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Abstract

Buffered crossbar switches are a special type of com-
bined input-output queued switches with each crosspoint of
the crossbar having small on-chip buffers. The introduc-
tion of crosspoint buffers greatly simplifies the scheduling
process of buffered crossbar switches, and furthermore en-
ables buffered crossbar switches with speedup of two to eas-
ily provide port based performance guarantees. However,
recent research results have indicated that, in order to pro-
vide flow based performance guarantees, buffered crossbar
switches have to either increase the speedup of the cross-
bar to three or greatly increase the total number of cross-
point buffers, both adding significant hardware complexity.
In this paper, we present scheduling algorithms for buffered
crossbar switches to achieve flow based performance guar-
antees with speedup of two and with only one or two buffers
at each crosspoint. When there is no crosspoint blocking
in a specific time slot, only the simple and distributed in-
put scheduling and output scheduling are necessary. Other-
wise, the special urgent matching is introduced to guarantee
the on-time delivery of crosspoint blocked cells. With the
proposed algorithms, buffered crossbar switches can pro-
vide flow based performance guarantees by emulating push-
in-first-out output queued switches, and we use the counting
method to formally prove the perfect emulation. For the
special urgent matching, we present sequential and paral-
lel matching algorithms. Both algorithms converge with N
iterations in the worst case, and the latter needs less itera-
tions in the average case. Finally, we discuss an alternative
backup-buffer implementation scheme to the bypass path,
and compare our algorithms with existing algorithms in the
literature.

Keywords: Buffered crossbar switches, cell scheduling,
performance guarantees, stable marriage.

1 Introduction

With the rapid development of broadband networks in
recent years, a variety of novel Internet based multimedia
applications, such as Voice over IP, Video on Demand, and
Distance Education, have been developed, which usually
have different quality of service (QOS) requirements. The
capability to provide QOS support has become an important
issue for the design of modern switches and routers [10].
Switches and routers control the departure order of packets
from different flows, and the scheduling algorithms adopted
largely determine the quality of service that can be provided
by the networks.

Due to the unique advantages of crossbar switches, they
have long been used as high speed interconnects in vari-
ous computing environments, such as PC clusters, Inter-
net routers, and system-on-chip networks. The crossbar
provides non-blocking capability, and also overcomes the
bandwidth limitation of bus based switching fabrics.

Packets in crossbar switches may be buffered at either
output ports, input ports, or crosspoints of the crossbar.
Based on the locations to store packets, crossbar switches
can be divided into several different categories: output
queued (OQ) switches, input queued (IQ) switches, com-
bined input-output queued switches (CIOQ) switches, and
buffered crossbar switches.

Output queued (OQ) switches only have buffer space at
the output side. There may be more than one logical queues
at each output port to differentiate packets from different in-
put ports or different flows. Since there is no buffer space at
the input side, if multiple input ports have packets arriving
at the same time and destined for the same output port, all
the packets have to be simultaneously transmitted through
the crossbar and stored in the output buffers. Thus, in or-
der to achieve 100% throughput, a crossbar with speedup
of N is necessary for an N × N OQ switch, or in other
words, the crossbar needs N times bandwidth as that of the
input port and output port. Several fair scheduling algo-
rithms, such as WFQ [5] and DRR [18], have been proposed



for OQ switches to emulate the ideal Generalized Proces-
sor Sharing (GPS) fairness model. They provide different
levels of performance guarantees using different scheduling
approaches.

Input queued (IQ) switches only have buffer space at the
input side, and thus eliminate the speedup requirement. For
input buffers, virtual output queued (VOQ) buffering [12]
is usually used, because traditional first-in-first-out (FIFO)
buffering suffers from the head of line (HOL) blocking,
which limits the maximum throughput of the switch. Un-
fortunately, until now IQ switches are found to be able to
achieve 100% throughput only with maximum matching al-
gorithms or their variants [12], which have high time com-
plexity. Fair scheduling algorithms for IQ switches, such as
iFS [15] and iDRR [22], usually work in an iterative mode,
and provide performance guarantees by emulating the cor-
responding fair scheduling algorithms for OQ switches.

In order to combine the advantages of both OQ switches
and IQ switches, combined input-output queued (CIOQ)
switches make a trade-off between the crossbar speedup and
the complexity of the scheduling algorithm. They usually
have small fixed speedup of two, and thus need buffer space
at both the input side and output side. CIOQ switches with
speedup of two are shown to achieve 100% throughput with
any maximal scheduling algorithm [4]. In addition, CIOQ
switches are proved to be able to emulate push-in-first-out
(PIFO) OQ switches [2]. Therefore, special scheduling al-
gorithms (with high computational complexity) can be de-
signed for CIOQ switches to duplicate the packet departure
order and time of existing fair scheduling algorithms for OQ
switches, and provide desired performance guarantees.

With the development of modern VLSI technology,
it has been feasible to integrate small on-chip mem-
ory to the crossbar switching fabric. Buffered crossbar
switches, or combined input-crosspoint-output queued (CI-
COQ) switches are a special type of CIOQ switches, where
each crosspoint of the crossbar is equipped with small
exclusive buffers. Due to the introduction of crosspoint
buffers, the scheduling process is greatly simplified [7] [11]
[21].

Performance guarantees provided by switches can be at
different granularity levels. We say that a switch provides
port based performance guarantees, if packets from differ-
ent input ports are treated differently by the output port of
the switch. For example, such a switch can ensure the band-
width allocated to a specific input port at each output port.
However, with port based performance guarantees, there is
no way to differentiate the packets from the same input port
but from different flows. Hence, it is possible for one of
the flows to inject a larger amount of traffic into the shared
buffer and use up all the bandwidth allocated to its input
port, causing packet loss to other flows of the same input
port. On the contrary, if a switch provides flow based per-

formance guarantees, resources are allocated on a per flow
basis, and each flow can have its guaranteed bandwidth, de-
lay, or jitter performance.

In [3], Chuang et al. analyzed the capability of buffered
crossbar switches to provide performance guarantees. They
showed that speedup of two is sufficient for buffered
crossbar switches to emulate restricted PIFO OQ switches
(where restricted PIFO OQ switches are PIFQ OQ switches
with the restriction that cells of an input-output pair depart
from the switch in the same order as they arrive), or in other
words, to achieve port based performance guarantees. How-
ever, in order for buffered crossbar switches with speedup
of two to provide flow based performance guarantees, ei-
ther a separate crosspoint buffer must be available for each
flow, or the switch structure must first be modified with a
more complicated buffering scheme (similar to that of OQ
switches) and then a total of N3 crosspoint buffers must be
provided for an N×N switch. Unfortunately, both schemes
greatly increase the total number of crosspoint buffers and
are not scalable. Alternatively, the speedup of the cross-
bar may be increased to three, which will drop the maxi-
mum throughput of the switch by one third. The additional
speedup of one is used to eliminate the crosspoint blocking,
which refers to the situation that a cell in the input buffer
with earlier departure time is blocked by another cell al-
ready in the crosspoint buffer from a different flow and with
later departure time. The crosspoint blocking may happen
when a new cell arrives at the input buffer. In such a case,
the locations of the blocked cell and the blocking cell are
exchanged using the additional speedup. Because at most
one cell may arrive at each input port in a single time slot,
the additional speedup of one is guaranteed to completely
remove the crosspoint blocking.

Although buffered crossbar switches are able to directly
schedule variable length packets without segmentation-and-
reassembly (SAR) [21] [19], following the work in [3],
we consider only fixed length packet scheduling, or cell
scheduling, and make the switch work in a synchronous
time slot mode. Since a crosspoint buffer must be at least
large enough to store a single packet, cell scheduling has
less hardware requirements than packet scheduling. For ex-
ample, the maximum packet length in Ethernet networks is
1500 bytes, while the fixed cell length in ATM networks
is 53 bytes. Considering that on-chip memories are expen-
sive resources, this feature reduces the hardware cost for
buffered crossbar switches.

In this paper, we present scheduling algorithms to pro-
vide flow based performance guarantees for buffered cross-
bar switches with speedup of two and with one or two
buffers at each crosspoint of the crossbar. We add a simple
bypass path to each crosspoint, which can directly transmit
a cell from the input buffer to the output buffer. When there
are no crosspoint blocked packets, the switch uses simple



and distributed scheduling algorithms. Otherwise, an ex-
tra urgent matching sub-phase is conducted to transmit the
crosspoint blocked cells using the bypass paths, so as to
guarantee their on-time delivery to the output buffers. Using
the counting method, we formally prove that the buffered
crossbar switch using our approach can emulate any PIFO
OQ switch to achieve flow based performance guarantees.
For the urgent matching process, we present sequential and
parallel matching algorithms. Both algorithms converge
within N iterations for an N × N switch in the worst case,
and the latter can achieve a smaller number of convergence
iterations for the average case. Finally, we give an alter-
native implementation scheme to remove the bypass path,
which adds only one more buffer to each crosspoint, and
we compare our algorithms with existing algorithms in the
literature.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide an overview of the scheduling algorithms
proposed in the literature for buffered crossbar switches.
In Section 3, we introduce the structure of the buffered
crossbar switches considered in this paper, and describe
the counting proof method. In Section 4, we present the
corresponding scheduling algorithms, and formally prove
the flow based performance guarantees. In Section 5, we
give the sequential and parallel urgent matching algorithms.
In Section 6, we discuss how to remove the bypass path
by adding one more buffer to each crosspoint, and make
comparison between our approaches and other existing ap-
proaches. Finally, in Section 7, we conclude the paper.

2 Related Work

Scheduling algorithms for buffered crossbar switches
in the literature can be broadly classified into two cate-
gories: those to achieve high throughput and those to emu-
late scheduling algorithms for OQ switches.

A buffered crossbar switch architecture called CIXB-1
was proposed in [16], where each crosspoint has a one-cell
buffer. CIXB-1 offers several advantages for feasible im-
plementation such as scalability and timing relaxation. It
is shown that, in conjunction with round robin arbitration,
CIXB-1 can provide 100% throughput under uniform traf-
fic. CIXOB-k [17] is the extended version of CIXB-1 with
a k-cell buffer at each crosspoint and small speedup for the
crossbar. CIXOB-k is shown to be able to achieve 100%
throughput under uniform traffic as well as non-uniform
traffic. A cell scheduling scheme for buffered crossbar
switches called Most Critical Buffer First (MCBF) was pro-
posed in [13]. It conducts scheduling based on the cross-
point buffer information and has low hardware complex-
ity. MCBF exhibits good performance and shows optimal
stability in simulations. Shortest Crosspoint Buffer First
(SCBF) [23] is another cell scheduling scheme, which finds

a matching with minimum weight in each time slot. It is
proved that SCBF achieves 100% throughput for any admis-
sible traffic without speedup requirement. In order to facili-
tate hardware implementation, a maximal solution of SCBF
was also proposed in [23], which achieves low O(log N)
time complexity and is shown to have almost identical per-
formance. The algorithms discussed in the above are cell
scheduling algorithms targeting high throughput.

The emulation of OQ switches by buffered crossbar
switches was studied in [11]. It is proved that buffered
crossbar switches with speedup of two satisfying non-
negative slackness (NNS) insertion and lowest time to live
(LTTL) blocking, and LTTL fabric scheduling can exactly
emulate OQ switches. In particular, it is shown that the GB-
VOQ OCF scheduling algorithm can exactly emulate FIFO
OQ switches, and the GBFG SP scheduling algorithm can
exactly emulate strict priority OQ switches. In [14], the
MCAF-LTF cell scheduling scheme for one-cell buffered
crossbar switches was proposed. MCAF-LTF does not re-
quire costly time stamping mechanism, and is proved to
be able to emulate OQ switches with speedup of two. [3]
studied practical scheduling algorithms for buffered cross-
bar switches. It is shown that with speedup of two, buffered
crossbar switches can mimic restricted PIFO OQ switches,
regardless of the incoming traffic pattern, and that with
speedup of three, buffered crossbar switches can mimic ar-
bitrary PIFO OQ switches and hence provide delay guar-
antees. It is also shown that buffered crossbar switches
can achieve 100% throughput with speedup of two for any
Bernoulli i.i.d. admissible traffic. The above algorithms
also consider cell scheduling, but are mainly designed to
emulate scheduling algorithms for OQ switches.

A buffered crossbar switch architecture supporting
packet scheduling was proposed in [8]. The chip layout
was presented and the hardware cost was analyzed. The
simulation results demonstrate that the proposed architec-
ture outperforms unbuffered crossbar switches. A segmen-
tation and reassembly (SAR) scheme was proposed in [9].
It uses variable size segments while merging multiple pack-
ets into each segment. The proposed scheme eliminates
padding overhead, reduces header overhead and crosspoint
buffer size, and is suitable for use with external, modern
DRAM buffer memory in ingress line cards. The simu-
lation results show that it outperforms existing segmenta-
tion schemes in buffered as well as unbuffered crossbar
switches. The performance guarantees of packet scheduling
for asynchronous buffer crossbar switches were discussed
in [21], and two algorithms were designed based on exist-
ing cell scheduling algorithms. It is theoretically proved
that, with speedup of two, the Packet GVOQ (Group by
Virtual Output Queue) scheduling algorithm provides work-
conserving guarantees with 2L crosspoint buffer space and
can emulate a PIFO scheduling algorithm for OQ switches
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Figure 1. The structure of buffered crossbar
switches.

with 5L crosspoint buffer space, where L is the maxi-
mum packet length. The Packet LOOFA (Lowest Output
Occupancy First Algorithm) scheduling algorithm provides
work-conserving guarantees with 16L/3 crosspoint buffer
space, and can emulate a PIFO scheduling algorithm for OQ
switches with 22L/3 crosspoint buffer space. [19] proposed
the Distributed Packet Fair Queueing (DPFQ) architecture
for physically dispersed line cards to emulate an OQ switch
with fair queueing, and the simulation results demonstrate
that the resulting system provides service that closely ap-
proximates an output buffered switch employing fair queue-
ing with modest speedup. The above schemes use variable
length packets as the scheduling and switching units.

3 Preliminaries

In this section, we give the switch structure considered
in this paper, and describe the counting method that will be
used by the proof in Section 4.

3.1 Buffered Crossbar Switch Structure

The switch structure considered in this paper is illus-
trated in Figure 1. N input ports and N output ports are con-
nected by a crossbar switching fabric, which has speedup
of two. Packets are buffered at input ports, output ports,
and crosspoints. At input buffers, packets are stored on a
per-flow basis to avoid the HOL blocking. In other words,
the number of logical virtual queues at any input buffer is
equal to the number of flows coming from the input port,
and each virtual queue stores the packets of a single flow

(a) (b)

Figure 2. Two possible data transmission
paths. (a) The normal path. (b) The bypass
path.

in their arrival order. Similarly, output buffers are also or-
ganized on a per-flow basis, so as to differentiate cells of
different flows and provide flow based performance guar-
antees. Each crosspoint has a small exclusive buffer, whose
size is equal to the length of a single cell.

Similar to [3], we make the assumption that in each time
slot, at most one cell can be injected into an input buffer,
and one cell will be removed from an output buffer if it is
not empty. Note that the crossbar has speedup of two. In
other words, it is able to retrieve two cells from each input
buffer and deliver two cells to each output buffer in a single
time slot.

The considered switch has two possible paths to transmit
a cell from the input buffer to the output buffer, which we
call the normal path and the bypass path, respectively. For
the normal path, as shown in Figure 2(a), a cell is first sent
from the input buffer to the crosspoint buffer, from where it
will be retrieved to the output buffer. For the bypass path, as
illustrated in Figure 2(b), a cell is directly transmitted from
the input buffer to the output buffer without being temporar-
ily stored at the crosspoint. It should be noted that, at any
specific time, only one of the two paths is available.

The bypass path slightly increases the hardware com-
plexity of the switching fabric, but it is practically available
with state-of-the-art IC technology. As will be seen in Sec-
tion 6, the bypass path can be easily removed by equipping
each crosspoint with one additional buffer.

The operation of a buffered crossbar switch can be di-
vided into several phases. In this paper, we consider the
following order of phases, which does not affect the gener-
ality of the results but simplifies the analysis.

• Arrival phase. A new cell arrives at each input buffer
and is put into one of the virtual queues in the input
buffer.

• First scheduling phase. There are three sub-phases: in-
put scheduling, urgent matching, and output schedul-
ing, where the urgent matching sub-phase is not nec-
essary if there are no crosspoint blocked packets. In



input scheduling, an input port selects one of the vir-
tual queues with empty crosspoint buffers, and sends
its first cell to the corresponding crosspoint buffer. In
urgent matching, some crosspoint blocked cells are ar-
ranged to transmit directly from the input buffers to
the output buffers using the bypath paths. In output
scheduling, an output port chooses one of the occu-
pied crosspoint buffers, and retrieves the buffered cell
to the output buffer.

• Second scheduling phase. Because the crossbar has
speedup of two, a second scheduling phase is also con-
ducted.

• Departure phase. One cell is removed from each out-
put buffer and is sent to either the output line or a spe-
cial buffer to reassemble the segmented cells back to
the original packet.

3.2 The Counting Method

The counting method is widely used to prove the em-
ulation of PIFO OQ switches by CIOQ switches [2] [11]
or buffered crossbar switches [3]. For PIFO OQ switches,
there is a single PIFO queue at each output port. With
such a PIFO queue, a newly arrived cell may be inserted
at any position in the queue, and the cell that departs next
is always the first cell of the queue. Since after a cell has
been put into the queue, its position cannot be moved any
more, the departure sequence of the cells in the queue is
predictable. In order words, the relative transmission or-
der of the awaiting cells is not affected by future arrivals.
Many fair scheduling algorithms for OQ switches, such as
WFQ [5] and DRR [18], use such a PIFO queueing pol-
icy. If a buffered crossbar switch is proved to be able to
emulate PIFO OQ switches, it can mimic the scheduling
behavior of the fair scheduling algorithms for OQ switches,
and therefore provide desired bandwidth, delay, and jitter
performance guarantees.

In the following, we give some definitions for the count-
ing method.

• Shadow OQ Switch. A shadow OQ switch is the switch
that the switch considered intends to emulate. A suc-
cessful emulation of the shadow OQ switch means
that, for any incoming traffic, the departure time of
each cell in both switches is exactly the same.

• Output Priority. Output priority determines the depar-
ture order of different cells from the output buffer. The
output priority of a cell is defined by its departure time
in the shadow OQ switch. For two cells destined for
the same output port, the one with higher output prior-
ity leaves the output buffer first.

• Input Priority. Input priority determines the departure
order of different cells from the input buffer. The input
priority of a cell is defined by the Group by VOQ (GB-
VOQ) policy [2], which we will describe in more de-
tail in Section 4. For two cells in the same input buffer
whose crosspoint buffers are both empty, the one with
higher input priority leaves first.

• Output Cushion. The output cushion of a cell c
is the number of cells that are in the destination
output buffer of c and have higher output priority.
We use OC(c, t, A), OC(c, t, F ), OC(c, t, S) and
OC(c, t, D) to denote the output cushion of c at time
slot t after the arrival phase, the first scheduling phase,
the second scheduling phase and the departure phase,
respectively.

• Input Thread. The input thread of a cell c is the number
of cells that are in the same input buffer as c and have
higher input priority. If c is in the crosspoint buffer, we
define its input thread to be zero. We use IT (c, t, A),
IT (c, t, F ), IT (c, t, S) and IT (c, t, D) to denote the
input thread of c at time slot t after the arrival phase,
the first scheduling phase, the second scheduling phase
and the departure phase, respectively.

• Slackness. The slackness of a cell c is equal to its out-
put cushion minus its input thread. We use L(c, t, A),
L(c, t, F ), L(c, t, S) and L(c, t, D) to denote its slack-
ness at time slot t after the arrival phase, the first
scheduling phase, the second scheduling phase and the
departure phase, respectively, and we have L(c, t, ∗) =
OC(c, t, ∗) − IT (c, t, ∗), where ∗ can be either A, F ,
S, or D.

Intuitively, the output cushion of a cell indicates the
number of time slots that the cell can wait before departs
from the output buffer, and the input thread indicates the
number of time slots that the cell has to wait to enter the
output buffer. As their difference, the slackness reflects the
urgency level to transmit a cell to its output buffer. The ba-
sic idea of the counting method is to maintain non-negative
slackness for each cell, so that the cell can be guaranteed to
depart from its output buffer on time.

4 Achieve Flow Based Performance Guaran-
tees with Speedup of Two

In this section, we describe the scheduling algorithms for
each operation phase, and use the counting method to for-
mally prove the emulation of PIFO OQ switches by buffered
crossbar switches with speedup of two.



4.1 Arrival Phase

At the arrival phase of time slot t, a new cell c may arrive
at each input buffer. It is put at the end of the corresponding
virtual queue, and its input priority is determined by the
GBVOQ policy as follows. If its virtual queue is empty,
it is inserted at the head of the input priority list with zero
input thread, i.e., IT (c, t, A) = 0. Otherwise, if its virtual
queue is not empty, it is inserted in the input priority list
immediately after the last cell d of its virtual queue. In the
latter case, the input thread of c is equal to that of d plus one,
i.e., IT (c, t, A) = IT (d, t, A) + 1 = IT (d, t − 1, D) + 1.

The purpose to insert a cell at the head of the input pri-
ority list when its virtual queue is empty is to ensure that it
can be delivered on time to the output buffer. When a new
cell arrives at the input buffer, it is possible that the cell de-
parts from the output buffer in the shadow OQ switch at the
same time slot. Assigning the cell the highest input prior-
ity guarantees that it can be immediately transmitted to the
output buffer and depart from the output buffer at the same
time slot. On the other hand, a cell with a non-empty virtual
queue does not need the highest input priority, since it has
to wait for the cells ahead of it in the same virtual queue to
depart first.

4.2 Scheduling Phase

Since cells of the same flow are stored in the same vir-
tual queue and the head cell has the highest output priority,
the head cell should always be delivered first to the output
buffer. Thus, we only need to consider such head cells in
the scheduling phase, and we divide them into two cate-
gories: blocked cells and normal cells. A blocked cell is a
head cell whose crosspoint is occupied by another cell with
lower output priority. The rest of the head cells are called
normal cells.

The input scheduling sub-phase is conducted as follows.
Each input port independently selects the normal cell with
an empty crosspoint buffer and the highest input priority.
Note that this is a distributed operation, and there is no in-
formation exchange between different input ports. The cell
selected is called a scheduled cell. It may happen that there
is no scheduled cell in an input buffer, because all the cross-
point buffers have already been occupied.

If there is no blocked cell, the switch can now skip the
urgent matching sub-phase and directly proceed to the out-
put scheduling sub-phase. Otherwise, the urgent matching
sub-phase is conducted for blocked cells. In such a case,
the scheduled cell will not be immediately sent to the cross-
point buffer, but wait in the input buffer for the scheduling
decisions for blocked cells.

We define a special type of blocked cells called urgent
cells. A blocked cell is an urgent cell if

1. its slackness is −1 for the first scheduling phase or 0
for the second scheduling phase,

2. it has the highest input priority among all such cells
in the same input buffer destined for the same output
port,

3. it has higher input priority than the scheduled cell, and

4. it has higher output priority than all the crosspoint
buffered packets to its destination output port.

Such a cell is urgent because if the scheduled cell of its input
buffer is sent to the crosspoint buffer, neither its input thread
is going to decrease nor its output cushion to increase, and
it will not be able to catch the departure time in the shadow
OQ switch.

From the definition, it is easy to see the following prop-
erty.

Property 1. There is at most one urgent cell for each output
port in any input buffer.

Based on the urgent cells and the scheduled cells with
zero input thread, the urgent matching is conducted, in
which some urgent cells will be arranged to directly trans-
mit from the input buffers to the output buffers. The purpose
of including the scheduled cells with zero input thread in the
urgent matching is to ensure that, if such a cell has higher
output priority than all the urgent cells to the same output
port, this cell instead of any urgent cell will be delivered to
the output buffer at the end of the scheduling phase. We de-
fine a matched cell to be a cell that is chosen to transmit in
the urgent matching. The urgent matching uses the stable
matching algorithms, and has the following property.

Property 2. For any cell that participates in the urgent
matching sub-phase but is not matched, there must be a
matched cell either from the same input buffer with higher
input priority or to the same output buffer with higher out-
put priority.

For ease of reading, we will directly use Property 2 in
the rest of this section, but present sequential and parallel
algorithms for the urgent matching in Section 5.

Now we have obtained the input scheduling results and
the urgent matching results. The cells are arranged to leave
the input buffers as follows. If a matched cell is an urgent
cell, which we call a matched urgent cell, it will be directly
transmitted from its input buffer to the output buffer using
the bypass path. On the other hand, if a matched cell is
a scheduled cell, which we call a matched scheduled cell,
it will be sent to the crosspoint buffer. In the third case,
if an input has a scheduled cell but no matched cell, the
scheduled cell is also sent to the crosspoint buffer. It should
be noted that all the cells leave their input buffers at the



same time, because the switch is working in a synchronous
time slot mode. The only difference is that the matched
urgent cells take the bypass paths, while the other cells take
the normal paths.

Next, the output scheduling sub-phase is conducted.
Each output port independently retrieves the cell with the
highest output priority from one of its crosspoint buffers.
If there was an urgent match sub-phase, some output ports
may have received matched urgent cells from the bypass
paths, and they do not need to retrieve packets from the
crosspoint buffers anymore.

From the above description for the output scheduling
sub-phase, we can obtain the following lemma.

Lemma 1. For any cell that participates in the urgent
matching sub-phase but is not matched, its slackness is in-
creased by at least one after the current scheduling phase.

Proof. From Property 2, we know that for a cell not
matched in the urgent matching sub-phase, there is a
matched cell either from the same input with higher input
priority or to the same output buffer with higher output pri-
ority. We analyze each of the two cases below.

In the first case, since there is a matched cell from the
same input with higher input priority, no matter it is a
matched urgent cell or a matched scheduled cell, it will be
removed from the input buffer. Thus, the input thread of the
cell that is not matched decreases by one. Because the out-
put cushion of any cell will not decrease during the schedul-
ing phase, its slackness is guaranteed to increase by at least
one.

In the second case, there is a matched cell to the same
output buffer with higher output priority. If the matched
cell is a matched urgent cell, it will be delivered to the out-
put buffer by the bypass path and it has higher output pri-
ority. Otherwise, if the matched cell is a matched sched-
uled cell, it will be sent to the crosspoint buffer. Note that
there will be no matched urgent cell to the same output port.
Thus, the cell delivered to the output buffer must come from
one of the crosspoint buffers, and according to the output
scheduling policy, the delivered cell must have higher out-
put priority than or the same output priority as that of the
matched scheduled cell, and therefore have higher output
priority than that of the cell not matched. As a result, no
matter the matched cell to the same output port is a matched
urgent cell or a matched scheduled cell, the output cushion
of the cell that is not matched increases by one. Similarly,
considering that the input thread of any cell will not increase
during the scheduling phase, its slackness is guaranteed to
increase by at least one.

4.3 Departure Phase

In the departure phase, each output port independently
finds the cell in its output buffer that has the highest output

Matched Scheduled Cells

Scheduled Cells

Blocked Cells Normal Cells

Matched Urgent Cells

Urgent Cells

Figure 3. The relationship of different types
of cells.

priority and removes it from the output buffer.

4.4 Flow Based Performance Guarantees

With the above scheduling algorithms, we are ready
to prove the flow based performance guarantees using the
counting method.

We need the following lemma regarding the first schedul-
ing phase.

Lemma 2. For any cell c not in the output buffer, if its slack-
ness after the arrival phase is larger than or equal to −1,
then its slackness after the first scheduling phase is larger
than or equal to 0, i.e.,

L(c, t, A) ≥ −1 ⇒ L(c, t, F ) ≥ 0

Proof. We first assume that c is in the crosspoint buffer af-
ter the arrival phase. After the first output scheduling sub-
phase, c is either in the output buffer or still in the cross-
point buffer. If c is in the output buffer, it can depart at any
time, and we do not need to consider its slackness. Oth-
erwise, if c is still in the crosspoint buffer, then another
cell d is delivered to the output buffer, which might be a
matched urgent cell or a cell from another crosspoint buffer.
In either case, d must have higher output priority than c,
and as a result, OC(c, t, F ) = OC(c, t, A) + 1. Since
IT (c, t, F ) = IT (c, t, A) = 0, we have that L(c, t, F ) ≥
L(c, t, A) + 1 ≥ −1 + 1 = 0.

Next, we assume that c is in the input buffer after the
arrival phase. We have defined several different types of
cells for the scheduling phase. The relationship between
these cell types is illustrated in Figure 3. We prove that the
lemma holds for each type of cells.

Matched urgent cells. If c is a matched urgent cell, it
has been transmitted to the output buffer. As a result, it can
depart at anytime when necessary.



Urgent cells. If c is an urgent cell that is not matched
in the urgent matching, based on Lemma 1, we know that
L(c, t, F ) ≥ L(c, t, A) + 1 ≥ −1 + 1 = 0.

Blocked cells. By definition, if c is a blocked cell but
not an urgent cell, there are four possible reasons. In the
following, we analyze each of them.

1. The slackness of the blocked cell c is not equal to
−1. Since L(c, t, A) ≥ −1 and L(c, t, A) �= −1, we
have L(c, t, A) ≥ 0. Because after the first scheduling
phase IT (c, t, F ) ≤ IT (c, t, A) and OC(c, t, F ) ≥
OC(c, t, A), we have L(c, t, F ) ≥ L(c, t, A) ≥ 0.

2. The slackness of the blocked cell c is −1, i.e.,
L(c, t, A) = −1, but there is another blocked cell
in its input buffer that has the same slackness and
higher input priority, such as the urgent cell d.
Since L(d, t, A) = L(c, t, A), and by the defini-
tion of urgent cells, IT (d, t, A) < IT (c, t, A), it
is easy to see that OC(d, t, A) < OC(c, t, A) as
well. In other words, d has both higher input prior-
ity and output priority than c. Thus, OC(c, t, F ) −
OC(c, t, A) ≥ OC(d, t, F ) − OC(d, t, A) and
IT (c, t, F )− IT (c, t, A) ≤ IT (d, t, F )− IT (d, t, A),
and we can obtain L(c, t, F ) − L(c, t, A) ≥
L(d, t, F ) − L(d, t, A). Since we have proved in the
above that for urgent cells, L(d, t, F ) ≥ L(d, t, A)+1,
it follows that L(c, t, F ) ≥ L(c, t, A)+1 ≥ −1+1 =
0.

3. The blocked cell c has lower input priority than the
scheduled cell d of the input port, i.e., IT (d, t, A) <
IT (c, t, A). If d is removed from the input buffer, then
IT (c, t, F ) = IT (c, t, A) − 1. Otherwise, a matched
urgent cell e instead of the scheduled cell d is removed
from the input buffer. Since e is an urgent cell, it has
higher input priority than the scheduled cell d, i.e.,
IT (e, t, A) < IT (d, t, A). As a result, we can obtain
IT (e, t, A) < IT (c, t, A), and therefore IT (c, t, F ) =
IT (c, t, A) − 1 due to the removal of e. Thus, in
both cases, we have IT (c, t, F ) = IT (c, t, A) − 1.
Again, since OC(c, t, F ) ≥ OC(c, t, A), it follows
that L(c, t, F ) ≥ L(c, t, A) + 1 ≥ −1 + 1 = 0.

4. The blocked cell c has lower output priority than a
crosspoint buffered cell d to the same output port. If a
cell e in the crosspoint buffer is delivered to the output
buffer, we know that e has higher output priority than
or the same output priority as that of d. As a result, e
has higher output priority than c, and OC(c, t, F ) =
OC(c, t, A) + 1 due to the delivery of e. Otherwise,
a matched urgent cell f is transmitted to the output
buffer. Since f is an urgent cell, it has higher output
priority than any crosspoint buffered cell, including d.
As a result, f has higher output priority than c, and

OC(c, t, F ) = OC(c, t, A) + 1 due to the delivery of
f . Thus, in both cases, OC(c, t, F ) = OC(c, t, A)+1.
Similarly, considering that IT (c, t, F ) ≤ IT (c, t, A),
we have L(c, t, F ) ≥ L(c, t, A) + 1 ≥ −1 + 1 = 0.

To sum up, for the first reason, nothing needs to be done
to ensure L(c, t, F ) ≥ 1, and for other three reasons, the
slackness of the cell is increased by one by the end of the
first scheduling phase.

Matched scheduled cells. If a scheduled cell c is matched
in the urgent matching process, it will be sent from the in-
put buffer to the crosspoint buffer, resulting in zero input
thread after the input scheduling sub-phase. Since there is
only one matched cell to each output port, there will be no
matched urgent cell to the same output port. As a result,
the cell delivered to the output buffer must be from one of
the crosspoint buffers. If the delivered cell is c, we do not
need to consider its slackness any more. Otherwise, if a cell
d from another crosspoint buffer is delivered, d must have
higher output priority due to the output scheduling policy,
and therefore OC(c, t, F ) = OC(c, t, A) + 1. Consider-
ing IT (c, t, F ) = IT (c, t, A) = 0, we have L(c, t, F ) ≥
L(c, t, A) + 1 ≥ −1 + 1 = 0.

Scheduled cells. If a scheduled cell c does not leave the
input buffer during the input scheduling due to a matched
urgent cell e, because e is an urgent cell and has higher in-
put priority, i.e., IT (e, t, A) < IT (c, t, A), we can have
IT (c, t, F ) = IT (c, t, A)−1 due to the removal of e. Since
OC(c, t, F ) ≥ OC(c, t, A), it follows that L(c, t, F ) ≥
L(c, t, A)+1 ≥ −1+1 = 0. Otherwise, If a scheduled cell
c is not a matched scheduled cell and is sent to the cross-
point buffer, there are two possible cases.

1. The input thread of cell c after the arrival phase is
not zero, i.e., IT (c, t, A) ≥ 1, and thus did not par-
ticipate in the urgent matching. After c is sent to
the crosspoint buffer, it has zero input thread, i.e.,
IT (c, t, F ) = 0. Since OC(c, t, F ) ≥ OC(c, t, A),
L(c, t, F ) ≥ L(c, t, A) + 1 ≥ −1 + 1 = 0.

2. The input thread of cell c is zero, and thus participated
in the urgent matching but it is not matched. By
Lemma 1, L(c, t, F ) ≥ L(c, t, A) + 1 ≥ −1 + 1 = 0.

Normal cells. We consider three possible situations de-
pending on whether there is a cell removed from the in-
put buffer and whether a scheduled or a matched cell is re-
moved.

1. No cell leaves the input buffer, which means that there
is no scheduled cell as well. According to the input
scheduling policy, the crosspoint buffer of each nor-
mal cell c is occupied by another cell d with higher
output priority. For the cell e delivered to the output
buffer of c in the first scheduling phase, which may



be a matched urgent cell or a cell from one of the
crosspoint buffers, e must have higher output priority
than or the same output priority as that of d. Thus, e
has higher output priority than c, and OC(c, t, F ) =
OC(c, t, A) + 1. Since IT (c, t, F ) ≤ IT (c, t, A),
L(c, t, F ) ≥ L(c, t, A) + 1 ≥ −1 + 1 = 0.

2. A scheduled cell, including a matched scheduled cell,
is removed from the input buffer. For a normal cell
c with higher input priority than the scheduled cell,
it must have a crosspoint buffered cell d with higher
output priority. Based on the analysis for the first sit-
uation, we know that L(c, t, F ) ≥ L(c, t, A) + 1 ≥
−1 + 1 = 0. On the other hand, for a normal cell
c with lower input priority than the scheduled cell,
IT (c, t, F ) = IT (c, t, A)−1 due to the removal of the
scheduled cell. Since OC(c, t, F ) ≥ OC(c, t, A), it
follows that L(c, t, F ) ≥ L(c, t, A)+1 ≥ −1+1 = 0.

3. A matched urgent cell leaves the input buffer. Re-
call that an urgent cell has higher input priority than
the scheduled cell. With a similar analysis to that for
the second situation, we can obtain that L(c, t, F ) ≥
L(c, t, A) + 1 ≥ −1 + 1 = 0.

To sum up, for all the three possible situations, the slackness
of the cell increases by one after the first scheduling phase.

We can have a similar lemma for the second scheduling
phase.

Lemma 3. For any cell c not in the output buffer, if its slack-
ness after the first scheduling phase is larger than or equal
to 0, then its slackness after the second scheduling phase is
larger than or equal to 1, i.e.,

L(c, t, F ) ≥ 0 ⇒ L(c, t, S) ≥ 1

The proof is similar to that of Lemma 2 and omitted.
The following lemma gives the slackness of a cell after

the arrival phase.

Lemma 4. For a cell c not in the output buffer, its slackness
after the arrival phase is always larger than or equal to −1,
i.e.,

L(c, t, A) ≥ −1

Proof. We prove the lemma by induction.
Base case. After the arrival phase of the first time

slot, i.e., slot 1, there is at most one cell arrived at each
input buffer. For such a cell c, IT (c, 1, A) = 0 and
OC(c, 1, A) = 0, resulting in L(c, 1, A) = 0 ≥ −1.

Inductive case. Suppose that after the arrival phase of
time slot t−1, for any cell c in the input buffer or crosspoint
buffer, L(c, t−1, A) ≥ −1. We will prove that the slackness

of the cell c after the arrival phase of time slot t is still larger
than or equal to zero, i.e, L(c, t, A) ≥ −1.

Given L(c, t−1, A) ≥ −1, we know from Lemma 2 that
L(c, t − 1, F ) ≥ 0. Furthermore, from Lemma 3, we can
obtain L(c, t−1, S) ≥ 1. In the departure phase of time slot
t− 1, a cell is removed from each output buffer. The output
cushion of any cell destined for the output port is decreased
by one, in particular, OC(c, t−1, D) = OC(c, t−1, S)−1.
Since IT (c, t − 1, D) = IT (c, t − 1, S), we have L(c, t −
1, D) = L(c, t − 1, S) − 1 ≥ 1 − 1 = 0.

During the arrival phase of time slot t, there may be a
new cell arriving at each input buffer. In the following, we
consider three types of cells that are not in the output buffer
after the arrival phase of slot t.

1. c is the newly arrived cell, and its virtual queue is
empty. According to the GBVOQ policy, c is inserted
at the head of the input priority list, and therefore
IT (c, t, A) = 0. Since OC(c, t, A) ≥ 0, we have
L(c, t, A) ≥ 0 ≥ −1.

2. c is the newly arrived cell, and its virtual queue is not
empty. c is inserted in the input priority list immedi-
ately after the last cell d of its virtual queue. Since d
is already in the input buffer before the arrival phase
of time slot t, based on the above analysis we can
obtain that L(d, t − 1, D) ≥ 0. In addition, since
IT (d, t, A) = IT (d, t − 1, D) and OC(d, t, A) =
OC(d, t − 1, D), it follows that L(d, t, A) ≥ 0.
For the new cell c, we know that IT (c, t, A) =
IT (d, t, A) + 1 and OC(c, t, A) ≥ OC(d, t, A), and
therefore L(c, t, A) ≥ L(d, t, A) − 1 ≥ 0 − 1 = −1.

3. c is an existing cell in the input buffer or crosspoint
buffer. In this case, we know that L(c, t − 1, D) ≥
0. Since IT (c, t, A) ≤ IT (c, t − 1, D) + 1 and
OC(c, t, A) = OC(c, t − 1, D), we have L(c, t, A) ≥
L(c, t − 1, D) − 1 ≥ 0 − 1 = −1.

Thus, for all the three cases, a cell c not in the output buffer
after the arrival phase of time slot t has L(c, t, A) ≥ −1.

The following lemma describes the slackness of a cell
before the departure phase.

Lemma 5. For a cell c not in the output buffer, its slackness
after the second scheduling phase is always larger than or
equal to 1, i.e., L(c, t, S) ≥ 1.

Proof. Combine Lemma 4, Lemma 2 and Lemma 3.

We are ready to present the main result of the paper.

Theorem 1. A buffered crossbar switch with speedup of
two can exactly emulate a PIFO OQ switch to provide flow
based performance guarantees.



Proof. Assume that the buffered crossbar switch has suc-
cessfully emulated the shadow PIFO OQ switch up to time
slot t − 1, and that a cell c departs from an output buffer
in the shadow switch at time slot t. We analyze the slack-
ness of c before the departure phase at time slot t in the
buffered crossbar switch. Since c departs in the current time
slot, there is no cell in the output buffer with higher out-
put priority than c. Thus, OC(c, t, S) = 0 and therefore
L(c, t, S) ≤ 0. From Lemma 5, we know that for any cell d
in the input buffer or the crosspoint buffer, L(d, t, S) ≥ 1.
This indicates that c must be in the output buffer, and there-
fore will not be blocked for leaving in the departure phase.
In this way, the buffered crossbar switch successfully em-
ulates the shadow switch for time slot t, and the emulation
process can continue. As a result, each cell has the same
departure time in both switches, and the buffered crossbar
switch successfully emulates the shadow PIFO OQ switch.

Recall that PIFO OQ switches with different fair
scheduling algorithms can provide different flow based per-
formance guarantees. Thus, buffered crossbar switches can
provide the desired flow based performance guarantees by
emulating the corresponding PIFO OQ switches.

5 Urgent Matching

In this section, we describe the matching algorithms used
for the urgent matching sub-phase. As discussed in the pre-
vious section, due to the crosspoint blocking, there are some
blocked cells in the input buffers that cannot get their slack-
ness increased in the input scheduling and output schedul-
ing sub-phases. The urgent matching sub-phase is there-
fore introduced to guarantee the on-time delivery of these
blocked cells to the output buffers.

From Property 1, we know that there is at most one ur-
gent cell in each input buffer that is destined for a specific
output port. On the other hand, for a scheduled cell with
zero input thread, it must be the only cell in its input buffer
participating in the urgent matching, because it has the high-
est input priority and there could be no urgent cell from the
same input buffer. As a result, we can draw the conclusion
that there are at most N2 cells in the urgent matching.

In order to guarantee the increase of slackness, it is re-
quired that for each blocked cell, there must be a matched
cell with either higher input priority or higher output pri-
ority. The urgent matching problem can be reduced to the
stable marriage problem, which can be described as follows.

Given N men and N women, where each person has
ranked all members of the opposite sex with a unique num-
ber between 1 and N in order of preference, marry the men
and women off such that there are no two people of opposite
sex who would both rather have each other than their cur-
rent partners. If there are no such people, all the marriages

are stable.

Gale et al. showed that stable marriages exist for any
choice of rankings [6], and proposed a solution algorithm
that works in an iterative manner and is guaranteed to con-
verge in N2 iterations.

The urgent matching problem can be converted to the
stable marriage problem in the following way. The input
ports and output ports are the sets of men and women, re-
spectively, and the input priority of the cells in the same
input buffer represents the preference of this input port over
the set of output ports, and the output priority of the cells to
the same output port represents the preference of this output
port over the set of input ports. After such conversion, we
can easily obtain Property 2 for the urgent matching.

Due to the special property of the cells participating in
the urgent matching, the urgent matching problem can be
solved using only N instead of N2 iterations by a strat-
egy similar to Delay Till Critical (DTC) in [2]. Next, we
present sequential and parallel matching algorithms for ur-
gent matching. The sequential matching algorithm is a cen-
tralized algorithm, and can be implemented at low cost. The
parallel matching algorithm runs faster in the average case,
but needs more sophisticated hardware support. For the
comparison in the following algorithms, ties are broken ran-
domly.

5.1 Sequential Urgent Matching Algo-
rithm

The sequential urgent matching algorithm can be de-
scribed as follows. First, select the output port correspond-
ing to the smallest output cushion, and compare the output
priority of all the cells to this output port and find the input
port corresponding to the highest output priority. It is clear
that the cell of the above input-output pair has the smallest
output cushion and the highest output priority among all the
cells to the same output port, and it also has the highest in-
put priority based on the following reasoning. If the cell is a
scheduled cell with zero input thread, there is no cell before
it in the input priority list and it must have the highest input
priority. Otherwise, it is an urgent cell, which means that
there is no scheduled cell from the same input buffer partic-
ipating in the urgent matching. Because all the urgent cells
have the same slackness (−1 for the first scheduling phase
and 0 for the second scheduling phase), the one with the
smallest output cushion also has the smallest input thread,
which means the high input priority. As a result, such a cell
must be included in the urgent matching results. Then, we
mark the above input-output pair as matched and continue
the next iteration of the algorithm. Since in each iteration,
there must be one output port marked as matched, the algo-
rithm is guaranteed to converge in N iterations.
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Figure 4. The bypass path can be removed by
adding a backup buffer to each crosspoint of
the crossbar.

5.2 Parallel Urgent Matching Algorithm

The above algorithm works in a sequential manner, and
finishes in N iterations in the best case (given N2 partici-
pating cells) and in the worst case. Next, we present a par-
allel matching algorithm similar to PIM [1], which requires
fewer iterations to converge in the average case. Each itera-
tion of the parallel algorithm has the following three steps:

Request step. Each input port sends a request to every
output port for which it has a cell in the urgent matching.

Grant step. Each output port selects the request with the
highest output priority to grant.

Accept step. Each input port accepts the grant if the cor-
responding cell has the highest input priority among all the
cells in the input buffer whose output ports have not been
matched. The input-output pair is then marked as matched.

Although in the worst case, the parallel urgent match-
ing algorithm still needs N iterations to converge, it is very
likely that more than one matched input-output pairs can be
generated in a single iteration, and the total number of iter-
ations is greatly reduced. Unfortunately, we have not been
able to prove an O(log N) average number of convergence
iterations similar to that in [1].

6 Discussions and Comparisons

In this section, we discuss how to remove the bypass path
by adding one more buffer to each crosspoint, and compare
our algorithms with existing algorithms in the literature.

6.1 Removing the Bypass Path

The structure of a crosspoint after removing the bypass
path and adding the additional buffer is shown in Figure 4.
We call the existing crosspoint buffer the primary buffer and
the additional one the backup buffer. The backup buffer is
only used to temporarily store the matched urgent cell.

For such a switch, there are also two scheduling phases.
However, a blocked cell is now defined as a cell whose
primary crosspoint buffer is occupied by another cell with
lower output priority. In a similar way, the input scheduling

sub-phase is conducted for the normal cells independently
by each input port, and the urgent matching sub-phase is
conducted for the urgent cells and the scheduled cells with
zero input thread. The urgent matching results overwrite the
input scheduling results, i.e., if there is a matched urgent
cell at a specific input port, the scheduled cell of the same
input port will not leave the input buffer. Then the matched
urgent cells are sent to the backup buffers, and simultane-
ously the scheduled cells, including the matched scheduled
cells, are sent to the primary buffers.

In the output scheduling sub-phase, each matched urgent
cell in the backup crosspoint buffer is directly sent to its
output buffer, and each of the remaining output ports inde-
pendently retrieves the cell with the highest output priority
from one of the primary crosspoint buffers. In this way,
a matched urgent cell is guaranteed to be delivered to the
output buffer in the same scheduling phase, and the backup
buffer must be empty at the end of each scheduling phase.

6.2 Comparisons with Other Algorithms

We have presented the scheduling algorithms for
buffered crossbar switches to provide flow based perfor-
mance guarantees. There are also some existing works in
the literature discussing flow based performance guaran-
tees. In particular, a stable marriage based approach is given
in [2] for CIOQ switches, and additional speedup or cross-
point buffers are used in [3] for buffered crossbar switches.

Comparing our approach with that in [2], when there is
no crosspoint blocking, the switch only runs the simple and
distributed input scheduling and output scheduling algo-
rithms. When there are crosspoint blocked cells, the switch
in our case needs to apply the additional urgent matching
algorithm, which has the same computational complexity
as the scheduling algorithm running in each time slot in
[2]. Considering that crosspoint blocking usually only oc-
curs when the first cell of a new flow arrives, the average
scheduling time of our approach should be much shorter.
The trade-off is that each crosspoint of the crossbar should
be equipped with one or two small buffers.

Comparing with the approach that uses additional
speedup [3], the switch in our case can achieve 50% higher
throughput. Comparing with the approach that uses addi-
tional crosspoint buffers [3], the advantage of our approach
is the significantly reduced hardware complexity. On the
other hand, the trade-off is that when there are crosspoint
blocked packets, the switch in our case needs to run the ur-
gent matching algorithm, which has relatively high compu-
tational complexity.

7 Conclusions

In this paper, we have studied how to achieve flow based
performance guarantees for buffered crossbar switches with



speedup of two. We have added simple bypass paths to
the buffered crossbar switches, and presented scheduling
algorithms for the switches to emulate PIFO OQ switches.
When there are crosspoint blocked cells, the urgent match-
ing is introduced to overcome the crosspoint blocking. We
have used the counting method to formally prove the flow
based performance guarantees achieved by the buffered
crossbar switches. We have also presented the sequential
and parallel urgent matching algorithms. Both algorithms
converge in N iterations in the worst case, and the lat-
ter needs fewer iterations to converge in the average case.
Finally, we have designed an alternative implementation
scheme for the bypass path by adding one additional buffer
at each crosspoint, and compared our algorithms with exist-
ing algorithms in the literature.
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