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ABSTRACT

Multicast enables efficient data transmission from one source to multiple destinations, and has

been playing an important role in Internet multimedia applications. Although several multicast

scheduling schemes for packet switches have been proposed in the literature, they usually aim to

achieve only short multicast latency and high throughput without considering bandwidth guaran-

tees. However, fair bandwidth allocation is critical for the quality of service (QoS) of the network,

and is necessary to support multicast applications requiring guaranteed performance services, such

as online audio and video streaming. This paper addresses the issue of bandwidth guaranteed mul-

ticast scheduling on virtual output queued (VOQ) switches. We propose the Credit based Multicast

Fair scheduling (CMF) algorithm, which aims at achieving not only short multicast latency but also

fair bandwidth allocation. CMF uses a credit based strategy to guarantee the reserved bandwidth

of an input port on each output port of the switch. It keeps track of the difference between the

reserved bandwidth and actually received bandwidth, and minimizes the difference to ensure fair-

ness. Moreover, in order to fully utilize the multicast capability provided by the switch, CMF

lets a multicast packet simultaneously send transmission requests to multiple output ports. In this

way, a multicast packet has more chances to be delivered to multiple destination output ports in the

same time slot and thus to achieve short multicast latency. Extensive simulations are conducted to

evaluate the performance of CMF, and the results demonstrate that CMF achieves the two design
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goals: fair bandwidth allocation and short multicast latency.

Keywords: Multicast, packet scheduling, fair scheduling, virtual output queued (VOQ) switch,

quality of service (QoS).

I. INTRODUCTION

Multicast enables efficient data transmission from one source to multiple destinations. With

the rapid development of broadband networks, multicast has been playing an important role in

many Internet multimedia applications [1] [2], such as online gaming, video conferencing, and

distance learning. Although a multicast packet can be handled as multiple copies of a unicast

packet, it is desired that multicast scheduling and switching are supported in switches and routers

to save network bandwidth and reduce multicast latency. In this paper, we consider multicast

scheduling on packet switches. Such a switch can provide high speed interconnections among

a group of processors in a parallel and distributed computing system. It can also be used as a

crossconnect in an intermediate router or an edge router of a wide area communication network.

Packet switches can be divided into different categories based on where the blocked packets

are queued. An output queued switch, as shown in Fig. 1(a), buffers packets at their destination

output ports, and is able to achieve 100% throughput. However, since there is no buffer at the

input side, if multiple input ports have packets arriving at the same time that are destined to the

same output port, all the packets must be transmitted simultaneously. Thus in order for an N ×N

output queued switch to work at full throughput, the switching speed of the internal fabric and the

receiving speed of the output port must be N times faster than the sending speed of the input port.

This requirement makes output queued switches difficult to scale, especially when the switch has

a large number of input ports or the speed of a single input port increases to gigabits per second

[3] [4].

On the contrary, an input queued switch stores blocked packets at the input side, and therefore

eliminates the N speedup requirement. The single input queued switch, as shown in Fig. 1(b),



3

Output

Input

Switching fabric

Input

Switching fabric

Output

(a) (b)

Input

Switching fabric

Output Output

Switching fabric

Input

(c) (d)

Fig. 1. Packet switches can be divided into different categories by the location where the blocked packets are buffered.
(a) Output queued switch. (b) Single input queued switch. (c) Virtual output queued switch. (d) Combined input output
queued switch.

has a first-in-first-out (FIFO) queue at each input port to store the incoming packets. Since only

the packets at the head of line (HOL) of each queue can participate in the scheduling, the packets

behind the HOL packet suffer from the “head of line” blocking, which means that even though their

destination output ports may be free, they cannot be scheduled to transfer because the HOL packet

is blocked. The HOL blocking severely affects the maximum throughput of the single input queued

switch [5]. In order to eliminate the HOL blocking, the virtual output queued (VOQ) buffering
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was proposed [6]. A VOQ switch, as shown in Fig. 1(c), stores packets to different destinations

in different logical queues. The HOL blocking is thus removed because a packet cannot be held

up by another packet to a different destination. For unicast traffic, since a packet is destined for

only one output port, there are only N possible destinations, i.e., the N different output ports, and

therefore N logical queues are sufficient at each input port. However, the destination of a multicast

packet can be any number of output ports, and thus there are 2N−1 possible multicast destinations

in total. For example, the multicast destinations of a switch with two output ports could be {out0},

{out1} and {out0, out1}, where outi denotes the ith output port. As a result, 2N − 1 queues are

necessary at each input port, which are not scalable. Clearly, a more efficient buffering strategy is

needed to make the VOQ switch suitable for multicast traffic.

The combined input output queued (CIOQ) switch, shown in Fig. 1(d), extends the VOQ

switch by adding speedup capability to the switching fabric. Thus, an output port may receive

more than one packet in a single time slot, and needs buffer space to save the extra packets. It

is proved in [7] that, for a CIOQ switch with speedup of two, special algorithms can be designed

to precisely emulate an output queued switch employing a wide variety of scheduling algorithms.

However, because of the high complexity, these algorithms are only of theoretical interest and are

not practical for high speed implementations at this time.

Due to its inexpensive hardware implementation, the input queued switch has been the main

focus in the networking community, and several schemes have been proposed to schedule multi-

cast traffic on the input queued switch, see, for example, TATRA [8], WBA [9], FIFOMS [10] and

ESLIP [25]. However, existing multicast scheduling algorithms usually aim to achieve short delay

and high throughput without fairness consideration. In order words, if malicious users inject an

excessive amount of traffic in the network, those algorithms are not able to protect normal users

from being affected. On the other hand, the quality of service (QoS) has become a major issue for

the design of modern switches and routers, and fair bandwidth allocation is necessary in order to

provide guaranteed performance services. Bandwidth guaranteed fair scheduling on shared output
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links has been well studied, and many algorithms have been proposed [12] - [18]. These algorithms

can be easily applied to output queued switches to achieve fair bandwidth allocation, however, as

mentioned earlier, output queued switches are expensive to implement due to the speedup require-

ment. Therefore, some efforts [19] [20] [21] have been made to apply these algorithms to input

queued switches mainly for scheduling unicast traffic, and good results have been obtained.

The objective of this paper is to design a multicast fair scheduling algorithm for VOQ switches,

to achieve not only short multicast latency but also fair bandwidth allocation. To be more specific,

we consider an N ×N VOQ switch with a crossbar as its switching fabric, which has built-in

multicast capability to simultaneously send a packet from one input port to multiple output ports

in the same time slot. The new algorithm should be able to guarantee the reserved bandwidth of

an input port at each output port and transmit multicast packets with short latency. As analyzed

in [25], fixed length packet (also called cell) scheduling has significant advantages over variable

length packet scheduling on VOQ switches, and is used by most of the implemented high speed

VOQ switches, such as Cisco 12000 GSR [25], Tiny Tera [26] and AN2 [4]. When using such a

switch in a network with variable length packets, such as the IP network, variable length packets

are segmented to fixed length cells upon arrival at the input ports, and those cells are then used as

the scheduling units and transmitted to the output ports, where they are reassembled back to the

original packets before departure.

In this paper, we propose an algorithm called Credit based Multicast Fair scheduling (CMF).

CMF uses a credit based strategy to guarantee the reserved bandwidth of an input port on each

output port. It keeps track of the difference between the bandwidth that an input port receives in

the ideal fairness model and that in the algorithm, and minimizes the difference to ensure fairness.

Moreover, in order to fully utilize the multicast capability of the switch, CMF lets a multicast

packet simultaneously send transmission requests to multiple output ports. In this way, a multicast

packet has more chances to be delivered to multiple destination output ports in the same time slot

and thus to achieve short multicast latency. We also conduct simulations under both multicast
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traffic and unicast traffic to evaluate the performance of CMF, and the results demonstrate that

CMF fulfills the design objectives: fair bandwidth allocation and short multicast latency.

The rest of the paper is organized as follows. Section II reviews some existing schemes for

bandwidth guaranteed fair scheduling and multicast scheduling. Section III describes the mul-

ticast VOQ structure associated with the CMF algorithm. Section IV defines an ideal multicast

fair scheduling model based on the output queued switch, which is used as the reference system.

Section V presents the Credit based Multicast Fair scheduling algorithm. In Section VI, we use

simulations to evaluate the performance of CMF, and finally Section VII concludes the paper.

II. RELATED WORK

In this section, we give a brief review of existing bandwidth guaranteed scheduling algorithms

and multicast scheduling algorithms.

A. Bandwidth Guaranteed Scheduling on Shared Output Links

A lot of schemes have been proposed for bandwidth guaranteed fair scheduling on shared

output links, such as several flows share the same outgoing gateway. These algorithms can be

classified into three types: (1) Time stamp based. Time stamp based fair schedulers, such as WFQ

[12] and WF 2Q [13], compute time stamps for each packet upon its arrival, and schedule packets

in the order of the computed time stamps. They usually provide excellent fairness guarantees and

perfectly emulate the ideal fairness models, such as GPS [11]. However, due to the operation

to compare time stamps of the head packets of all the flows, time stamp based schedulers have

high O(logM) time complexity, where M is the number of flows. (2) Round robin based. The

scheduling principle of round robin schedulers, such as DRR [14] and SRR [15], is to serve the

flows one by one, so that each flow has equal opportunity to transmit packets. Round robin based

fair schedulers achieve O(1) time complexity, but have poor delay bounds, as each flow has to

wait for all other flows before sending the next packet. (3) Combination of both. Some recently

proposed algorithms, such as BSFQ [16] and Stratified Round Robin [17], attempt to obtain the
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tight delay bound of time stamp based schedulers as well as the low time complexity of round robin

based schedulers. They usually adopt a basic round robin like scheduling policy plus time stamp

based scheduling on a reduced number of units. These schedulers improve the time complexity by

reducing the number of items that need to be sorted, but they still have long worst case delay due

to the round robin nature.

By running the algorithm at each output port, the above algorithms for shared output links can

be easily applied to output queued switches to provide fair bandwidth allocation.

B. Bandwidth Guaranteed Scheduling on Input Queued Switches

There have also been some attempts to implement bandwidth guaranteed fair scheduling on in-

put queued switches. WPIM [19] improves upon PIM [4] by introducing a bandwidth enforcement

mechanism to provide probabilistic bandwidth guarantees for input-output connections. Based on

the reservation, every input flow is assigned a quota that can be used in a frame with a constant

number of slots, and the flows that have used up their quotas in the current frame are not allowed to

participate in the scheduling for the remaining time slots of the frame. iFS [20] adapts WFQ [12], a

time stamp based fair scheduler for shared output links, for VOQ switches. iFS uses a grant-accept

two stage iterative matching method, and uses the virtual time as the grant criterion to emulate the

GPS [11] ideal model at each output port. Similarly, iDRR [21] is the application of DRR [14],

which is a round robin based fair scheduling algorithm for shared output links, to VOQ switches.

iDRR uses the round robin principle in its iterative matching steps, and thus is able to make fast

arbitration. Also, it has a feature that a matched pair can keep the status until the assigned quota is

used up, which reduces the iterative rounds needed for convergence.

All these algorithms can be used to provide fair bandwidth allocation for scheduling on VOQ

switches. However, none of them pay particular attention to multicast traffic, and thus they may not

be able to achieve the best performance under mixed multicast/unicast traffic. mFS [20] extends

iFS to schedule multicast traffic. It uses counters to record the number of transmitted packets
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to ensure fair bandwidth allocation. Unfortunately, mFS is built on the traditional VOQ switch

structure. As discussed earlier, the traditional VOQ switch needs to maintain 2N − 1 separate

queues at each input port in order to handle multicast traffic, which is impractical.

C. Multicast Scheduling Algorithms for Input Queued Switches

In general, a good multicast scheduling algorithm should be able to effectively utilize the

multicast capability of the crossbar switching fabric. Existing multicast scheduling algorithms for

input queued switches are usually designed to achieve short multicast latency and high throughput.

TATRA [8] is a multicast scheduling algorithm for the single input queued switch. Its basic idea

is to leave the residue, i.e., the set of packets that lose contention for output ports and remain at

the HOL of the input queues, on the smallest number of input ports, so that more new packets can

participate in the scheduling process of the next time slot. Because TATRA is difficult to implement

in hardware and has high computational complexity, a cheaply implementable algorithm WBA [9]

is proposed. WBA is a weight based algorithm, and cells with older ages or smaller fanouts are

assigned more weights, for the purposes of fairness (starvation free) and residue concentration

respectively. Once the weights are assigned, each output independently grants to the input with

the highest weight. ESLIP [25] uses the VOQ structure to buffer unicast packets and puts all the

multicast packets in a special single queue at each input port. It adopts a variant of the iSLIP [24]

algorithm to schedule mixed unicast and multicast traffic. As can be expected, ESLIP eliminates

the HOL blocking for unicast traffic, but not for multicast traffic. An iterative multicast scheduling

algorithm FIFOMS for the multicast VOQ switch is proposed in [10]. Each iterative round of

FIFOMS includes the request step and the grant step, and the first-in-first-out principle is used as

the arbitration rule in both steps. FIFOMS demonstrates short multicast latency and small buffer

space requirement in simulations.
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III. MULTICAST VOQ SWITCH

In this section, we describe the multicast VOQ switch structure on which the CMF algorithm

is based. Since the VOQ switch does not require speedup as the output queued switch, and also

removes the HOL blocking that limits the maximum throughput of the single input queued switch,

it is the preferred structure for packet switches. However, the traditional VOQ switch does not

suit for multicast traffic. In the following, we describe a scheme for organizing packets in the input

buffers of a multicast VOQ switch, so that the number of queues at each input port can be reduced

from exponential (2N − 1) to linear (N ).

In general, the information that a packet carries consists of two parts. The first part is the

destination address information, which is used by the switch to make scheduling decisions, i.e.,

deciding for each input port when and to which output port its packets should be sent. The second

part of information is the payload data, which is the content to be forwarded to the destination

output ports. When the switch handles only unicast traffic, where the payload data of a packet

needs to be sent only once from an input port to a single output port, it is natural to combine the

two parts of information into a single unit and use it for both scheduling and data forwarding.

However, when multicast traffic is involved, a packet may need to be sent to multiple output ports.

Although the destinations are different, the data content to be sent is the same. Therefore, there

is no need to store multiple copies of the same payload data. A more efficient way would be to

store the address and data content of a packet separately: the data are stored once and used for all

destination addresses of the packet.

We use two different types of cells to store the two parts of a packet: the data cell to store the

payload content, and the address cell to store the destination information.

A data cell is created to store the data content when a new packet arrives at the switch. Its data

structure can be described as follows:

DataCell {

binary payloadData;
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int fanoutCounter;

}

The payloadData field stores the payload content of a packet. Since we assume that the switch

operates on fixed length packets, it can be implemented as a fixed size field. The fanoutCounter

field records the number of destination output ports that the payloadData is going to be sent to.

When a packet arrives at the switch, the fanoutCounter field of its data cell is equal to the fanout of

the packet. As the payloadData is sent to part or all of the destinations of the packet, the number

in the fanoutCounter field is decremented accordingly. When it becomes zero, it means that all the

destination output ports have been served, and the data cell can be destroyed to return the buffer

space.

The address cell stores the destination address information of a packet. Specifically, an address

cell represents one of the destination output port of the packet, and serves as a place holder in the

virtual output queue corresponding to that output port. When a new packet enters the switch, one

address cell is created for each of its destination output ports. The data structure of an address cell

can be described as follows:

AddressCell {

int timeStamp;

pointer pDataCell;

}

The timeStamp field records the arrival time of the packet that the address cell is related to. The

field has extra precision digits to differentiate the multiple packets of a single input port arriving

in the same time slot. In such cases, an arbitrary order is given to these packets by assigning

different values to their extra precision digits. For the timeStamp field size, 64 bits are sufficient

(this is used by the time stamp counter in Pentium processors, and is good for a 100G bps ATM

switch with fixed packet length of 53 bytes to run for more than 100 years without duplicating time

stamps). Furthermore, by reasonably assuming the maximum lifetime of a packet in the switch, a

finite length time stamp field can be used to represent unlimited time stamps using the techniques
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proposed in the literature [27] [28] [29]. Because all the address cells of the same packet have the

same timeStamp value, it can be used to identify the address cells that belong to the same multicast

packet. In the CMF algorithm, these address cells are allowed to simultaneously make transmission

requests to the corresponding output ports, so as to increase the chances that a multicast packet is

delivered to multiple destinations in the same time slot, and thus achieve short multicast latency.

The pDataCell field is a pointer to the data cell that the address cell corresponds to. Each

address cell points to exactly one data cell, and a data cell may be pointed by one or more address

cells due to the multicast traffic. When an address cell is scheduled to transfer, the input port will

actually send the payloadData of the data cell that the pDataCell field of this address cell points to.

After explaining the two types of cells used, we now give the entire picture of the queue

structure in a multicast VOQ switch. In each input port, there is a buffer used to store the data

cells, and there are N virtual output queues to store the address cells for the N output ports. All

the address cells in the same virtual queue are destined to the same output port, and only the

address cells at the head of the queues are eligible to be scheduled. If an address cell receives the

transmission grant from a particular output port in the scheduling, the crosspoint connecting the

input port with the output port of the address cell will be set, and the data cell that the address

cell’s pDataCell field points to will be transferred. After the data are sent, this address cell is

removed from the head of its queue, and the fanoutCounter field of the corresponding data cell is

accordingly decreased by one.

In order to fit into the multicast VOQ switch queue structure, a packet needs to be processed

upon arriving. One data cell and one or more address cells are generated and initialized as previ-

ously discussed. The data cell is put in the data buffer, and each address cell is placed at the end of

the virtual queue based on its destination. It should be noted that the processing of new packets

can be overlapped with the scheduling and switching of the switch, and thus it would not introduce

extra delay for the packets.

Fig. 2 gives an example of a 4×4 multicast VOQ switch. The input ports and output ports are
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Fig. 2. An example of a 4× 4 multicast VOQ switch. Left part shows the details of input port 0.

connected by a crossbar fabric, and incoming packets are buffered at the input side. The details of

input port 0 are shown in the left part of the figure, in which there is a buffer for data cells and four

virtual output queues for address cells. The shaded area of the data cell represents the payloadData

field, and the number is the current value of the fanoutCounter. The number in the address cell

stands for the timeStamp field, and the arrow points to its related data cell. Input port 0 has four

packets that have not been fully transferred, and the packets entered the switch at the 0th, 2nd, 4th

and 5th time slots, respectively. The current fanout of the 0th slot packet is 1, and it still needs to

be sent to output port 0. The 2nd slot packet is destined to all the four output ports, and has not

been transmitted to any one yet. The 4th slot packet is a unicast packet to output port 1, and the

destinations of the 5th slot packet are output ports 2 and 3.

IV. IDEAL MODEL FOR BANDWIDTH GUARANTEED MULTICAST SCHEDULING

In this section, we present an ideal model for bandwidth guaranteed multicast scheduling. The

ideal model allocates the available bandwidth of an output port to different input ports in a perfect

fair manner. It is only used as a reference system by the CMF algorithm, and is not implemented

in the simulations.
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Fig. 3. The per flow fair scheduling for packet switches can be decomposed to two levels: the per port based fair
scheduling and the per flow based fair scheduling.

A. Per Port Scheduling and Per Flow Scheduling

A fair scheduling algorithm can provide fair bandwidth allocation at different granularity. We

call it a per port scheduling algorithm if the input port is the unit of bandwidth allocation, and call

it a per flow scheduling algorithm if the flow is the unit. For an efficient implementation, the per

flow based fair scheduling for packet switches can be decomposed to two levels, as show in Fig. 3.

At the first level, per port fair scheduling algorithms on switches guarantee that the transmission

capacity of each output port is fairly allocated to all the input ports. The first level enables each

input port to obtain its reserved share of bandwidth from a specific output port. At the second

level, the obtained bandwidth is further divided among different flows of this input port. Existing

techniques for the second level of fair scheduling include fair scheduling algorithms for shared

output links [12] - [18] and buffer management schemes [22] [23]. In the following discussion,

we focus on the first level of fair scheduling, i.e., fairly assigning the bandwidth of an output port

to all the input ports.

B. Ideal Model for Per Port Multicast Fair Scheduling

We introduce an ideal model for per port multicast fair scheduling. The ideal model illustrates

how perfect fairness can be achieved, and the CMF algorithm is designed to emulate the ideal

model to provide similar bandwidth allocation. In other words, CMF tries to allocate to each input
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Fig. 4. The ideal model for per port multicast fair scheduling is based on the output queued switch, and each output
port runs the GPS scheduler to ensure the fair bandwidth allocation.

port the same amount of bandwidth that it would receive in the ideal model.

For the convenience of establishing the model, we use the output queued switch as the underly-

ing structure, because it would be very difficult if not impossible to build the ideal model based on

the input queued switch. When the input queued switch is considered, the per port fair scheduling

must resolve two types of conflicts: (1) As in the usual scheduling, when multiple input ports have

packets destined to the same output port, only one can be granted to transmit at each time slot. (2)

Furthermore, for fairness guaranteed scheduling, the available bandwidth of an output port should

be fairly divided among different input ports. It is difficult for a scheduling algorithm of the input

queued switch to resolve both types of conflicts at the same time. On the contrary, the output

queued switch does not have the first type of conflict, since with the N speedup, even each input

port has a new incoming packet destined to the same output port, all of them can be transmitted

through the switching fabric in the same time slot. Thus, a per port fair scheduling algorithm based

on the output queued switch only needs to consider the bandwidth allocation issue.

Fig. 4 shows the switch structure of the ideal model for per port multicast fair scheduling.

It is an N ×N output queued switch that buffers the blocked packets at the output side using a

per input port buffering strategy. In other words, each output port has N separate logic queues,
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so that packets arriving from different input ports can be placed in different queues. The crossbar

switching fabric of the switch is capable of N speedup, and thus achieves 100% throughput. Upon

the arrival of a unicast packet, it is immediately transmitted across the switch and delivered to its

destination output port. For a multicast packet, the packet replication is done by the crossbar, and

the packet is simultaneously sent to all its destinations.

An input port claims partial bandwidth on each output port as its reservation, and we denote the

normalized (with respect to the total bandwidth of output port j) reserved bandwidth of input port i

on output port j at time t as rij(t). By the definition, 0≤ rij(t)≤ 1, and to avoid over-subscription

at any input port or output port, rij(t) satisfies that
∑N−1

j=0 rij(t) ≤ 1 for any 0 ≤ i ≤ N − 1, and
∑N−1

i=0 rij(t)≤ 1 for any 0≤ j ≤N − 1.

Each output port of the switch runs a GPS [11] scheduler, which serves the queues of different

input ports in a weighted bit-by-bit round robin manner, and fairly allocates the available band-

width to all the input ports according to their reservations. Equivalently, we can view it as that

each input port has a logically separate and independent transmission channel at each output port.

As a result, perfect fairness is achieved. Given that input ports i1 and i2 have backlogged packets

to output port j during time interval (t1, t2), the following equation always holds

Bi1j(t1, t2)

Bi2j(t1, t2)
=

∫ t2
t1

ri1j(t)dt
∫ t2

t1
ri2j(t)dt

where Bij(t1, t2) is the amount of bandwidth that input port i consumes on output port j in interval

(t1, t2). However, the relationship represented by the above equation between actually received

bandwidth and reserved bandwidth is not explicit. On the other hand, when there is no new flow

joining or existing flow leaving, the reserved bandwidth of each input-output pair keeps constant.

Therefore, we can divide time into short intervals so that in each interval ri1j(t) and ri2j(t) have

fixed values. Suppose that ri1j(t) and ri2j(t) are constant during interval (t1, t2), which we denote

by ri1j and ri2j , the above equation can be simplified to

Bi1j(t1, t2)

Bi2j(t1, t2)
=

ri1j

ri2j
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Now, the relationship between actually received bandwidth and reserved bandwidth becomes ob-

vious: they should be proportional.

V. CREDIT BASED MULTICAST FAIR SCHEDULING

In this section, we present the Credit based Multicast Fair scheduling (CMF) algorithm. CMF

works on the multicast VOQ switch as described in Section III, and aims to efficiently schedule

multicast traffic with bandwidth guarantees.

A. Terminologies

We introduce here some terminologies used to describe the CMF algorithm.

A slot is the unit of time for the switch to make scheduling decisions and transmit a batch of

packets from input ports to output ports. Slots are numbered 0,1,2, . . ., and the switch starts to run

at slot 0.

As in the ideal model, the reservation rij(t) is the normalized reserved bandwidth of input port

i on output port j at slot t. It is a function of the time slot index, because the reserved bandwidth

may change at different time slots.

The credit cij(t) is defined to be the usable bandwidth of input port i on output port j at slot t,

i.e.,

cij(t) =





rij(t)∑
k∈Ij(t) rkj(t)

, if input i has packets to output j at slot t

0, otherwise

where Ij(t) is the set of input ports that have backlogged packets to output port j at slot t. In

order to make fully use of the available bandwidth, when an input port has no packet to send to

a specific output port, its reserved bandwidth is reallocated to the rest of backlogged input ports

proportionally to their reservations, and a GPS [11] scheduler handles the excessive bandwidth in

the same way. Normally, cij(t) does not need to be recomputed at each time slot, instead, only

when the corresponding virtual queue changes from empty to backlogged or from backlogged to

empty.
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The balance bij(t) of input port i on output port j at slot t is the actual bandwidth that it uses

at this time slot. For an output port, either it is idle at a time slot, or one of the input ports is

scheduled to send a packet through. In the latter case, the scheduled input port exclusively uses all

the available bandwidth of the output port at this slot, and the rest of the input ports do not use any

bandwidth, thus

bij(t) =





1, if input i sends a packet through output j at slot t

0, otherwise

Since CMF is a bandwidth guaranteed scheduling algorithm, we define the “accumulated

credit” to record the up to date bandwidth usage. The accumulated credit Aij(t) of input port

i on output j till slot t is recursively defined as follows

Aij(t) =





0, t = 0

Aij(t− 1) + cij(t− 1)− bij(t− 1), t≥ 1

Aij(t) is the accumulated difference between the reserved bandwidth and the actually used band-

width of input port i on output port j up to slot t. It is also the accumulated difference between

the bandwidth that the input receives in the ideal fairness model and that in the algorithm, since in

the ideal model, an input port gets exactly its reserved bandwidth. CMF achieves fairness band-

width allocation by minimizing the absolute value of the accumulated credit, and thus emulates the

scheduling of the ideal fairness model.

We call (Aij(t) + cij(t)) the available credit of input port i on output port j at slot t, which

is the amount of bandwidth input port i can use on output port j at slot t without exceeding its

reservation.

B. CMF Algorithm Description

Like most scheduling algorithms [4] [20] [21] [24] on VOQ switches, CMF is an iterative

matching algorithm. An input port or an output port is said to be matched if it has been scheduled



18

to send or receive a packet at the current time slot, otherwise it is free. Initially, all the input ports

and output ports are free. After an iterative round, some pairs of input ports and output ports are

matched, and they will no longer be considered in the future rounds of the current time slot.

Each iterative round of CMF consists of two steps: (1) Request step. Address cells at each

input port send requests to their destination output ports for possible transmissions. (2) Grant step.

Each output port selects one request from all the requests it received, and grants the transmission to

the corresponding address cell. However, different from other three step iterative algorithms [31],

the accept step is not needed in CMF. As will be seen in the detailed description of the request

step, only when multiple address cells of an input port are generated by the same multicast packet

and point to the same data cell, they can send requests simultaneously. Therefore, only one of

the data cells in an input port can be granted the transmission, and there is no potential conflict

in which an input port needs to send more than one data cells in a single time slot. Thus, in an

iterative scheduling round, CMF has one fewer operational step, and less data exchange between

input ports and output ports.

Next, we explain each step of CMF in more detail.

Before the scheduling starts, the accumulated credits of each input port are initialized to zero

(Aij(0) = 0), so that no input port can pre-own credits.

Request Step. In the request step, if an input port is free, its earliest HOL address cells with

positive available credits (Aij(t) + cij(t) > 0) send requests to the corresponding output ports.

There may be more than one such address cells in one input port, which come from the same

multicast packet. Otherwise, if the input port has been matched with one or more output ports

in this time slot, it means that a data cell has been scheduled to transmit, and therefore, no more

address cells can make requests.

Giving priorities to the address cells with positive available credits helps CMF to achieve fair

bandwidth allocation, i.e., first satisfying those that have not received enough bandwidth. Allowing

the address cells of the same multicast packet to send requests simultaneously also gives the packet
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more chances to be transmitted to all its destinations in short latency.

Grant Step. After the request step, each output port has collected some requests. As in the

request step, requests with larger available credits will be given higher priorities, and each output

port grants the request with the largest available credit.

Similar to the purpose of adding positive available credit restriction in the request step, using

the available credit as the grant criterion ensures fair bandwidth allocation. On the other hand, it

also improves the chances that the address cells of the same multicast packet can simultaneously

receive grants from multiple output ports, because an input port normally claims reserved band-

width based on its traffic flows, and thus has similar available credits on the multiple destination

output ports of the same multicast flow.

The iterative rounds of the request and grant steps continue until no possible matching can be

found.

However, at this time, there may still be matchable input-output pairs that are not matched

because the HOL address cells have negative available credits and are masked out in the first stage

of matching. Similar to WPIM [19], in order to improve the throughput of the algorithm and

avoid wasting usable bandwidth, a second stage of matching is executed, which follows the same

process as in the first stage, except that the HOL address cells do not need positive available credits

to send requests. The second stage matching will not affect the fairness properties of the algorithm,

because the HOL address cells with positive available credits have been given priorities in the first

stage, and those with negative available credits only consume the bandwidth that cannot be used

by the former. Even the HOL address cells with negative available credit are scheduled, their

accumulated credit will become smaller because of the newly generated balance, and as a result,

their future chances of being transmitted are further reduced.

Data Transmission. After both stages of matching are completed, scheduling decisions have

been generated in the form of matched input-output pairs. Each input port usually has one data

cell to send and may need to send this data cell to several output ports. On the other hand, each
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output port will receive no more than one data cell from a specific input port. The corresponding

crosspoints connecting the scheduled input ports and output ports are set, and the input ports begin

to send the data cells. Note that an input port may be connected to more than one output ports

simultaneously in a multicast switch, and thus the algorithm can fully utilize the built-in multicast

capability of the crossbar switching fabric.

Post Transmission Processing. After the transmission is completed, the accumulated credits

of each input port are updated accordingly, Aij(t + 1) = Aij(t) + cij(t)− bij(t). It may happen

that although several input ports had buffered packets to a specific output port, the output port

received no packet, because all the input ports were matched with other output ports. In this case,

the accumulated credits on this output port remain unchanged, i.e, Aij(t + 1) = Aij(t). Also,

some post processing work needs to be performed to update the address cells and data cells that

have been transferred. The served HOL address cells are removed from the heads of their queues,

and the fanoutCounter fields of the related data cells are decreased accordingly. If a data cell’s

fanoutCounter field becomes zero, i.e., it has been sent to all destination output ports, the data cell

is destroyed to return the buffer space.

C. Complexity Analysis

Similar to most of iterative matching algorithms, CMF has theoretical time complexity of

O(N logN). In the request step of one iteration, each input port spends O(logN) time to find

from up to N time stamp values the smallest one, and let all HOL address cells with such a time

stamp value send requests in parallel. In the grant step of one iteration, each output port spends

O(logN) time to find from up to N requests the one with the largest available credit. Because in

each iteration, at least one input-output pair will be matched, CMF converges in N iterations in the

worst case. Thus, by combining the two parts, the time complexity of CMF is O(N logN).

However, in practice the average number of convergence iterations of CMF is usually much

smaller than N , as will be seen from the simulation results in Section VI. This is because that
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it is highly possible that different input ports send requests to different output ports, and multiple

input-output pairs are matched in one iteration, so that the algorithm can converge with less than

N iterations. In fact, many iterative matching algorithms [4] [19] [24] use O(logN) [4] as an

approximation of the average number of convergence iterations.

VI. PERFORMANCE EVALUATIONS

We have conducted extensive simulations to evaluate the performance of CMF and compare

it with existing scheduling algorithms. Other algorithms considered in the simulations include

TATRA [9] and FIFOMS [10], which are multicast scheduling algorithms targeting short multicast

latency, and WPIM [19], iFS [20] and iDRR [21], which are unicast scheduling algorithms with

bandwidth guarantees.

Both pure unicast traffic and multicast traffic are adopted in the simulations. For a unicast

packet, it has equal probability (1/N ) being destined to each output port, while a multicast packet

has equal probability to go to any possible multicast destination. In other words, a multicast packet

has the probability of 0.5 to be addressed to each output port. However, if a packet happens not to

be addressed to any output port, it is regarded as invalid and discarded. Thus, the average fanout

of a multicast packet is 0.5×N .

We consider both Bernoulli arrivals and burst arrivals for unicast traffic and multicast traffic.

The Bernoulli arrival is one of the most widely used models in the simulation of scheduling algo-

rithms. Under the Bernoulli arrival, each input port has the probability of p to have a new packet

to arrive at the beginning of a time slot. Therefore, the effective load is p for the Bernoulli unicast

traffic and 0.5×N × p for the Bernoulli multicast traffic.

In practice, network packets are usually highly correlated and tend to arrive in a burst mode.

For a discrete time slot switch, we generally use a two state Markov process which alternates

between off and on states to describe the burst nature. In the off state, there is no packet to arrive. In

the on state, packets arrive at every time slot and all have the same destinations. At the end of each
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slot, the traffic can switch between off and on states independently. Burst traffic can be described

using two parameters Eoff and Eon. Eoff is the average length of the off state, or alternatively the

probability to switch from the off state to the on state is 1/Eoff . Eon is the average length of the on

state, or the probability to switch from the on state to the off state is 1/Eon. Therefore, the arrival

rate is Eon/(Eoff + Eon), and the effective load is Eon/(Eoff + Eon) for the burst unicast traffic

and 0.5×N ×Eon/(Eoff + Eon) for the burst multicast traffic. For easy comparison, we set Eon

to be the same value, 16, as in [9].

Each simulation runs for a fixed amount of time slots (106), and there is a sufficient warmup

period (50% of the total simulation time) to obtain stable statistics.

In the following, we present the simulation results on different properties of the algorithms.

A. Bandwidth Guarantees

CMF minimizes the absolute value of the accumulated credit to assure the reserved bandwidth

of each input port. By giving priorities to the address cells with more positive available credits

in the scheduling, they are likely to be scheduled and have balances to reduce the accumulated

credits. On the other hand, those with negative available credits are masked out from the first stage

of matching, and have more chances to recover the accumulated credits by adding credits of the

current time slot. The following example reveals that the fairness mechanism of CMF is effective.

Consider a 4× 4 switch with the following reservation setting:



r00 r01 r02 r03

r10 r11 r12 r13

r20 r21 r22 r23

r30 r31 r32 r33




=




0.1 0.2 0.3 0.4

0.2 0.3 0.4 0.1

0.3 0.4 0.1 0.2

0.4 0.1 0.2 0.3




Ideally, input ports 0, 1, 2 and 3 should receive 10%, 20%, 30% and 40% bandwidth from output

port 0, respectively. We let each input port have the same traffic load, and observe the actually

obtained bandwidth of each input port. In the simulation, we assume there is limited buffer space

at each input port and use a simple drop-tail buffer management strategy.
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Fig. 5. CMF provides bandwidth guarantees. (a) Under Bernoulli multicast traffic. (b) Under burst multicast traffic.
(c) Under Bernoulli unicast traffic. (d) Under burst unicast traffic.

Fig. 5 shows the actually received bandwidth of input ports 0, 1, 2 and 3 on output port 0 in

CMF. Initially, the load on each input port (1/4 of the effective load of the switch) is small, and all

the arrived traffic can be completely delivered to the output port. As the load increases gradually,

the switch cannot sustain all the incoming traffic. The fairness mechanism becomes effective and

prevents the input ports with small reservations from getting more than its reserved bandwidth.

As a result, the actually obtained bandwidth of these input ports begins to drop. Finally, when

the load on each input port goes beyond 40%, each input port can only get its reserved part of

the bandwidth, which is 10%, 20%, 30% and 40% respectively for input ports 0, 1, 2 and 3. The

above observation holds for Bernoulli multicast traffic (Fig.5(a)), burst multicast traffic (Fig. 5(b)),

Bernoulli unicast traffic (Fig. 5(c)) and burst unicast traffic (Fig. 5(d)).

Fig. 6 and Fig. 7 show the results of FIFOMS and TATRA, respectively. Because they do

not take bandwidth guarantees into consideration, the total bandwidth is always equally allocated

to all the input ports. As can be seen, the maximum throughput of TATRA is severely affected by

the HOL blocking, especially under the burst unicast traffic (Fig. 7(d)). It is interesting to note

that, when TATRA is used under Bernoulli arrivals, there is a small difference between the actually

obtained bandwidth of different input ports, as shown in Fig. 7(a) and Fig. 7(c). This can be

explained by the fact that TATRA computes the “departure date” in an increasing order of input

port indexes, and hence the input ports with smaller indexes are given priorities in the scheduling.
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Fig. 6. FIFOMS is not able to provide bandwidth guarantee. (a) Under Bernoulli multicast traffic. (b) Under burst
multicast traffic. (c) Under Bernoulli unicast traffic. (d) Under burst unicast traffic.
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Fig. 7. TATRA is not able to provide bandwidth guarantee. (a) Under Bernoulli multicast traffic. (b) Under burst
multicast traffic. (c) Under Bernoulli unicast traffic. (d) Under burst unicast traffic.

B. Necessity of the Second Stage of Matching

As discussed earlier, in order to avoid wasting available bandwidth, CMF adds a second stage

of matching to allow the address cells with negative available credit to be transmitted.

Fig. 8 gives the actually obtained bandwidth of each input port with only the first stage of

matching, under the same configuration as above. We can see that the bandwidth consumed by each

input port is still roughly proportional to its reservation, which means that the fairness mechanism

is still effective. However, the available bandwidth of the output port is not guaranteed to be fully

utilized, and each input port may receive much less bandwidth comparing with the situations in Fig.

5. The results show that the second stage of matching indeed increases the maximum throughput

of the algorithm, and in the meanwhile does not affect the original fairness performance.
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Fig. 8. Without the second stage of matching, CMF cannot make fully use of the available bandwidth. (a) Under
Bernoulli multicast traffic. (b) Under burst multicast traffic. (c) Under Bernoulli unicast traffic. (d) Under burst
unicast traffic.

C. Multicast Latency

We test whether the multicast scheduling mechanism of CMF is effective by evaluating its

multicast latency. A multicast packet may be transmitted to its different destination output ports

at different time slots, and multicast latency is defined to be the time interval from the slot that

the packet arrives at an input port to the slot that it is delivered to its last destination output port.

Unicast is viewed as a special case of multicast with fanout equal to 1.

To obtain more realistic results, a 16× 16 switch is considered in the rest of the simulations,

and each input port is assigned equal share of reserved bandwidth, i.e., rij = 1/16. Fig. 9(a)

plots the average multicast latency of different algorithms under Bernoulli multicast traffic. As can

be seen, because the three unicast scheduling algorithms process a multicast packet as multiple

copies of independent unicast packets, they have longer multicast latency than the three multicast

scheduling algorithms. TATRA, FIFOMS and CMF have almost the same multicast latency when

the load is not heavy, but the performance of TATRA drops dramatically when the effective load

approaches 1 due to the HOL blocking. The simulation results under burst multicast traffic are

given in Fig. 9(b). Similar observations can be drawn that CMF and FIFOMS achieve the shortest

average multicast latency in most cases. Note that since FIFOMS does not need to be concerned

with the fairness property and works in a pure first-in-first-out manner, its multicast latency under

heavy load is shorter than that of CMF. It also can be noticed that, due to the bursty nature of the
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Fig. 9. Comparison of average multicast latency of different algorithms. (a) Under Bernoulli multicast traffic. (b)
Under burst multicast traffic. (c) Under Bernoulli unicast traffic. (d) Under burst unicast traffic.

arrivals, the multicast latency of any algorithm under the same effective load is much longer than

that under the Bernoulli multicast traffic, and TATRA saturates at about 80% effective load.

Fig. 9(c) and Fig. 9(d) show the results under Bernoulli unicast traffic and burst unicast

traffic, respectively. We can see that although specifically designed for multicast scheduling, CMF

performs equally well under pure unicast traffic, and successfully matches the unicast scheduling

algorithms, WPIM, iFS and iDRR. Under unicast traffic, TATRA is more severely affected by the

HOL blocking, and can only reach a maximal throughput of about 55%, which is consistent with

the theoretical analysis result of 58.6% in [30].

D. Output Oriented Latency

Output oriented latency represents the transmission delay from the point of view of the re-

ceiver. It can be computed as the interval from the slot a packet enters the switch to the slot it is

sent to the outline of one of its destinations. Thus, a multicast packet may be delivered to different

destination with different output oriented latency.

Note that the output oriented latency performance criterion is not biased to multicast schedul-

ing algorithms, because it does not consider the relationship between the different destinations

of the same multicast packet, instead, it is only concerned with the arrival-to-departure interval.

However, as shown in Fig. 10(a) and (b), the multicast scheduling algorithms still outperform the

unicast scheduling algorithms, because they simultaneously consider the different destinations of



27

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Effective Load

A
ve

ra
ge

 O
ut

pu
t O

rie
nt

ed
 L

at
en

cy

16x16 Switch, Bernoulli Multicast Traffic

CMF
FIFOMS
TATRA
WPIM
iDRR
iFS

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Effective Load

A
ve

ra
ge

 O
ut

pu
t O

rie
nt

ed
 L

at
en

cy

16x16 Switch, Burst Multicast Traffic

CMF
FIFOMS
TATRA
WPIM
iDRR
iFS

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Effective Load

A
ve

ra
ge

 O
ut

pu
t O

rie
nt

ed
 L

at
en

cy

16x16 Switch, Bernoulli Unicast Traffic

CMF
FIFOMS
TATRA
WPIM
iDRR
iFS

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Effective Load

A
ve

ra
ge

 O
ut

pu
t O

rie
nt

ed
 L

at
en

cy

16x16 Switch, Burst Unicast Traffic

CMF
FIFOMS
TATRA
WPIM
iDRR
iFS

(a) (b) (c) (d)

Fig. 10. Comparison of average output oriented latency of different algorithms. (a) Under Bernoulli multicast traffic.
(b) Under burst multicast traffic. (c) Under Bernoulli unicast traffic. (d) Under burst unicast traffic.

a multicast during the scheduling. As can be expected, the average output oriented latency of each

algorithm is shorter than its corresponding average multicast latency. Again, the output oriented

latency of TATRA increases dramatically under heavy load. It is interesting to note that, although

the three unicast scheduling algorithms use different scheduling policies, they have almost identi-

cal output oriented latency. The results under unicast traffic are shown in Fig. 10(c) and (d). As

can be seen, under unicast traffic CMF achieves almost identical output oriented latency as the

three unicast scheduling algorithms.

E. Convergence Rounds

Fig. 11 compares the convergence rounds of the five iterative matching algorithms: CMF,

FIFOMS, WPIM, iDRR and iFS. Although in the worst case an iterative matching algorithm needs

N(= 16) rounds to converge, we can see that the average convergence rounds of these algorithms

are much smaller. Under light load, the convergence rounds of all the algorithms are similar and

not sensitive to the increase of the traffic. CMF has small convergence rounds under Bernoulli

arrivals, but relatively large convergence rounds under burst arrivals. Generally, iDRR requires

fewer rounds than others, because at the beginning of each time slot, the matched pairs of input

ports and output ports can keep their matched status unless the assigned quota is used up.
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Fig. 11. Comparison of convergence rounds of the four iterative algorithms. (a) Under Bernoulli multicast traffic. (b)
Under burst multicast traffic. (c) Under Bernoulli unicast traffic. (d) Under burst unicast traffic.

VII. CONCLUSIONS

In this paper, we have proposed the Credit based Multicast Fair scheduling (CMF) algorithm

to efficiently schedule multicast traffic with bandwidth guarantees. The multicast VOQ switch

is adopted as the base of the algorithm. It stores the address information and the payload data

of a packet separately, which allows an input port to manage only a linear number of queues for

multicast traffic, and at the same time completely removes the HOL blocking.

CMF is an iterative matching algorithm, with each iterative round consisting of the request

step and the grant step. CMF adopts a credit based policy, and defines the accumulated credit

to track the difference between the reserved bandwidth and the actually consumed bandwidth. It

ensures the fair bandwidth allocation by minimizing the accumulated credit in the scheduling. At

the same time, CMF supports multicast scheduling by allowing all the address cells of the same

multicast packet to send transmission requests simultaneously, which increases the chance of the

multicast packet being delivered to multiple destinations in the same time slot, and thus achieves

short multicast latency. Extensive simulations are conducted to evaluate the performances of CMF,

and the results demonstrate that CMF fulfills the design objectives: fair bandwidth allocation and

short multicast latency.
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