OSSLESSSERVICE IN

MULTIPLE OUTPUT NETWORK PROCESSOR

In the previous section, we have analyzed buffer management
for lossless service in the single output network processor. In this
section, we extend the results to the more general situation where
the network processor has multiple outputs and a flow may be
a multicast flow destined to more than one outputs. The con-
sidered network processor has buffer spaceB, and m outputs
out1, . . . , outm, each of which runs a FIFO scheduler. For a spe-
cific outputoutj , it has bandwidthRj , shared by a set of guar-
anteed performance flowsfj1, . . . , fjnj , which are leaky bucket

(ρj1, σj1), . . . , (ρjnj
, σjnj

) compliant respectively, and a set of
best effort flows. The guaranteed performance flows destined to
outj are analyzed as a logical combined flowfjg, and by Property
3, fjg is leaky bucket(ρjg =

∑nj

i=1 ρji, σjg =
∑nj

i=1 σji) com-
pliant. The best effort flows tooutj are analyzed as a logical
combined flowfje, and we defineρje = Rj − ρjg, which is the
leftover bandwidth for all the best effort flows.

The traffic in the buffer of a multiple output network processor
may go to different outputs, and the buffer threshold setting in
Section II need to be extended to manage the shared buffer. To be
specific, the entire buffer is partitioned intom + 1 partsBG and
B1e, . . . ,Bme. BG is shared by all the guaranteed performance
flows, no matter which output the flow is destined to, andBje is
shared by the best effort flows tooutj . This method offers two
folds of protection to the guaranteed performance flows: firstly,
a best effort flow cannot grab the buffer space for the guaranteed
performance flows, and secondly, it cannot inject large amount of
traffic by using the buffer space for the best effort flows to other
outputs.

There can be many different ways to allocate buffer space for
B1e, . . . ,Bme. In this paper, we make the buffer size of different
logical best effort flow proportional to its bandwidth, i.e.,

B1e

ρ1e
=

B2e

ρ2e
= · · · = Bme

ρme

which simplifies the buffer allocation, and also achieves some ex-
tent of fairness among the best effort flows to different outputs.

We are now ready to present the theorem for the pure unicast
scenario.

Theorem 3:Assume that any flow is only destined to one out-
put. In order for the multiple output network processor to assure
lossless service, the guaranteed performance flows should be as-
signed a buffer of size

BG =
m∑

j=1

nj∑

i=1

σji +

∑m
j=1

∑nj

i=1 ρji∑m
j=1 Rj

B −

m∑

j=1

nj∑

i=1

σji

and the best effort flows tooutj should be assigned a buffer of
size

Bje =
Rj −

∑nj

i=1 ρji∑m
j=1 Rj

B −

m∑

j=1

nj∑

i=1

σji

Proof: We first consider the guaranteed performance flows to
outj , and define

Bjg = σjg +
ρjg∑m
j=1 Rj

(
B −

m∑

k=1

σkg

)

If we view outj as a single output network processor withRj

bandwidth andBj = Bjg + Bje buffer space, shared byfjg and
fje, it is easy to see

Bjg = σjg +
ρjg

Rj
(Bj − ρjg)

By Theorem 2, we know thatBjg is sufficient and necessary to
ensure lossless service forfjg. Since we consider only unicast
flows, the flows to different outputs have no interference with each
other. Thus,BG =

∑m
j=1 Bjg is sufficient and necessary to ensure

lossless service for all the guaranteed performance flows.
Next, we will generalize the results by adding multicast flows

into consideration. In order to save buffer space, the traffic of
a multicast flow is usually stored as a single copy in the shared

12
f22 f32f31f21f11

out 1 out 2 out 3

f

Fig. 1. A physical multicast flow may be labelled as different flows at different
outputs.

buffer, which will be transmitted to all its destination outputs. A
pointer based queueing scheme, similar to that in [15], can be used
to efficiently organize multicast content in the shared buffer.

A multicast flow may be locally labelled as different flows at
different outputs. We define the following functions to represent
the fanout property of a multicast flow.

F (fji) = { outk|outk is one of the destinations of the

physical (multicast) flow thatfji corresponds to}
For the example in Fig. 1,F (f11) = F (f21) = {out1, out2},
F (f12) = F (f22) = F (f31) = {out1, out2, out3}, andF (f32) =
{out3}.

Then, update the expression ofρji andσji by adding multicast
information,

ρ̂ji =
ρji

|F (fji)|

σ̂ji =
1

|F (fji)|

(
max

{
σkg

Rk
ρji|outk ∈ F (fji)

}
+

σji−min

{
σji

Rk

∑

|F (fkl)|=1

ρkl|outk ∈ F (fji)

})

ρ̂ji is the scaled rate for the labelled flowfji. Since the traffic
of a multicast flow is stored only once, the scaled traffic rate for
each labelled flow can be viewed as1

|F (fji)| of the original value
ρji. For example, in Fig. 1, a multicast flow is labelled asf11

at out1 andf21 at out2. ρ11 andρ21 are the actual rate of the
physical flow, and̂ρ11 = ρ̂21 = ρ11

2 = ρ21
2 .

The burstσji of flow fji causes the increase of buffer space
requirement in two aspects: to hold the burst itself, and to store the
arriving traffic of all the guaranteed performance flows destined to
the same output when the burst is transmitted. For a unicast flow,
since the two parts of traffic never come together and the former
is always larger than the latter, a total ofσji extra space is enough
to cover the buffer increase caused by the burst, first to hold the
burst itself and then to store the arriving traffic when the burst is
scheduled. However, for a multicast flow, the two parts of traffic
may simultaneously exist in the buffer, such as the situation that
the burst has only been transmitted to part of the destinations of
the multicast flow but still needs to be kept in the buffer for the
rest outputs.

σ̂ji is the scaled extra buffer space of the labelled flowfji

to smooth the bursts. There are two parts in the expression
of σ̂ji. The first part is the buffer space forfji to buffer the
arriving traffic when the bursts are transmitted. Different la-
belled flows may need different amount of buffer space for the
first part. Since the traffic of a multicast flow is buffered only
once, the largest one among those of all the labelled flows, i.e.,

max
{

σkg

Rk
ρji|outk ∈ F (fji)

}
, is counted. For example, in Fig.

1, f11 may have up toσ1g

R1
ρ11 traffic arrived when the burstσ1g of

the logical combined guaranteed performance flowf1g is trans-
mitted. Forf21, the value isσ2g

R2
ρ21. Note thatρ11 = ρ21. Assum-

ing σ1g

R1
ρ11 ≤ σ2g

R2
ρ21, thenσ2g

R2
ρ21 should be counted. The second

part of the expression is the space thatfji needs to buffer its own
burstσji. It should be noted that, when the burst is transmitted
by its last destination output, it will definitely not coexist with
and its space is able to cover the arrived trafficσji

Rj

∑
|F (fjl)|=1 ρjl

of the unicast flows to this outputs, which has been counted in
the first part. In order to ensure sufficiency, we deduct the small-
est one among those of all the outputs of a multicast flow, i.e.

σji−min
{

σji

Rk

∑
|F (fkl)|=1 ρkl|outk ∈ F (fji)

}
. For example, in

Fig. 1,f32 hasσ32
R3

ρ32 traffic arrived when the burstσ32 is trans-
mitted. Since the arrived trafficσ32

R3
ρ32 has been counted in the

first part of the expression, and it will not coexist with the burst
σ32, we can safely deduct it. Finally, multiply the sum of the two
parts by 1

|F (fji)| , and we obtain the scaled extra buffer spaceσ̂ji

of the labelled flowfji for the bursts.
Since best effort flows are always assumed to be aggressive to

fill any empty buffer space, a multicast best effort flow has no
difference in our analysis compared to a unicast best effort flow.

Theorem 4:In order for the multiple output network proces-
sor to assure lossless service, the guaranteed performance flows
should be assigned a buffer of size

BG =
m∑

j=1

nj∑

i=1

σ̂ji+

∑m
j=1

∑nj

i=1 ρ̂ji∑m
j=1(

∑nj

i=1 ρ̂ji + ρje)

B −

m∑

j=1

nj∑

i=1

σ̂ji

and the best effort flows ofoutj should be assigned a buffer of
size

Bje =
ρje∑m

j=1(
∑nj

i=1 ρ̂ji + ρje)

B −

m∑

j=1

nj∑

i=1

σ̂ji

Proof: Similar to the proof of Theorem 3, we viewoutj as a
single output network processor shared byfjg andfje, with Rj

bandwidth andBj = Bjg + Bje buffer space, whereBjg is de-
fined as

Bjg =
nj∑

i=1

σji +
∑nj

i=1 ρji∑m
j=1(

∑nj

i=1 ρ̂ji + ρje)

B −

m∑

j=1

nj∑

i=1

σ̂ji

It is easy to see that
Bjg = σjg +

ρjg

Rj
(Bj − ρjg)

By Theorem 2,Bjg is sufficient and necessary to ensure lossless
service forfjg. Thus

∑m
j=1 Bjg should be sufficient to ensure

lossless service of all the guaranteed performance flows. How-
ever, because there are multicast flows and the traffic of a mul-
ticast flow is buffered only once, the required buffer space is
smaller. Following the above analysis, replacingρji by the scaled
rateρ̂ji andσji by the scaled burst̂σji in the above formula, we
obtain

B̂jg =
nj∑

i=1

σ̂ji +
∑nj

i=1 ρ̂ji∑m
j=1(

∑nj

i=1 ρ̂ji + ρje)

B −

m∑

j=1

nj∑

i=1

σ̂ji

and BG =
∑m

j=1 B̂jg is sufficient and necessary for providing
lossless service.

It can be noticed that, for a unicast flow,ρ̂ji = ρji and σ̂ji =
σji, and therefore Theorem 4 also holds under the pure unicast
scenario. In fact, it is the universally applicable solution for pro-
viding lossless service in network processors.

0 0.5 1 1.5 2
0

20

40

60

80

100

Load of Flow 2 (M bps)

P
ac

ke
t L

os
s

of
 F

lo
w

 1
 (

pe
rc

en
t)

Single Output Network Processor

Flow 1
Flow 2

0 0.5 1 1.5 2
0

20

40

60

80

100

Load of Flow 2 (M bps)

P
ac

ke
t L

os
s

of
 F

lo
w

 1
 (

pe
rc

en
t)

Single Output Network Processor

Flow 1
Flow 2

(a) (b)
Fig. 2. The buffer allocation for lossless service in the packet switched network
needs to be adjusted due to packet fragmentation. (a) Packet loss before adjust-
ment. (b) Packet loss after adjustment.

V. SIMULATION RESULTS

In this section, we conduct simulations to verify the analytical
results obtained in the previous sections. Since most realistic net-
works are packet switching based, the simulations are conducted
in a packet switched network. The packet length is uniformly dis-
tributed in the range[100,300] bytes. (The simulations are also
conducted with constant and normally distributed packet length,
and similar results are obtained, which are not presented in this
paper due to space limitation.)

Because the guaranteed performance flow is leaky bucket com-
pliant, we emulate it with a constant bit rate (CBR) flow, and the
burst may arrive at any time during the simulation run. On the
other hand, the best effort flow is emulated by the Markov mod-
ulated Poisson process, to reflect the burst nature of real network
traffic. In a Markov modulated Poisson process, the intensity of
a Poisson process is defined by the state of a Markov chain. The
Markov chain has two states: on and off. In the on state, the inten-
sity of the Poisson process isλ1, and in the off state the intensity
is λ2. The probability to switch from the on state to the off state is
p, and the probability to switch from the off state to the on state is
q. In the simulations, we setp = q = 0.2 andλ2 = 0, and change
the value ofλ1 to adjust the load of the best effort flow. Each
simulation run lasts for105 simulation seconds in order to obtain
stable statistics.

A. Single Output Network Processor
The purpose of the first simulation is to verify Theorem 1. We

set up a single output network processor with 1M(106) bps band-
width and 5K(103) bytes buffer space. There are two flows, flow
1 is a guaranteed performance flow, which is peak rate 600K bps
compliant, and flow 2 is a best effort flow, with load varying from
100K bps to 2M bps.

First, we allocate buffer space according to Theorem 1, i.e.,
Bg = 5000 × 0.6 = 3000 bytes for flow 1 andBe = 5000 −
3000 = 2000 bytes for flow 2. The packet loss of flow 1 and flow
2 is plotted in Fig. 2(a). Unfortunately, flow 1 still suffers packet
loss, although its packet loss ratio is much smaller than that of
flow 2.

The reason for the inconsistency between the analytical results
and the simulations results is that, while the analysis is based on
a fluid model, the simulation is conducted in a packet switched
network. To ensure lossless service, buffer allocation has to be
adjusted in a packet switched network due to this packet fragmen-
tation.

There are two differences between the fluid model and the
packet switched network. First of all, in the fluid model, all flows

to the same output are served simultaneously, while in the packet
switched network, only one flow can be served at any instant.
Thus, when a best effort flow is transmitting a packet, the guaran-
teed performance flows can not release any buffer. The maximum
time interval that no packet of the guaranteed performance flows
arrives is L

max{ρl} , whereL is the maximum packet length. This
is also the the maximum time interval that best effort flows can
continue sending packets. During this interval, the guaranteed
performance flowfi sends no packet in the packet switched net-
work, but can transmit up to L

max{ρl}ρi traffic in the fluid model,
which should be compensated in the adjustment. As to the second
difference, in the fluid model, flows are served on an infinitesimal
bit basis, i.e., a bit is immediately released from the buffer after
it has been transmitted. On the contrary, in the packet switched
network, a packet will not be removed from the buffer until it has
been completely transmitted. Even part of the packet has been
sent to the outline, the corresponding buffer space is still occu-
pied. With a maximum packet length ofL, a packet can be trans-
mitted for as long asLR . During this interval,fi cannot release any
occupied buffer in the packet switched network, but is able to ob-
tain up toL

Rρi free space in the fluid model, which should also be
considered in the adjustment. If useAi to denote the adjustment
for fi in a single output network processor, we have the following
expression ofAi by adding the above two components.

Ai =
L

max{ρl}ρi +
L

R
ρi

In a multiple output network processor with multicast incoming
flows, the general expression for the adjustment offji is given as
follows:

Aji = max
{

L

max{ρkl} ρ̂ji|outk ∈ F (fji)
}

+ max
{

L

Rk
ρ̂ji|outk ∈ F (fji)

}

The explanation is to choose the largest value among those of all
the labelled flows and use the scaled rate to replace the actual
rate. As a result, the universally applicable formulas in Theorem 4
should be modified as follows to reflect the adjustment for packet
fragmentation.

BG =

mX
j=1

njX
i=1

(σ̂ji + Aji)+
B−Pm

j=1

Pnj

i=1(σ̂ji + Aji)Pm
j=1(

Pnj

i=1 ρ̂ji + ρje)

mX
j=1

njX
i=1

ρ̂ji

Bje =
B−Pm

j=1

Pnj

i=1(σ̂ji + Aji)Pm
j=1(

Pnj

i=1 ρ̂ji + ρje)
ρje

In this case, the adjustment is300 + 180 = 480 bytes for flow
1. After the adjustment,Bg = 480 + (5000− 480)× 0.6 = 3192
bytes andBe = 5000−Bg = 1808 bytes, and the packet loss of
flow 1 and flow 2 is given in Fig. 2(b). It can be seen that flow 1
has zero packet loss now.

Next, we exam the relationship between the total buffer size
and the packet loss ratio of the best effort flows. We consider
a more complex scenario. The single output network processor
has 1M bps bandwidth and buffer size varying from 3K to 60K
bytes. There are two guaranteed performance flows. Flow 1 is
peak rate 200K bps compliant and flow 2 is leaky bucket (400K
bps, 4K bits) compliant. There are two more best effort flows,
where flow 3 has a load of 100K bps and flow 4 has a load of
300K bps. The buffer is allocated according to Theorem 2 with

0 1 2 3 4 5 6
0

5

10

15

20

Total Buffer Size (K bytes)

P
ac

ke
t L

os
s

(p
er

ce
nt

)

Single Output Network Processor

Flow 1
Flow 2
Flow 3
Flow 4

0 1 2 3 4 5 6
93

94

95

96

97

98

99

100

Total Buffer Size (K bytes)

T
hr

ou
gh

pu
t (

pe
rc

en
t)

Single Output Network Processor

(a) (b)
Fig. 3. Effect of total buffer size to packet loss and throughput. (a) Packet loss
decreases as the total buffer size increases. (b) Throughput increases as the total
buffer size increases.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Load of Flow 4, 5, and 6 (M bps)

P
ac

ke
t L

os
s

(p
er

ce
nt

)

Multiple Output Network Processor

Flow 1
Flow 2
Flow 3
Flow 4
Flow 5
Flow 6

Fig. 4. By saving a multicast packet as a single copy in the share buffer, the buffer
space requirement for ensuring lossless service is much smaller.

the adjustment for packet fragmentation. The adjustment for flow
1 and flow 2 is 210 bytes and 420 bytes respectively. Thus,Bg =
4K/8 + 630 + (B− 4K/8− 630)× 0.6 andBe = B−Bg. The
packet loss ratios of the four flows are plotted in Fig. 3(a). As can
be seen, lossless service is assured for flow 1 and flow 2. On the
other hand, flow 3 and flow 4 have similar packet loss ratios, and
the values drop as the total buffer size increases. The throughput
of the network processor is given in Fig. 3(b). As the increase
of the total buffer size, the throughput of the network processor is
steadily increasing, and finally approaching 100%.

B. Multiple Output Network Processor
In the following simulation, we verify Theorem 4. The sim-

ulation is set up based on the example in Fig. 1. The network
processor has three outputout1, out2, andout3. The total buffer
size is 15K bytes, and the bandwidth for each output is 1M bps.
There are three guaranteed performance flows. Flow 1 is a multi-
cast flow toout1 (labelled asf11) andout2 (asf21), and is leaky
bucket (200K bps, 2K bits) compliant. Flow 2 is a multicast flow
to out1 (asf12), out2 (asf22), andout3 (asf31), and is leaky
bucket (400K bps, 4K bits) compliant. Flow 3 is a unicast flow
to out3 (asf32), and is peak rate 200K bps compliant. There are
also three best effort unicast flows, destined to the three outputs
respectively. We let them have the same load, which varies from
100K bps to 2M bps.

The buffers are allocated according to Theorem 4 with adjust-
ment, and we can obtainBG = 2140 + (15000− 2140)× 0.4 =
7284 bytes andB1e = B2e = B3e = 2572 bytes. The packet loss
ratio of each flow is shown in Fig. 4. As can be seen, lossless ser-
vice is assured for the three guaranteed performance flows, and
the best effort flows lose more packets as their load increases.
On the contrary, if a multicast packet is saved as multiple unicast
packet copies,BG has to be greater than 9000 bytes to guarantee
lossless service, because for all the three outputs, the input rate

of the guaranteed performance flows is 60% of the output band-
width.

VI. CONCLUSIONS

Comparing with fair scheduling algorithms, buffer manage-
ment does not need to keep a separate queue for each flow and
maintain associated state variables, and thus can provide differ-
entiated service in high speed and with low cost. In this paper,
we have studied using buffer management to ensure lossless ser-
vice for guaranteed performance flows in network processors. By
adopting the discussed buffer management methods, they can ef-
ficiently provide guaranteed performance service in a high speed
network.

Our analysis started with the simpler case where the consid-
ered network processor has only one output. Then we extended
the results to the more general situation for multiple output net-
work processors with multicast flows, and obtained a universally
applicable buffer allocation solution for assuring lossless service.
We then conducted simulations to verify the analytical results, and
discovered the buffer requirement difference between the fluid an-
alytical model and the packet switched network due to packet
fragmentation. A general formula was presented for the adjust-
ment, and after adjusting the buffer allocation for packet frag-
mentation, the simulation results demonstrated consistency with
the analytical results. This indicates that our analytical results in
conjunction with the packet fragmentation adjustment can model
buffer management for lossless service in network processors
well.

REFERENCES
[1] A. Demers, S. Keshav and S. Shenker, “Analysis and simulation of a fair

queueing algorithm,”ACM SIGCOMM ’89, vol. 19, no. 4, pp. 3-12, Austin,
TX, Sep. 1989.

[2] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round
robin,” IEEE/ACM Trans. Networking, vol. 4, no. 3, pp. 375-385, Jun. 1996.

[3] D. Pan and Y. Yang, “Credit based fair scheduling for packet switched net-
works,” Proc. of IEEE INFOCOM 2005, pp. 843-854, Miami, FL, March
2005.

[4] A. Parekh and R. Gallager, “A generalized processor sharing approach to flow
control in integrated services networks: the single node case,”IEEE/ACM
Trans. Networking, vol. 1, no. 3, pp. 344-357, Jun. 1993.

[5] J. Xu and R. Lipton, “On fundamental tradeoffs between delay bounds
and computational complexity in packet scheduling algorithms”,ACM SIG-
COMM’2002, Pittsburgh, PA, Aug. 2002.

[6] R. Guerin, S Kamat, V. Peris and R. Rajan, “Scalable QoS provision through
buffer management”,ACM SIGCOMM 1998, pp. 29-40, 1998.

[7] S. Cheung and C. Pencea, “Pipelined sections: a new buffer management dis-
cipline for scalable QoS provision”,IEEE INFOCOM 2001, pp. 1530-1538,
Anchorage, Alaska, Apr. 2001.

[8] Intel, “Intel ixp2800 network processor,”
http://www.intel.com/design/network/products/npfamily/ixp2800.htm

[9] IBM, “The network processor: Enabling technology for highperformance net-
working,” 1999.

[10] Motorola, “Motorola c-port corporation: C-5 digital communications pro-
cessor,”
http://www.cportcom.com/solutions/docs/c5brief.pdf, 1999.

[11] D. Lin and R. Morris, “Dynamics ofrandom early detection,”ACM SIG-
COMM 1997, pp. 127-l37, Sophia Antipolis, France, Sep. 1997.

[12] A. Romanow and S. Floyd, “Dynamics of TCP traffic over ATM networks,”
IEEE J. Sel. Areas Commun., vol. 13, no. 4, pp. 633-641, May 1995.

[13] J. Turner, “Maintaining high throughput during overload in ATM switches,”
IEEE INFOCOM 1996, pp. 287-295, San Francisco, CA, Apr. 1996.

[14] J. Kurose and K. Ross, “Computer networking: a top-down approach featur-
ing the Internet,”Addison Wesley, 3rd edition, May 2004.

[15] D. Pan and Y. Yang, “FIFO based multicast scheduling algorithm for VOQ
packet switches,”IEEE Trans. Computers, vol. 54, no. 10, pp. 1283-1297,
October 2005.

