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Abstract. Buffered crossbar switches are special crossbar switches with
each crosspoint equipped with a small exclusive buffer. The crosspoint
buffers decouple input ports and output ports, and simplify switch
scheduling. In this paper, we propose a scheduling algorithm called Fair
and Localized Asynchronous Packet Scheduling (FLAPS) for buffered
crossbar switches, to provide tight performance guarantees. FLAPS
needs no speedup for the crossbar and handles variable length packets
without segmentation and reassembly (SAR). With FLAPS, each input
port and output port independently make scheduling decisions and rely
on only local queue statuses. We theoretically show that a crosspoint
buffer size of 4L is sufficient for FLAPS to avoid buffer overflow, where
L is the maximum packet length. In addition, we prove that FLAPS
achieves strong stability, and provides bounded delay guarantees. Finally,
we present simulation data to verify the analytical results.

Key words: Buffered crossbar switches, performance guarantees, speedup,
stability.

1 Introduction

Crossbar switches provide nonblocking capabilities, and overcome the bandwidth
limitation of bus based switches [1]. They have long been used as high speed
interconnects in various computing environments, such as Internet routers, com-
puter clusters, and system-on-chip networks. Traditional crossbar switches have
no buffers at the crosspoints of the crossbar switching fabric, and packets have
to be directly transmitted from input ports to output ports. Such switches work
in a synchronous time slot mode and handle only fixed length cells [2]. When
variable length packets arrive, they need to be segmented into fixed length cells
at input ports. The cells are then used as the scheduling units and transmitted
to output ports, where they are reassembled into original packets and sent to
the output lines. This process is called segmentation and reassembly (SAR) [3].

With the development of VLSI technology, it has been feasible to integrate
on-chip memories to the crossbar [4] - [7]. Buffered crossbar switches are a special
type of crossbar switches, which have a small exclusive buffer at each crosspoint,
as shown in Figure 1. Crosspoint buffers decouple input ports and output ports,
and greatly simplify the scheduling process. Buffered crossbar switches can now
directly handle variable length packets and work in an asynchronous mode. To
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be specific, input ports independently and periodically send packets of arbitrary
length to their crosspoint buffers, from where output ports retrieve the packets
one by one.
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Fig. 1. Structure of buffered crossbar switches.

Compared with (fixed length) cell scheduling of unbuffered crossbar switches,
(variable length) packet scheduling of buffered crossbar switches has some unique
advantages. First, packet scheduling can better utilize available bandwidth and
achieve higher throughput. For cell scheduling, when a packet is segmented into
cells, its length may not be a multiple of the cell length, and padding bits have to
be inserted to the last segment to reach the cell length. The padding bits do not
contain useful information and waste bandwidth. In the worst case, if all packets
have a slightly longer length than the cell length, each packet has to be segmented
into two cells, and the switch can only achieve about a half of its maximum
capacity [14]. Second, packet scheduling reduces packet latency, and helps achieve
tight performance guarantees. Because there is no SAR, packets arriving at input
ports can be immediately transmitted, and packets received at output ports can
be immediately sent to the output lines. Third, no extra buffer space is necessary
at input ports and output ports for SAR, which lowers hardware cost. In cell
scheduling, an input port of an N ×N switch may alternatively send segments
of N packets to the N different output ports, and similarly an output port may
receive segments from N input ports. Thus, NL buffer space is needed at each
input port and output port for SAR, where L is the maximum packet length.
Finally, cell scheduling is a special case of packet scheduling, or in other words,
packet scheduling can also handle fixed length cells.

The speedup of a switch defines the ratio of the crossbar speed to the input
or output port speed. To be specific, speedup of S means that the crossbar has
S times bandwidth as that of the input port or output port. Obviously, with
the same crossbar, the larger the speedup requirement is, the smaller the switch
capacity is. The buffered crossbar switches considered in this paper do not need
speedup. Because the crossbar runs at the same speed as the output port, no
buffer space is necessary at the output port. When a packet is transmitted to
the output port, it will be immediately sent to the next hop via the output line.
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There are a number of scheduling algorithms for buffered crossbar switches in
the literature. Those algorithms can be classified into two categories: to provide
performance guarantees [8] - [14] and to achieve high throughput [15] - [20]. The
former requirement is stronger than the latter. In other words, an algorithm with
tight performance guarantees usually delivers 100% throughput, but the reverse
is not always true. Among the scheduling algorithms providing performance
guarantees, some consider cell scheduling [8] - [13]. As discussed in the above,
cell scheduling may waste bandwidth due to the padding bits in SAR. Others
require speedup of two or more [9] - [14], which reduces the maximum capacity
of the switch by half. In particular, two packet scheduling algorithms, Packet
GVOQ (PGV) and Packet LOOFA (PLF), were proposed for buffered crossbar
switches in [14], and their performance guarantees were analyzed. There are two
main differences between the algorithms in [14] and our algorithm. First, PGV
and PLF work by emulating push-in-first-out (PIFO) scheduling algorithms for
output queued (OQ) switches, which means that they need to maintain the
operation of the reference algorithms. Second, PGV and PLF require speedup of
two for the crossbar. To the best of our knowledge, there have been no existing
packet scheduling algorithms for buffered crossbar switches without speedup.

In this paper, we propose the Fair and Localized Asynchronous Packet
Scheduling (FLAPS) algorithm for buffered crossbar switches without speedup.
FLAPS allows input ports and output ports to make independent scheduling de-
cisions based on only local information without data exchange. More specifically,
an input port needs only the statuses of its input queues, and an output port
needs only the states of its crosspoint buffers. FLAPS uses a time stamp based
approach to schedule packets. We show that FLAPS has a crosspoint buffer
size bound of 4L, independent of the switch size. Furthermore, we prove that
FLAPS achieves strong stability, and provides bounded performance guarantees.
Finally, simulations are conducted to verify the analytical results and evaluate
the performance of FLAPS.

The rest of the paper is organized as follows. In Section 2, we discuss the ideal
fairness model that will be used. In Section 3, we present the FLAPS algorithm.
In Section 4, we theoretically analyze the performance of FLAPS, and in Section
5, we present simulation data to verify the analytical results. In Section 6, we
conclude the paper.

2 Preliminaries
In this section, we discuss the ideal fairness model that will be used in this
paper. To effectively evaluate the fairness performance of a scheduling algorithm,
it is necessary to have an ideal fairness model as the comparison reference. A
fairness model for packet scheduling can be regarded to have two roles. The
first role is to calculate the allocated bandwidth for traffic flows based on their
requested bandwidth. The second role is to schedule the packets of different
flows to ensure that the actually received bandwidth of each flow is equal to its
allocated bandwidth.

Generalized Processor Sharing (GPS) [21] is a widely used fairness model
for packet scheduling. When GPS applies to a shared output link, it divides
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the link bandwidth into multiple logical transmission channels. Each flow has
its own logical channel, and the channel bandwidth is proportional to the re-
quested bandwidth of the flow. GPS views flows as fluids of continuous bits, and
transmits the packets of a flow in its independent channel. As a result, each flow
uses the same amount of bandwidth as that of its allocated bandwidth. To im-
prove utilization, when a flow temporarily becomes empty, GPS will reallocate
the leftover bandwidth of the empty flow to the remaining backlogged flows in
proportion to their requested bandwidth.

As can be seen, when GPS serves a shared output link, it allocates available
bandwidth, including leftover bandwidth, in the proportional manner. However,
simple proportional bandwidth allocation is not proper for switch scheduling
[22] [23]. The reason is that, while flows of a shared output link are constrained
only by the link bandwidth, flows of a switch are subject to two bandwidth
constraints: the available bandwidth at both the input port and output port of
the flow. Naive bandwidth allocation at the output port may make the flows
violate the bandwidth constraints at their input ports, and vice versa.

Fair bandwidth allocation for switches is an interesting problem, and there
are algorithms [22] [23] in the literature to solve it. In this paper, we assume
that bandwidth allocation has been calculated using such algorithms, and the
scheduling algorithms just schedule packets to ensure the allocated bandwidth
of each flow. Also, when a flow of the switch temporarily becomes empty, we
do not assume that its allocated bandwidth is immediately reallocated. Instead,
the bandwidth allocation algorithms will consider the leftover bandwidth in the
next calculation. Bandwidth allocation is recalculated when requested band-
width changes or existing backlogged flows become empty. Given the calculated
bandwidth allocation, GPS can divide the bandwidth of a switch into logical
channels, as shown in Figure 2. Each flow has an independent logical channel,
and the channel bandwidth is equal to the allocated bandwidth of the flow. Thus,
traffic of the flow can smoothly stream from the input port to the output port.

In1

Out2Out1

In2

Fig. 2. GPS used for switch scheduling.

To sum up, we use GPS as the ideal fairness model only for its second role,
i.e., given the allocated bandwidth, to compare the received bandwidth of a flow
in our algorithm and in GPS.
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3 Fair and Localized Asynchronous Packet Scheduling

In this section, we present the Fair and Localized Asynchronous Packet Schedul-
ing (FLAPS) algorithm.

The switch structure that we consider is shown in Figure 1. N input ports
and N output ports are connected by a buffered crossbar, which has no speedup.
Denote the ith input port as Ini and the jth output port as Outj . Use R to
represent the available bandwidth of each input port and output port, and the
crossbar also has bandwidth R. Each input port has a buffer organized as virtual
output queues (VOQ) [24], i.e., there are N virtual queues to store the packets
destined to the N different output ports. Denote the virtual queue at Ini for
packets to Outj as Qij . Each crosspoint has a small exclusive buffer. Denote the
crosspoint buffer connecting Ini and Outj as Bij . Output ports have no buffers.
After a packet arrives at the switch, it is first stored in the input queue, and
waits to be sent to the crosspoint buffer. The packet will then be sent from the
crosspoint buffer to the output port and immediately delivered to the output
line. We say a packet arrives at or departs from a buffer when its last bit arrives
at or departs from the buffer.

Define the traffic from Ini to Outj to be a flow Fij . Because we consider
performance guarantees in this paper, each flow has explicit allocated bandwidth,
and the objective of the scheduling algorithm is to ensure that each flow receives
the same amount of bandwidth as that of its allocated bandwidth. Use rij(t)
to represent the allocated bandwidth of Fij , which is a function of time t with
discrete values in practice. Bandwidth allocation is calculated by the algorithms
mentioned in Section 2. The calculated bandwidth allocation should be feasible,
i.e., no over-subscription at any input port or output port

∀i,
N∑

x=1

rix(t) ≤ R, and ∀j,
N∑

x=1

rxj(t) ≤ R (1)

The feasibility requirement is only for bandwidth allocation. It is necessary be-
cause it is impossible to allocate more bandwidth than what is actually available.
However, it does not mean that no temporary overload is allowed for an input
port or output port. As will be seen in Section 4.2, we use the extended leaky
bucket scheme for flow admission control. It allows any flow to be overloaded for
an arbitrarily long period with an arbitrarily large but finite burst.

There are two types of scheduling in the switch, which we call input schedul-
ing and output scheduling. In input scheduling, an input port selects a packet
from one of its input queues, and sends it to the corresponding crosspoint buffer.
In output scheduling, an output port selects a packet from one of its cross-
point buffers, and sends it to the output line. When we need to differentiate
the scheduling algorithms used for input scheduling and output scheduling, we
use the notation “A-B”. A is the scheduler for input scheduling, and B is the
scheduler for output scheduling. A and B could be either FLAPS or GPS. If
we do not care the scheduler for output scheduling, we use a * mark for B. For
example, GPS-GPS means that GPS is used for both input scheduling and out-
put scheduling. In such a scenario, each flow has an independent channel, and
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its traffic moves smoothly from the input output to the output port without
buffering in the middle, as shown in Figure 2.

Input scheduling and output scheduling of FLAPS rely on only local infor-
mation, and are conducted in an asynchronous and distributed manner. To be
specific, an input port needs only the statuses of the queues in its input buffer,
and does not exchange information with any crosspoint buffer or output port.
Similarly, an output port needs only the statuses of its crosspoint buffers.

We first describe the input scheduling of FLAPS, which uses time stamps as
scheduling criteria. There are two types of time stamps. For easy representation,
we denote the kth arrived packet of Fij as P k

ij . The first time stamp for P k
ij is

called virtual input start time, denoted as ÎS
k

ij , which is the service start time
of P k

ij at the input port in GPS-*. The second time stamp is virtual input finish

time, denoted as ÎF
k

ij , which is the service finish time of P k
ij at the input port

in GPS-*. In other words, if GPS is the scheduler for input scheduling, ÎS
k

ij and

ÎF
k

ij are the time that the first bit and last bit of P k
ij leave Qij , respectively.

ÎS
k

ij can be calculated as follows

ÎS
k

ij = max
(
IAk

ij , ÎF
k−1

ij

)
(2)

where IAk
ij is the arrival time of P k

ij at the input port. ÎF
k

ij satisfies the following
relationship ∫ ÎF

k

ij

ÎS
k

ij

rij(x)dx = Lk
ij (3)

where Lk
ij is the length of P k

ij . Because rij(t) has only discrete values in practice,

ÎF
k

ij can be easily calculated. For example, if rij(t) is a constant rij during[
ÎS

k

ij , ÎF
k

ij

]
, ÎF

k

ij can be calculated as

ÎF
k

ij = ÎS
k

ij +
Lk

ij

rij
(4)

In the first step of input scheduling of FLAPS, Ini identifies eligible packets.

A packet P k
ij is eligible for input scheduling if its virtual input start time ÎS

k

ij is
smaller than or equal to the current system time t. In other words, a packet that
has started transmission in GPS-* is eligible in FLAPS-*. If there exist eligible
packets in the input buffer, Ini will select among such packets the one P k

ij with

the smallest virtual input finish time ÎF
k

ij , and send it to Bij . If there are no
eligible packets, Ini will wait until the next earliest virtual input start time of a
packet. Note that when Ini is waiting for an eligible packet, if an empty input
queue has a new incoming packet, whose virtual input start time is equal to its
arrival time, Ini should immediately start transmitting this new packet. For easy
reading, the pseudo code description for input scheduling of FLAPS is given in
Table 1.
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Table 1. Input Scheduling of FLAPS

for Ini do {
while true do {

if there are packets in local input queues with virtual input
start time smaller than or equal to current system time {
select among such packets the one with the smallest

virtual input finish time, say P k
ij ;

send P k
ij to crosspoint buffer Bij ;//

system time progressing by
P k

ij

R

}
else {

wait until the next earliest virtual input start time;
}

}
}

We denote the actual input start time and finish time of P k
ij in FLAPS-* as

ISk
ij and IF k

ij , which are the time that the first bit and the last bit of P k
ij leave

Qij in FLAPS-*, respectively. Apparently

IF k
ij = ISk

ij +
Lk

ij

R
(5)

Output scheduling of FLAPS is similar to input scheduling. There are also

several time stamps for P k
ij . The virtual output start time ÔS

k

ij and virtual

output finish time ÔF
k

ij are the time that the first bit and last bit of P k
ij leave

Bij in FLAPS-GPS, respectively. In other words, after P k
ij is delivered to Bij by

FLAPS, if GPS is the scheduler for output scheduling, P k
ij will start transmission

at ÔS
k

ij and finish at ÔF
k

ij . ÔS
k

ij is calculated as

ÔS
k

ij = max
(
OAk

ij , ÔF
k−1

ij

)
(6)

where OAk
ij is the arrival time of P k

ij at Bij in FLAPS-*, and is equal to IF k
ij

by neglecting the propagation delay. ÔF
k

ij satisfies the following relationship

∫ ÔF
k

ij

ÔS
k

ij

rij(x)dx = Lk
ij (7)

Similarly, in output scheduling of FLAPS, Outj first identifies eligible pack-

ets, and a packet P k
ij is eligible if its virtual output start time ÔS

k

ij is smaller
than or equal to the current system time t. If there are eligible packets in the
crosspoint buffers, Outj retrieves the one P k

ij with the smallest virtual output

finish time ÔF
k

ij , and sends it to the output line. Otherwise, it waits until there is
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Table 2. Output Scheduling of FLAPS

for Outj do {
while true do {

if there are packets in local crosspoint buffers with virtual
output start time smaller than or equal to current system time {
select among such packets the one with the smallest

virtual output finish time, say P k
ij ;

send P k
ij to the output line;

//
system time progressing by

P k
ij

R

}
else {

wait until the next earliest virtual output start time;
}

}
}

an eligible packet. The pseudo code description for output scheduling of FLAPS
is given in Table 2.

Correspondingly, OSk
ij and OF k

ij are the actual output start and finish time
of P k

ij , which are the time that the first bit and the last bit of P k
ij leave Bij in

FLAPS-FLAPS, respectively. It is obvious that

OF k
ij = OSk

ij +
Lk

ij

R
(8)

4 Performance Analysis

In this section, we theoretically analyze the performance of FLAPS. We show
that FLAPS has a bounded crosspoint buffer size, achieves strong stability, and
provides tight delay guarantees.

4.1 Crosspoint Buffer Size Bound
To avoid overflow at crosspoint buffers, we would like to find the maximum
number of bits buffered at any crosspoint.

Based on the description of the FLAPS algorithm, we have the following
properties.

Property 1 For any packet, its actual input start time in FLAPS-* is larger
than or equal to its virtual input start time in GPS-*, i.e.,

ISk
ij ≥ ÎS

k

ij (9)

Property 2 For any packet, its actual output start time in FLAPS-FLAPS is
larger than or equal to its virtual output start time in FLAPS-GPS, i.e.,

OSk
ij ≥ ÔS

k

ij (10)
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First, we define some notations for input scheduling. We say that Qij is

backlogged at time t, if there exists k such that ÎS
k

ij ≤ t ≤ ÎF
k

ij . Intuitively, Qij

is backlogged at t if Qij has buffered bits at t in GPS-*. Define q̂ij(t) to represent
the backlog status of Qij at t. q̂ij(t) = 1 or 0 means that Qij is backlogged or
empty at t.

Use toBij(t1, t2) and t̂oBij(t1, t2) to represent the numbers of bits trans-
mitted by Fij from Ini to Bij during interval [t1, t2] in FLAPS-* and GPS-*,
respectively. Based on the definition of GPS, t̂oBij(t1, t2) can be calculated as

t̂oBij(t1, t2) =
∫ t2

t1

rij(x)q̂ij(x)dx (11)

Next, we define some corresponding notations for output scheduling. We say

that Bij is backlogged at time t, if there exists k such that ÔS
k

ij ≤ t ≤ ÔF
k

ij .
Define b̂ij(t) to represent the backlog status of Bij at t. b̂ij(t) = 1 or 0 means
that Bij is backlogged or empty at t.

Use toOij(t1, t2) and t̂oOij(t1, t2) to represent the numbers of bits trans-
mitted by Fij from Bij to Outj during interval [t1, t2] in FLAPS-FLAPS and
FLAPS-GPS, respectively. t̂oOij(t1, t2) can be calculated as

t̂oOij(t1, t2) =
∫ t2

t1

rij(x)b̂ij(x)dx (12)

The following lemma gives the relationship between the service time of a
packet in FLAPS-* and GPS-*.

Lemma 1 For any packet, its actual input start time in FLAPS-* is less than
or equal to its virtual input finish time in GPS-*, i.e.,

ISk
ij ≤ ÎF

k

ij (13)

The proofs of Lemmas 1 to 4 are similar to the performance analysis of WF2Q
in [25]. They are omitted in this paper due to space limitations.

Correspondingly, there is a lemma for output scheduling.

Lemma 2 For any packet, its actual output start time in FLAPS-FLAPS is less
than or equal to its virtual output finish time in FLAPS-GPS, i.e.,

OSk
ij ≤ ÔF

k

ij (14)

The next lemma compares toBij(t1, t2) and t̂oBij(t1, t2).

Lemma 3 During interval [0, t], the difference between the number of bits sent
from input port Ini to crosspoint buffer Bij in FLAPS-* and GPS-* is greater
than or equal to −L and less than or equal to L, i.e.,

− L ≤ toBij(0, t)− t̂oBij(0, t) ≤ L (15)

For output scheduling, there is a similar lemma as follows.
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Lemma 4 During interval [0, t], the difference between the number of bits sent
from crosspoint buffer Bij to output port Outj in FLAPS-FLAPS and FLAPS-
GPS is greater than or equal to −L and less than or equal to L, i.e.,

− L ≤ toOij(0, t)− t̂oOij(0, t) ≤ L (16)

The next lemma compares the number of bits transmitted by the same flow
in the input scheduling of GPS-* and the output scheduling of FLAPS-GPS.

Lemma 5 During interval [0, t], the number of bits transmitted by flow Fij from
input port Ini to crosspoint buffer Bij in GPS-* is less than or equal to that from
crosspoint buffer Bij to output port Outj in FLAPS-GPS plus 2L, i.e.,

t̂oBij(0, t) ≤ t̂oOij(0, t) + 2L (17)

Proof. Assume that Bij in FLAPS-GPS is empty immediately before time s and
is continuously backlogged during [s, t]. If Bij is not backlogged at t, then s = t.

By Lemma 3, we have toBij(0, s) ≥ t̂oBij(0, s) − L. Because Bij is empty
before s and backlogged after s in FLAPS-GPS, all packets arriving at Bij before
s have been transmitted to Outj , and a new packet arrives at Bij at s. Thus

t̂oOij(0, s) ≥ toBij(0, s)− L

≥ t̂oBij(0, s)− 2L (18)

On the other hand, because Bij is continuously backlogged during [s, t], b̂ij(t) is
equal to 1 in the interval. Therefore

t̂oOij(s, t) =
∫ t

s

rij(x)b̂ij(x)dx

=
∫ t

s

rij(x)dx

≥
∫ t

s

rij(x)q̂ij(x)dx

= t̂oBij(s, t) (19)

Adding (18) and (19), we obtain
t̂oOij(0, t) ≥ t̂oBij(0, t)− 2L (20)

The following theorem gives the bound for the crosspoint buffer size.

Theorem 1 In FLAPS-FLAPS, the maximum number of bits buffered at a
crosspoint buffer is upper bounded by 4L, i.e.,

toBij(0, t)− toOij(0, t) ≤ 4L (21)

Proof. By Lemma 4,
toOij(0, t) + L ≥ t̂oOij(0, t) (22)

By Lemma 5,
t̂oOij(0, t) + 2L ≥ t̂oBij(0, t) (23)

By Lemma 3,
t̂oBij(0, t) + L ≥ toBij(0, t) (24)

Summing the above equations, we have proved the theorem.
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4.2 Switch Stability
We have shown in the above that FLAPS has a bounded crosspoint buffer size.
In this subsection, we show that the lengths of input virtual queues are finite,
and thus FLAPS achieves strong stability.

As discussed in Section 3, because each flow is allocated a specific amount
of bandwidth, it is necessary to have admission control for the flow to avoid
over-subscription. The leaky bucket scheme [1] is a widely used traffic shaping
scheme, and we will use it for admission control. In the classical definition of a
leaky bucket, the flow rate is a constant, which we extend in this paper to be
a variable. The reason is that the allocated bandwidth of a flow may change
after bandwidth allocation calculations. Use toIij(t1, t2) to denote the number
of incoming bits of Fij during interval [t1, t2]. If Fij is leaky bucket (rij(t), σij)
complaint, then during any interval [t1, t2]

toIij(t1, t2) ≤
∫ t2

t1

rij(x)dx + σij (25)

where σij can be an arbitrary positive constant and is called the burst size of
Fij . Intuitively, during any time interval, Fij can have σij more incoming traffic
than what it can transmit.

Use Qij(t) to represent the queue occupancy of Qij at t, i.e. the number of
bits buffered in Qij at t. Define X(t) = (Q11(t), ..., Qij(t), ..., QNN (t)), and use
||X|| to represent the Euclidean norm of vector X = (x1, x2, ..., xn), i.e.

||X|| =
√√√√

n∑

i=1

x2
i (26)

Following the definition in [26], we say that a system of queues is strongly
stable if

lim
n→∞

supE[||X(t)||] < ∞ (27)

Note that strong stability implies 100% throughput [26].

Theorem 2 When flows are leaky bucket complaint, FLAPS is strongly stable.

Proof. Assume that flow Fij is leaky bucket (rij(t), σij) compliant. Also assume
that Qij is empty immediately before s and continuously backlogged during
[s, t]. This indicates that all packets of Fij arriving at Qij before s have finished
transmission by s in GPS-*, and the next packet has not arrived. Therefore

toIij(0, s) ≤ t̂oBij(0, s) + L (28)

During [s, t], Qij is continuously backlogged, and thus

t̂oBij(s, t) =
∫ t

s

rij(x)q̂ij(x)dx =
∫ t

s

rij(x)dx (29)

Because the arrival traffic is leaky bucket (rij(t), σij) compliant, we have

toIij(s, t) ≤
∫ t

s

rij(x)dx + σij (30)
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By (28), (29), and (30)
toIij(0, t) ≤ t̂oBij(0, t) + L + σij (31)

We know from Lemma 3 that t̂oBij(0, t) ≤ toBij(0, t) + L. Thus
toIij(0, t) ≤ t̂oBij(0, t) + L + σij

≤ toBij(0, t) + 2L + σij (32)

By the definition of Qij(t), we can obtain
Qij(t) = toIij(0, t)− toBij(0, t) ≤ 2L + σij (33)

Since both L and σij are finite, we have

||X(t)|| =
√√√√

N∑

i=1

N∑

j=1

Qij(t)2 < ∞ (34)

4.3 Delay Guarantees
In this subsection, we show that FLAPS can provide bounded delay guarantees.
For easy analysis, we assume that the allocated bandwidth rij(t) of Fij is a
constant rij during interval[
min

(
ISk

ij , ÎS
k

ij

)
, max

(
OF k

ij , ÔF
k

ij

)]
.

Use ÕF
k

ij to denote the departure time of P k
ij in GPS-GPS. By neglecting

the propagation delay, we have ÕF
k

ij = ÎF
k

ij . Similarly, OF k
ij is the departure

time of packet P k
ij in FLAPS-FLAPS, if the propagation delay is neglected.

Theorem 3 The difference between the departure time of packet P k
ij in FLAPS-

FLAPS and GPS-GPS is greater than or equal to −Lk
ij

(
1

rij
− 2

R

)
and less than

or equal to L
(

3
rij

+ 2
R

)
, i.e.

− Lk
ij

(
1
rij

− 2
R

)
≤ OF k

ij − ÕF
k

ij ≤ L

(
3
rij

+
2
R

)
(35)

Proof. First, we prove OF k
ij − ÕF

k

ij ≥ −Lk
ij

(
1

rij
− 2

R

)
. It is obvious that

OF k
ij ≥ OAk

ij +
Lk

ij

R
= IF k

ij +
Lk

ij

R
(36)

Based on Property 1, we know ÎS
k

ij ≤ ISk
ij or in other words ÎF

k

ij −
Lk

ij

rij
≤

IF k
ij −

Lk
ij

R , and thus we obtain

ÕF
k

ij = ÎF
k

ij

≤ IF k
ij + Lk

ij

(
1
rij

− 1
R

)

≤ OF k
ij + Lk

ij

(
1
rij

− 2
R

)
(37)
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Next, we prove OF k
ij − ÕF

k

ij ≤ L
(

3
rij

+ 2
R

)
. Based on Lemma 2, we

know OSk
ij ≤ ÔF

k

ij and thus OF k
ij ≤ ÔF

k

ij + Lk
ij

R . By Lemma 5, we have
t̂oBij(0, t)−t̂oOij(0, t) ≤ 2L, and by Lemma 3, we have toBij(0, t)−t̂oBij(0, t) ≤
L. Combining them, we obtain toBij(0, t)− t̂oOij(0, t) ≤ 3L. This indicates that,
after P k

ij arrives at Bij , the maximum queue length at Bij in FLAPS-GPS is 3L.
Because Bij is served by GPS output scheduling with fixed allocated bandwidth
rij in FLAPS-GPS, we have

ÔF
k

ij ≤ OAk
ij +

3L

rij
≤ IF k

ij +
3L

rij
(38)

By Lemma 1, ISk
ij ≤ ÎF

k

ij and thus IF k
ij ≤ ÎF

k

ij + Lk
ij

R . Combing the above
equations, we obtain

OF k
ij ≤ ÔF

k

ij +
Lk

ij

R

≤ IF k
ij +

3L
rij

+
Lk

ij

R

≤ ÎF
k

ij +
3L

rij
+

2Lk
ij

R

≤ ÕF
k

ij + L

(
3
rij

+
2
R

)
(39)

5 Simulation Results

We have conducted simulations to verify the analytical results obtained in Sec-
tion 4 and evaluate the performance of FLAPS.

In the simulations, we consider a 16 × 16 buffered crossbar switch without
speedup. Each input port and output port has bandwidth of 1G bps. Since
FLAPS can directly handle variable length packets, we set packet length to be
uniformly distributed between 40 and 1500 bytes [27]. For bandwidth allocation,
we use the same model as that in [15] and [17]. The allocated bandwidth rij(t)
of flow Fij at time t is defined by an unbalanced probability w as follows

rij(t) =

{
R

(
w + 1−w

N

)
, if i = j

R 1−w
N , if i 6= j

(40)

When w = 0, Ini has the same amount of allocated bandwidth at each output
port. Otherwise, Ini has more allocated bandwidth at Outi, which is called
the hotspot destination. Arrival of a flow Fij is constrained by a leaky bucket
(l∗rij(t), σij), where l is the effective load. We set the burst size σij of every flow
to a fixed value of 10,000 bytes, and the burst may arrive at any time during a
simulation run. We use two traffic patterns in the simulations. For traffic pattern
one, each flow has fixed allocated bandwidth during a single simulation run. l is
fixed to 1 and w is one of the 11 possible values from 0 to 1 with a step of 0.1.
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For traffic pattern two, a flow has variable allocated bandwidth. l is one of the
10 possible values from 0.1 to 1 with a step of 0.1, and for a specific l value, a
random permutation of the 11 different w values is used. Each simulation run
lasts for 10 seconds.

5.1 Crosspoint Buffer Size

Theorem 1 in Section 4.1 gives the bound of the crosspoint buffer size as 4L.
In this subsection, we look at the maximum and average crosspoint buffer occu-
pancies in the simulations.
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(a) (b)
Fig. 3. Crosspoint buffer occupancy of FLAPS. (a) With different unbalanced proba-
bilities. (b) With different loads.

Figure 3(a) shows the maximum and average crosspoint buffer occupancies
under traffic pattern one. As can be see, the maximum occupancy is always
smaller than the theoretical bound. It grows as the unbalanced probability in-
creases, but suddenly drops when the unbalanced probability becomes 1. This
is because when the unbalanced probability is 1, all packets of Ini go to Outi.
Thus, there is no switching necessary, and the crosspoint buffer occupancy be-
comes smaller. For the average occupancy, it does not change significantly with
different unbalanced probabilities, and drops when the unbalanced probability
becomes 1 for the same reason. We can find that the average occupancy is more
affected by the load than the unbalanced probability. Figure 3(b) shows the max-
imum and average crosspoint buffer occupancies under traffic pattern two. We
can see that the maximum occupancy increases as the load increases, but does
not exceed the theoretical bound. On the other hand, the average occupancy
does not change much and is smaller than 200 bytes before the load increase
to 1. This also confirms the previous observation that the average occupancy is
determined by the load.

5.2 Throughput

Theorem 2 in Section 4.2 shows that FLAPS achieves strong stability, which
implies 100% throughput. Next, we present the simulation data on throughput
of FLAPS.
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Fig. 4. Throughput of FLAPS. (a) With different unbalanced probabilities. (b) With
different loads.

Figure 4(a) shows the throughput under traffic pattern one. We can see that
the throughput for all unbalanced probabilities is greater than 99.99%, which
demonstrates that FLAPS practically achieves 100% throughput. Figure 4(b)
shows the throughput under traffic pattern two. As can be seen, the throughput
grows consistently with the effective load, and finally reaches 1.

5.3 Jitter

In this subsection, we present the simulation data on jitter, which is the difference
between the packet departure time in FLAPS and GPS. Theorem 3 in Section
4.3 gives the lower bound and upper bound for the jitter of packet P k

ij . Because
Theorem 3 assumes fixed allocated bandwidth rij , we use only traffic pattern
one for this part of simulations. Note that the lower bound value depends on the
packet length Lk

ij . For easy plotting of the figure, we calculate the jitter lower
bound for all packets of flow Fij as follows

− Lk
ij

(
1
rij

− 2
R

)
≥

{
−L

(
1

rij
− 2

R

)
, if rij ≤ R

2

0, if rij > R
2

(41)
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Fig. 5. Jitter of FLAPS with different unbalanced probabilities.
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Figure 5 shows the minimum, maximum, and average jitters of a represen-
tative flow F11 under traffic pattern one. We can see that the minimum jitter is
almost coincident with but always greater than the lower bound, and the maxi-
mum jitter is always less than the upper bound. As the unbalanced probability
increases, the minimum jitter increases and the maximum jitter decreases. For
most of the time, the average jitter is very close to zero, indicating that FLAPS
and GPS have similar average packet delay.

6 Conclusions

Buffered crossbar switches are special crossbar switches with crosspoint buffers.
The introduction of crosspoint buffers greatly simplifies the scheduling process.
In this paper, we have proposed the Fair and Localized Asynchronous Packet
Scheduling (FLAPS) algorithm, which does not require speedup for the cross-
bar and can directly handle variable length packets without segmentation and
reassembly (SAR). FLAPS uses a time stamp based approach for both input
scheduling and output scheduling. We theoretically analyze the performance of
FLAPS, and show that it has a crosspoint buffer size bound of 4L, independent
of the switch size. We also prove that it achieves strong stability, and provides
bounded delay guarantees. Finally, we present simulation data and show that
they are consistent with the analytical results.
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