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ABSTRACT

Virtual output queued (VOQ) crossbar switches have been
demonstrating advantages as high speed interconnects. They
eliminate the Head of Line (HOL) blocking, which limits the
maximum throughput of single input queued switches, and do
not require switching fabrics with speedup capability, which
prevents output queued switches from being cheaply imple-
mentable. Existing practical VOQ scheduling algorithms work
in an iterative manner, and each iteration usually includesthree
steps: request, grant and accept. By incorporating arbitration
into the request step, the accept step can be eliminated, and
two step iterative matching can be achieved. While two step
algorithms achieve almost identical performance as three step
algorithms, they have extra advantages, such as simpler hard-
ware implementation, shorter scheduling time, and less data
exchange. As examples of two step iterative matching algo-
rithms, we present Two Step Parallel Iterative Matching (PIM2)
and Two Step iSLIP (iSLIP2), and theoretically analyze the
convergence property of PIM2. Furthermore, because the re-
quest step and grant step perform similar operations, and the
two steps always progress in a sequential manner, we proposea
hardware efficient implementation for two step iterative match-
ing algorithms which requires only one set of arbitration logic.
We conduct extensive simulations, and the results demonstrate
that our analytical result on the average convergence iterations,
ln N + e/(e − 1), is more accurate than the classical result,
log2 N + 4/3, and that two step algorithms and three step al-
gorithms have almost identical performance.
Keywords: Scheduling, virtual output queued switch, iterative
algorithms, convergence, crossbars.

I. I NTRODUCTION

Crossbar switches are widely used as high speed intercon-
nects in different computing environments, such as PC clusters,
Internet routers, and system-on-chip networks. With the require-
ment of high throughput and cheap implementation, the virtual
output queued (VOQ) switch with a crossbar switching fabric
has become the preferred structure for high speed switching[1]
- [5], which operates with fixed length packets in a synchronous
time slot mode. The structure of anN×N VOQ crossbar switch
is illustrated in Figure 1. Input ports and output ports are con-
nected by a crossbar switching fabric. The crossbar has non-
blocking switching capability and can remove one packet from
each input port and deliver one packet to each output port in ev-
ery time slot. Temporarily blocked packets are buffered at the
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Fig. 1. For anN ×N VOQ crossbar switch, blocked packets are buffer at the
input side, and each input port hasN queues to buffer the packets to theN

different output ports.

input side using the VOQ buffering strategy, i.e., each input port
hasN (logically) separate queues to buffer the packets to the
N different output ports. Thus, a packet will not be held up by
another packet ahead of it that goes to a different output port.

Several advantages of the VOQ crossbar switch make it more
attractive than other structures. First of all, the crossbar provides
non-blocking capability, which is necessary for achievinghigh
speed switching. Also, the time slot work mode significantly
simplifies the design of the switch, and accelerates the schedul-
ing and switching processes. Comparing with the output queued
(OQ) switch, the VOQ switch does not require anN speedup
crossbar and is cheap to implement. Since the OQ switch buffers
packets only at the output side, if the packets arriving at different
input ports are destined to the same output port, all the packets
must be transmitted simultaneously. Therefore, the switching
speed of the internal fabric must beN times faster than the send-
ing speed of the input port. On the other hand, comparing with
the single input queued (SIQ) switch, the VOQ switch removes
the HoL blocking using the VOQ buffering strategy. For the
SIQ switch, each input port has a single queue to buffer all the
incoming packets. If the head of line (HoL) packet is blocked,
all the packets behind it cannot be scheduled to transmit even
thought their destination output ports may be free. This is called
the HoL blocking, which limits the maximum throughput of the
SIQ switch to only about58.6% [6].

Scheduling packets to be transferred from input ports to out-
put ports to ensure low latency and high throughput is a chal-
lenging task. The scheduling problem on VOQ switches can be
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viewed as a special case of the bipartite graph matching prob-
lem, where input ports and output ports are the two disjoint
sets of vertices and the edges between input ports and output
ports are the scheduling decisions. Traditional scheduling algo-
rithms, such as maximum size matching (MSM) [7] and max-
imum weight matching (MWM) [7], were designed to maxi-
mize the throughput of the switch. However, both MSM and
MWM have high time complexity, which isO(N2.5) [8] and
O(N3 logN) [9], respectively, and therefore are impractical for
high speed implementation. Besides, while MWM is able to
achieve 100% throughput for any independent traffic, MSM may
lead to instability and unfairness under admissible traffic, and
starvation under inadmissible traffic [10].

High speed switching imposes a requirement for high speed
scheduling as well. As a result, iterative matching algorithms,
such as PIM [2] and iSLIP [1] were proposed. The algorithms
attempt to quickly converge on a maximal matching in multiple
iterations. As shown in Figure 2, each iteration of the algorithms
usually consists of the following three steps:

Request step. Each input port sends a request to every output
port for which it has a buffered packet.

Grant step. An output port grants one request among all the
requests that it receives.

Accept step. An input port accepts one grant among all the
grants that it receives. Then, the input port marks itself and the
corresponding output port as matched.

All input ports and output ports are initially unmatched and
only those not matched at the end of one iteration are considered
in the next round. Iterative matching algorithms find a maxi-
mal matching in each time slot by incrementally adding input-
output pairs, without removing the ones made earlier. In gen-
eral, a maximal matching is easier to obtain but may be smaller
than a maximum matching, which has the globally largest size
or weight.

In this paper, we discuss two step iterative matching algo-
rithms for VOQ switches, and propose a hardware efficient im-
plementation of the algorithms. First, we show that by incor-
porating arbitration into the request step, the accept stepcan be
eliminated, and thus two step iterative matching can be achieved,
as shown in Figure 3. The advantages include simpler im-
plementation, shorter scheduling time, and less data exchange.
As examples, we present Two Step Parallel Iterative Matching
(PIM2) and Two Step iSLIP (iSLIP2), and theoretically analyze
the convergence property of PIM2. Furthermore, because the
request step and grant step of a two step iterative matching algo-
rithm have similar functionality, and the two steps never work at
the same time, the algorithm can be implemented in a hardware
efficient manner with only one set of arbitration logic. Finally,
extensive simulations are conducted, and the results demonstrate
that our analytical result,lnN + e/(e− 1), is a more accurate
estimation of the average convergence iterations for iterative
matching algorithms than the classical result,log2 N +4/3, and
the results also demonstrate that two step and three step iterative
matching algorithms have very similar performance.

The rest of this paper is organized as follows. Section II
presents the two step iterative matching algorithms for VOQ
switches. Section III proposes a hardware efficient implementa-
tion of the algorithms. Section IV gives the simulation results.

AcceptRequest Grant
Fig. 2. Three step iterative matching.
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Fig. 3. Two step iterative matching.

Finally, Section V concludes the paper.

II. T WO STEP ITERATIVE MATCHING ALGORITHMS

In this section, we first analyze the advantages of two step it-
erative matching algorithms. Then, as an example, we present
Two Step Parallel Iterative Matching (PIM2) for VOQ switches,
and theoretically prove that its average convergence iterations
are less thanlnN +e/(e−1). We also discuss other generaliza-
tions of two step iterative matching algorithms in this section,
including Two Step iSLIP (iSLIP2) and FIFOMS.

A. Advantages of Two Step Iterative Matching

In one iteration of a three step iterative matching algorithm,
each input port can send up toN requests and receive up toN
grants. Thus, the accept step is necessary for each input port to
choose one grant among the possibleN grants. Alternatively, if
the arbitration in the accept step is executed before even sending
out requests, so that each input port sends only one request and
correspondingly receives only one grant, the accept step can be
eliminated and two step iterative matching is achieved, as illus-
trated in Figure 3.

Comparing with existing three step algorithms, two step itera-
tive matching has the following advantages. Firstly, by eliminat-
ing the accept step, the time for one iteration of the algorithm is
reduced, and thus shorter total scheduling time is needed. Sec-
ondly, for a two step iterative matching algorithm, the request
step and the accept step are carried out in the same way, i.e.,
to arbitrate amongN candidates and choose one. This property
enables easier and cheaper implementation of the two step algo-
rithms. Thirdly, since each input port sends only one request,
the data exchanged between input ports and output ports during
the scheduling process are greatly reduced. Especially, since
each input port can receive at most one grant, the request step
of the next iteration can start immediately after the only grant is
received. While in three step algorithms, an output port needs
to wait for up toN requests before begins the grant step, and
an input port needs to wait for up toN grants before begins the
accept step.

On the other hand, it can be expected that two step algorithms
and three step algorithms have similar performance. To under-
stand this, we can view the three step iterative matching as that
in the grant step each output port selects one input port to “re-
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quest,” and in the accept step, each input port selects one output
port to “grant.” Then, three step iterative matching is onlydif-
ferent from two step iterative matching in its extra requeststep,
which is easy to see when comparing Figure 2 and Figure 3.

B. PIM2

As an example, we present a two step iterative matching al-
gorithm called Two Step Parallel Iterative Matching (PIM2)for
VOQ switches, which corresponds to the three step algorithm
PIM in [2]. Each iteration of the PIM2 algorithm includes the
following two steps:

Request step. Each input port randomly sends a request to an
output port for which it has a buffered packet.

Grant step. An output port randomly grants to one request
among all requests it receives. The output port marks itselfand
the corresponding input port as matched.

Similarly, all input ports and output ports are initially un-
matched and only those not matched at the beginning of an iter-
ation will be considered. The algorithm continues until there is
no more matchable input-output pairs. Then a maximal match-
ing has been found.

As in PIM, the request or grant arbitrations of different in-
put ports or output ports are independent, and therefore canbe
done in parallel to accelerate the matching process. Also, PIM2
makes arbitration decisions on a random basis, so each input
port has equal transmission opportunity to any output port,and
fairness is achieved.

C. Convergence Property of PIM2

In this subsection, we discuss the convergence property of
PIM2. One perception to a two step iterative matching algorithm
might be that since an input port sends much less requests in
each iteration, the algorithm may need more iterations or longer
time to converge, which is of course unfavorable for a practical
scheduling algorithm. However, our following theoreticalanaly-
sis and the simulation results in Section IV both show that three
step algorithms and two step algorithms have almost identical
convergence properties.

In the following analysis, we assume a uniformly distributed
traffic model. We first define some notations to represent the
matching status. An input port is said to be free if it is not
matched, but has buffered packets to an unmatched output port,
and similarly, an output port is free if it is not matched, butat
least one free input port has packets to it. We define the follow-
ing terms.

ini: theith input port;
outj : thejth output port;
qij : the queue ofini that buffers packets tooutj ;
fanout(ini) = {outj|outj is free, andqij is not empty};
FreeIn(k) = {ini|ini is free afterk iterations};
O(FreeIn(k)) =

⋃

ini∈FreeIn(k) fanout(ini);
p(k) = min{|FreeIn(k)|, |O(FreeIn(k))|}.
p(k) is the largest possible number of input-output pairs that

still can be matched in the current time slot afterk iterations,
and we call itpotential.

Lemma 1: After one more iteration, the expected value of the
new potential is1/e of that before this iteration, i.e.,

E(p(k + 1)) ≤
p(k)

e

Proof. Suppose that afterk iterations,|FreeIn(k)| = m and
|O(FreeIn(k))| = n. And assume that, for the average case,
the fanout of a free input port is uniformly distributed among
the rest of the free output ports. Thus, the probability for afree
outputoutj to receive the request from a free inputini in the
(k + 1)th iteration is

Pr{outj receives a request fromini}

=
|fanout(ini)|

n
×

1

|fanout(ini)|
=

1

n

The first part|fanout(ini)|
n

of the formula is the probability that
outj is in the fanout ofini, and the second part 1

|fanout(ini)|
is

the probability thatini sends the request to any output port of its
fanout. Thus, the probability that a free output does not receive
any request in the(k + 1)th iteration is

Pr{outj does not receive any request} =

(

1−
1

n

)m

and we obtain

E(|O(FreeIn(k + 1))|)

= |O(FreeIn(k))| ×Pr{an output receives no request}

= n×

(

1−
1

n

)m

In other words, the expected value of the number of free output
ports after the(k + 1)th iteration isn

(

1− 1
n

)m
.

According to the definition of the potential,p(k) is equal to
the smaller ofm andn. In the following, we discuss two possi-
ble cases.

Case 1: m ≥ n andp(k) = n.
Definef(n) =

(

1− 1
n

)n
. It has a limit whenn goes to infin-

ity: lim
n→∞

f(n) = lim
n→∞

(

1 −
1

n

)n

=
1

e

and it is easy to verify that for any practical value ofn, say,
n ≤ 106, f(n) ≤ 1

e
. Thus, we can obtain

E(p(k + 1))

≤ E(|O(FreeIn(k + 1))|) = n

(

1−
1

n

)m

≤ n

(

1−
1

n

)n

≤
n

e
=

p(k)

e

Case 2: m < n andp(k) = m.
For m = 1, it is trivial that the algorithm converges after one

more iteration. We consider in the followingm ≥ 2.
Since the expected value of the number of input-output pairs

matched in the(k + 1)th iteration isn− n(1− 1
n
)m, we have

E(FreeIn(k + 1)) = m−n + n(1− 1
n
)m.

Defineg(x) = m−x+x(1− 1
x
)m−m/e, andg′(x) = −1+

(1− 1
x
)m +(1− 1

x
)m−1 m

x
. Defineh(m) = (1− 1

x
)m−1 x+m−1

x
.

Whenm = 2, h(2) = 1− 1
x2 < 1 for anyx 6= 0; whenm > 2, it

is easy to prove by induction thath(m) < h(2) < 1. Thus, we
haveg′(x) < 0 for any m ≥ 2. Sinceg(m) = m(1− 1

m
)m −

m
e

< 0, we haveg(n) < g(m) < 0. In other words,

m − n + n

(

1 −
1

n

)m

≤
m

e

Therefore, we can obtain



4

E(p(k + 1))

≤ E(FreeIn(k + 1)) = m−n + n

(

1−
1

n

)m

≤
m

e
=

p(k)

e

Thus, in both cases, we haveE(p(k + 1)) ≤ p(k)/e.
Lemma 2: For anN ×N switch, the expected value of the

potential afterk iterations is less than or equal toN/ek, i.e.,

E(p(k)) ≤
N

ek

Proof. We prove it by induction.
Base case: When i = 0, i.e., before any matching has been

done, we haveE(p(0)) ≤ N .
Inductive step: SupposeE(p(k)) ≤ N/ek holds. From

Lemma 1, we know thatE(p(k + 1)|p(k)) ≤ p(k)/e, or
∑N

i=0 iPr{p(k + 1) = i|p(k) = j} ≤ j/e. Then,

E(p(k + 1))

=
N
∑

i=0

iPr{p(k + 1) = i}

=

N
∑

j=0

N
∑

i=0

iPr{p(k + 1) = i|p(k) = j}Pr{p(k) = j}

=

N
∑

j=0

Pr{p(k) = j}

(

N
∑

i=0

iPr{p(k + 1) = i|p(k) = j}

)

≤

N
∑

j=0

Pr{p(k) = j}
j

e
=

1

e

N
∑

j=1

jPr{p(k) = j}

=
E(p(k))

e

By the inductive hypothesis,E(p(k + 1)) ≤ N/ek+1.
DefineC to be the number of convergence iterations of PIM2.

We have the following theorem for the average value ofC.
Theorem 1: For anN × N switch, the average number of

convergence iterations of PIM2 is less than or equal tolnN +
e/(e− 1), i.e.,

E(C) ≤ lnN +
e

e − 1
Proof. Since the potential is decreased by at least one in each
iteration, it is clear thatC is in the range[1,N ]. Therefore

E(C) =
N
∑

i=1

i×Pr{C = i} =
N
∑

j=1

N
∑

i=j

Pr{C = i}

=

N
∑

j=1

Pr{j ≤ C ≤ N}

On the other hand,

Pr{j ≤ C ≤ N} =

N−j+1
∑

k=1

Pr{p(j − 1) = k}

≤

N−j+1
∑

k=1

kPr{p(j − 1) = k}

= E(p(j)) ≤
N

ej

Also, becausePr{j ≤ C ≤ N} ≤ 1, we have

E(C) ≤

N
∑

j=1

min

{

1,
N

ej

}

≤ lnN +
e

e − 1

The convergence property of PIM was also analyzed in [2],
and an average number of convergence iterations,log2 N +4/3,
was obtained. We will show by simulation in Section IV that
our result,lnN + e/(e− 1), is a more accurate estimation for
the convergence iterations of iterative matching algorithms.
D. Generalization of Two Step Iterative Matching

The basic idea of two step iterative matching can be gener-
alized to other existing three step algorithms as well. For ex-
ample, the well known iSLIP algorithm [1] improves upon PIM
[2] by making arbitration based on round robin pointers, which
automatically adapt to different input ports or output ports un-
der heavy load so that fast scheduling decisions can be made.
The two step version of iSLIP, which we call iSLIP2, can be
described as follows.

Request step. Each free input port sends a request to the first
free output port which appears next to its round robin pointer
and it has buffered packets destined to.

Grant step. Each free output port chooses the request from
the first input port which appears next to its round robin pointer,
and grants it to transmit. For the first iteration of each timeslot,
the round robin pointers of the newly matched input port and
output port are both incremented by one (in a modular manner).

Similarly, under heavy load, the round robin pointers of dif-
ferent input ports or output ports in iSLIP2 also tend to desyn-
chronize with respect to one another, and it is possible for the
algorithm to converge with one iteration. More importantly, iS-
LIP2 does not have any extra “overhead” in this scenario. In
other words, all theN requests are granted, while in iSLIPN2

requests are sent, but onlyN of them are granted and the rest
of N(N − 1) are unnecessary overhead. Thus, iSLIP2 is more
efficient in this sense. A similar algorithm called Dual Round
Robin Matching (DRRM) was proposed in [11] with a different
method to update the round robin pointers.

Two step iterative matching can also be used to schedule mul-
ticast traffic, such as FIFOMS in [12]. The crossbar switch can
have built-in capability to simultaneously send a packet from
one input port to multiple output ports to efficiently support
multicast communication. In order to apply two step iterative
matching to multicast scheduling, each input port sends requests
to all the destination output ports of its earliest packet, and each
output port also grants to the packet with the smallest arrival
time. Hence, the chance of the earliest multicast packet in the
switch being delivered to all its output ports in the same time
slot is increased. Besides, because all the requests sent byan
input port are for the same multicast packet, there is no potential
transmission conflict. As indicated in [12], the two step multi-
cast iterative matching algorithm has small average convergence
iterations and achieves short multicast latency as well.

III. H ARDWARE IMPLEMENTATION

Practical scheduling algorithms are expected to be able to ef-
ficiently implement in hardware to make fast decisions for high
speed switching. In this section, we propose a hardware efficient
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Fig. 4. High level implementation diagram of two step iterative matching algo-
rithms.

implementation for two step iterative matching algorithms. The
implementation requires only one set of arbitration logic,which
is alternatively used for request arbitration and grant arbitration.

For a two step iterative matching algorithm, its request step
and grant step perform similar operations. In other words, in
each step, there are up toN candidates (N output ports as re-
quest candidates in the request step andN requests as grant can-
didates in the grant step), and arbitration is made to selectone
from theN candidates. On the other hand, the two steps never
work at the same time, but instead progress in a sequential man-
ner. The reason is that only free input ports can send requests,
but whether an input port is free or not is not known until the
grant step of the last iteration finishes. As can be seen, the re-
quest arbitration logic and grant arbitration logic are only busy
for a half of the total time and are not fully utilized.

Based on the above observations, we propose a hardware effi-
cient implementation for two step iterative matching algorithms,
which needs only one set of arbitration logic. Figure 4 showsthe
high level diagram of the implementation. At the beginning of
each time slot, the input of the scheduling algorithm is initial-
ized with the virtual queue occupancy of each input port. Then,
arbitration is made based on the queue information to send a
request on behalf of each input port, which is fed back to the
arbitration logic. A second round of arbitration is made with
the request information to generate grant for each output. At the
end of one iteration, matching results are saved in the decision
registers, and will be finally forwarded to the crossbar as control
signals to transmit the scheduled packets.

Figure 5 shows the details inside the arbitration logic. Since
the hardware is alternatively used in the request step and grant
step, there is a signalR/G to indicate the current working state.
When R/G is 0, the algorithm is in the request step. If the
virtual queue of an input port has buffered packets and its corre-
sponding output port has not been matched, it sends a signal to
the arbiter as a candidate for the request arbitration. According
to a specific arbitration rule, the arbiter chooses one from the
up toN candidates and the result is fed back as the input of the
arbiters. Next, the algorithm enters the grant step and theR/G
signal becomes 1. The requests received in the previous stepare
sent to corresponding arbiters, and each arbiter chooses one to
grant. Thus, one iteration of the algorithm has completed, and
the grant results are sent to the matching decision registers.

Although the actual arbitration rules used in the request step
and grant step may vary among different scheduling algorithms,
they are usually very similar in the two steps of the same algo-
rithm. For example, in both steps of PIM2, the arbiter acts as
a random selector, and randomly chooses one candidate. In the

Grant

inFree

Queue
Occupancy

Arbiter

outFree R/G

Request

Fig. 5. Details of the arbitration logic.

two steps of FIFOMS, the arbiter is actually a comparator, and
it compares the time stamps of the candidates and chooses the
smallest one. For iSLIP2, the arbiter is a priority encoder,and
picks the candidate appearing next to the corresponding round
robin pointers. Because iSLIP2 uses different round robin point-
ers in different steps, each arbiter needs two registers to save the
current positions of the two different round robin pointers.

IV. SIMULATION RESULTS

In this section, we conduct simulations to verify the accuracy
of the convergence iteration analysis in Section II, and also to
compare the performance of two step algorithms and three step
algorithms.

Both Bernoulli arrival and burst arrival are considered in the
simulation. Bernoulli arrival can be described by its average
arrival ratep. In other words, each input port has the probability
of p to have a new packet to arrive at the beginning of a time slot.
In practice, network packets are usually highly correlatedand
tend to arrive in a burst mode. The burst nature can be described
by a Markov process alternating between off and on states. In
the off state, there is no packet to arrive. In the on state, packets
arrive at every time slot and all have the same destinations.At
the end of each time slot, the process can independently switch
between off and on states. Burst arrival can be described using
two parametersα andβ. α is the probability to switch from the
off state to the on state, or alternatively the average length of
the off state is1/α. β is the probability to switch from the on
state to the off state, or the average length of the on state is1/β.
Therefore, the average arrival rate isβ/(α + β).

In the following, we will present the simulation results on
different properties of the algorithms. Each simulation run lasts
for 106 time slots, a half of which is the warmup period in order
to obtain stable statistics.

A. Analytical Convergence Result

The convergence property of PIM was analyzed in [2], and an
average number of convergence iterationslog2 N +4/3 was ob-
tained. Since then,log2 N +4/3 has been commonly viewed as
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Fig. 6. Comparison of average convergence iterations with different switch
sizes.

an estimation of the convergence iterations of iterative matching
algorithms, such as iSLIP [1], WPIM [13] and FEM [14]. In
Section II, we also proved that the average number of conver-
gence iterations of PIM2 is less thanlnN + e/(e− 1), which
is a smaller number for anyN > 1. We show in the following
by simulation that, firstly, PIM and PIM2 have almost identi-
cal convergence properties, and secondly, our analytical result
on the average convergence iterations is more accurate, in the
sense that it is closer to the simulation results. As a result, if an
iterative matching algorithm is designed to run with a fixed num-
ber of iterations, which is the case for most practical scheduling
algorithms,lnN + e/(e− 1) iterations are sufficient for the al-
gorithm to converge in most cases.

In the simulations, we consider switch sizes of16 × 16,
32× 32 and64× 64, all of which have 100% Bernoulli or burst
uniform traffic. For uniform traffic, the destination of a new
incoming packet is uniformly distributed among all the output
ports. Denoting the arrival rate ofqij by λij , thenλij = p/N ,
wherep is the load of the switch.

We look at the average convergence iterations of both PIM
and PIM2, and compare them with the analytical results in this
paper and in [2].

Figure 6(a) shows the simulations under Bernoulli uniform
traffic. As can be seen, PIM and PIM2 have almost the same
average convergence iterations for all the switch sizes. Onthe
other hand, our analytical result,lnN +e/(e−1), is closer to the
simulation result than the classical result,log2 N + 4/3. Figure
6(b) shows the simulation results under burst uniform traffic, and
similar conclusions can be drawn that PIM and PIM2 have al-
most identical convergence properties, and thatlnN +e/(e−1)
is a more accurate estimation. It should be noted that, because
of the burst nature, the convergence iterations of both algorithms
are slightly smaller than those under Bernoulli arrival. This can
be explained by the fact that under burst arrival, within a small
time interval, the incoming packets of an input port are not uni-
formly distributed among all the virtual queues. Thus, eachin-
put has fewer matching candidates, and the convergence occurs
earlier.

B. Throughput with Fixed Iterations

As mentioned above, practical scheduling algorithms usually
run with a fixed number of iterations rather than run until con-
verge, so that the scheduling time needed in each time slot isa
constant. In the following, we examine the throughput of the
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Fig. 7. Throughput of PIM and PIM2 with fixed iterations.
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Fig. 8. Throughput of iSLIP and iSLIP2 with fixed iterations.

scheduling algorithms with fixed iterations. For the rest ofthe
simulations, a16× 16 switch is considered.

Figure 7(a) shows the throughput of PIM and PIM2 with 1,
2, 3 and 4 iterations under the Bernoulli uniform traffic. In the
legend, the number in the brackets is the number of the fixed
iterations. It can be noticed that, with the same fixed numberof
iterations, PIM and PIM2 have very similar throughput perfor-
mance, and their maximum throughput increases as the number
of iterations increases. To be more specific, with one iteration,
PIM(1) and PIM2(1) can deliver all the incoming packets when
the load is small, but saturate at about 64% throughput. With
two iterations, PIM(2) and PIM2(2) significantly increase their
maximum throughput to about 88%. When running with three
iterations, the throughput of PIM(3) and PIM2(3) can be as high
as 97%. Given one more iteration, the maximum throughput of
PIM(4) and PIM2(4) increases to 99.9%, which means that they
practically achieve 100% throughput. The results under burst
uniform traffic are similar to those under Bernoulli uniformtraf-
fic, which are given in Figure 7(b). On the other hand, based on
the analysis in Section II, we know that the throughput of PIM2
with i fixed iterations is approximately1− 1/ei, which is 63%,
86%, 95% and 98% wheni is equal to 1, 2, 3 and 4, respectively.
It can be seen that the simulation results are consistent with the
theoretical analysis.

Figure 8(a) and (b) plot the throughput of iSLIP and iSLIP2
with fixed iterations under the Bernoulli uniform traffic and
burst uniform traffic, respectively. Similarly, iSLIP and iSLIP2
do not have noticeable difference in throughput. On the other
hand, because of the round robin desynchronizing mechanism
and the uniformly distributed traffic, iSLIP and iSLIP2 achieve
100% throughput even with only one iteration. However, as in-
dicated in Figure 10 of this section, the convergence iterations of
iSLIP and iSLIP2 are usually larger than one unless the load is
small or close to one. This means that, with one fixed iteration,
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Fig. 9. Comparison of average packet delay of different scheduling algorithms.

the algorithms may not converge under some circumstances, or
there are still packets that can be scheduled to transmit butare
postponed to the next time slot. Thus, although iSLIP and iS-
LIP2 can achieve 100% throughput with one iteration under uni-
form traffic, the packet delay may be significantly increasedin
this case.

C. Packet Delay

The transmission delay of a packet is the interval from the
time that the packet arrives at its input port to the time it isre-
moved from the head of its virtual queue by the crossbar. Since
each output port receives at most one packet per time slot, the
received packet can be immediately sent to the outline, and thus
the transmission delay is the total time that a packet stays in the
switch.

Figure 9(a) shows the average packet delay of different al-
gorithms under the Bernoulli uniform traffic. As can be seen,
the two step algorithms (PIM2 and iSLIP2) have almost iden-
tical performance as their corresponding three step algorithms
(PIM and iSLIP), respectively. It also can be noticed that, al-
though PIM and iSLIP use different arbitration rules, they and
their two step counterparts have similar average packet delay.
Figure 9(b) gives the simulation results under the burst uniform
traffic, in which the four algorithms also exhibit similar perfor-
mance. However, due to the burst nature, the delay of all the
algorithms is longer than that under Bernoulli arrival.

The simulation is also conducted under non-uniform traffic,
or hotspot traffic [15] in our case. For hotspot traffic, each input
port has a “hotspot” output port, which is the destination ofa
half of the arriving packets, and the rest of output ports receive
an equal amount of packets. In our simulations, we setλii = p/2
andλij = p/2(N−1) for i 6= j. Figure 9(c) plots the simulation
results under the Bernoulli hotspot traffic. While the arriving
traffic is not uniformly distributed, all the four algorithms still
give each virtual queue of an input port equal matching chance.
As a result, when the effective load becomes large, the delay
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Fig. 10. Comparison of average convergence iterations of different scheduling
algorithms.

increases dramatically and finally reaches the limit allowed by
the maximum queue length. Figure 9(d) gives the situation with
the burst hotspot traffic. Again, the curves exhibit a similar trend
as that in Figure 9(c), but the delay is longer than that underthe
Bernoulli hotspot traffic because of the burst nature.

D. Convergence Property

For an iterative matching algorithm, the average number of
convergence iterations is a very important property, sincean
algorithm with smaller convergence iterations needs shorter
scheduling time, and can achieve higher speed switching. As
can be seen from Figure 10, all the four algorithms need a sim-
ilar number of iterations to converge in most cases. In Figure
10(a) and (b), when the effective load of the Bernoulli uniform
traffic or burst uniform traffic approaches one, the convergence
iterations of iSLIP and iSLIP2 decrease to one due to the round
robin pointer desynchronizing mechanism. However, when the
traffic is not uniformly distributed, as in Figure 10(c) and (d),
iSLIP and iSLIP2 do not show significant advantages over PIM
and PIM2.

V. CONCLUSIONS

In this paper, we have studied two step iterative matching al-
gorithms for VOQ crossbar switches. By incorporating arbi-
tration into the request step, the accept step in traditional three
step iterative matching algorithms can be eliminated. While the
two step iterative matching algorithms maintain almost identi-
cal performance as three step algorithms, they introduce extra
advantages, such as simpler hardware implementation, shorter
scheduling time, and less data exchange. As examples, we pre-
sented Two Step Parallel Iterative Matching (PIM2) and Two
Step iSLIP (iSLIP2). We theoretically proved that the aver-
age number of convergence iterations of PIM2 is less than
lnN + e/(e − 1), and showed by simulation that it is a more
accurate estimation than the classical resultlog2 N +4/3 in [2].
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Based on the characteristic that the request step and grant step
have similar functionality and do not work at the same time,
we proposed a hardware efficient implementation for the two
step iterative matching algorithms. The implementation requires
only one set of arbitration logic, which can be alternatively used
for request arbitration and grant arbitration. Extensive simula-
tions were also conducted to test the performance the two step
iterative matching algorithms. The simulation results demon-
strated that two step algorithms and three step algorithms have
very similar performance.
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