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Abstract—Buffered crossbar switches are a special type of crossbar switches. In such a switch, besides normal input queues and

output queues, a small buffer is associated with each crosspoint. Due to the introduction of crosspoint buffers, output and input

contention is eliminated, and the scheduling process for buffered crossbar switches is greatly simplified. Moreover, since different input

ports and output ports work independently, the switch can easily schedule and transmit variable length packets. Compared with fixed

length packet scheduling, variable length packet scheduling has some unique advantages: higher throughput, shorter packet latency,

and lower hardware cost. In this paper, we present a fast and practical scheduling scheme for buffered crossbar switches called

Localized Independent Packet Scheduling (LIPS). With LIPS, an input port or output port makes scheduling decisions solely based on

the state information of its local crosspoint buffers, i.e., the crosspoint buffers where the input port sends packets to or the output port

retrieves packets from. The localization feature makes LIPS suitable for a distributed implementation and thus highly scalable. Since

no comparison operation is required in LIPS, scheduling arbiters can be efficiently implemented using priority encoders, which can

make arbitration decisions quickly in hardware. Another advantage of LIPS is that each crosspoint needs only L (the maximum packet

length) buffer space, which minimizes the hardware cost of the switches. We theoretically analyze the performance of LIPS and, in

particular, prove that LIPS achieves 100 percent throughput for any admissible traffic with speedup of two. We also discuss in detail the

implementation architecture of LIPS and analyze the packet transmission timing in different scenarios. Finally, simulations are

conducted to verify the analytical results and measure the performance of LIPS.

Index Terms—Buffered crossbar switches, packet scheduling, 100 percent throughput, priority encoders.

Ç

1 INTRODUCTION

CROSSBAR switches provide nonblocking capability and
overcome the bandwidth limitation of bus-based

switches. They have long been the preferred structures for
high-speed switches and routers. With the ever-increasing
demand for more bandwidth and higher throughput, it has
become a more and more challenging task to design high-
performance crossbar switches and efficient scheduling
algorithms.

For crossbar switches, packets can be buffered at either

output ports, input ports, or crosspoints of the crossbar.

Output queued (OQ) switches only have buffer space at

the output side, as shown in Fig. 1a, and new incoming

packets must be immediately transferred through the

crossbar and stored in the output queues. OQ switches

achieve 100 percent throughput and can provide different

levels of performance guarantees by running various fair

scheduling algorithms, such as WFQ [1], DRR [2], and

FMCF [3], at each output port. However, in order for an

N �N switch to achieve 100 percent throughput, speedup

of N is required. Consider that each input port has a packet

arrived at the same time and all the N packets are destined
for the same output port. Because there is no buffer space at
the input side, all the N packets have to be simultaneously
transmitted by the crossbar to the output port. This means
that the crossbar must have N times bandwidth as that of an
input port or output port. Thus, OQ switches are difficult to
scale. On the contrary, as illustrated in Fig. 1b, input queued
(IQ) switches only have buffer space at the input side and
need no speedup. In order to make fast scheduling
decisions, iterative maximal matching algorithms, such as
PIM [4], iSLIP [5], and DRRM [6], were proposed for IQ
switches, which can quickly converge on a maximal
matching in multiple iterations. IQ switches are popular
on the market due to their economical hardware architec-
tures and efficient scheduling algorithms. Unfortunately,
until now IQ switches are found to be able to achieve
100 percent throughput only when working with maximum
matching algorithms or their variants, such as MWM [7],
which have high time complexity [34], [35] and are not
feasible for high-speed scheduling. In order to combine the
advantages of both OQ switches and IQ switches, combined
input-output queued (CIOQ) switches make a tradeoff
between the crossbar speedup and the complexity of the
scheduling algorithms. They usually have fixed small
speedup of two and, thus, need buffer space at both the
input side and output side, as shown in Fig. 1c. It has been
shown that CIOQ switches with speedup of two can achieve
100 percent throughput with any maximal scheduling
algorithms [8], [9] and can also emulate OQ switches with
more complex algorithms [15], [16].

For buffering at the input side of a switch, usually the
virtual OQ (VOQ) buffering technique [7] is used, since the
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traditional single FIFO queue suffers from the head of line
(HOL) blocking, i.e., even though the destination output
ports of the packets behind the HOL packet may be free,
these packets cannot be scheduled to transmit because the
HOL packet is blocked. It was proved in [10] that the HOL
blocking limits the maximum throughput of the switch to
about 58.6 percent. On the contrary, VOQ buffering
maintains a logically separate queue or virtual queue for
each output port at every input port, so that a packet will no
longer be held up by another packet ahead of it that goes to
a different output port.

With the development of modern VLSI technology, it has
been feasible to integrate on-chip memory to the crossbar
switching fabric. Buffered crossbar switches, or combined
input-crosspoint-output queued (CICOQ) switches [17],
[18], [28], are a special type of CIOQ switches, where each
crosspoint of the crossbar is equipped with a small buffer,
as illustrated in Fig. 1d. Due to the introduction of
crosspoint buffers, the scheduling process is greatly
simplified. First, output contention is eliminated. Assume
that multiple input ports have packets destined for the same
output port. In a traditional unbuffered crossbar switch,
since packets are directly sent from input ports to output
ports, the transmission has to be carefully scheduled so that
no two input ports will simultaneously send packets to the
same output port. On the other hand, in a buffered crossbar
switch, these packets can be first sent to the crosspoint
buffers, and then the output port can retrieve the packets
from the crosspoint buffers one by one. Furthermore, since
output contention has been eliminated, different input ports

no longer need to cooperate with each other, and their
scheduling can be conducted independently. As a result,
the complexity of the scheduling algorithm is greatly
reduced.

Previous research on scheduling algorithms for crossbar
switches mainly focused on fixed length packet scheduling
(or cell scheduling for short) [11]. Without crosspoint
buffers, packets have to be directly sent from input ports
to output ports. In order to maximize throughput and make
fast scheduling decisions, all the scheduling and transmis-
sion units must have the same length, and all the input
ports and output ports have to work in a synchronized
mode, i.e., all input ports send cells at the same time, and all
output ports receive cells at the same time. When variable
length packets arrive, they must be segmented into fixed
length cells at input ports. The cells are then used as the
scheduling units and transmitted to output ports, where
they are reassembled into original packets and sent to the
output lines. In contrast, buffered crossbar switches have
removed the necessity of synchronization due to crosspoint
buffers. They can work in an asynchronous mode and
directly handle variable length packets. In other words,
each input port or output port periodically chooses a packet
of an arbitrary length to send to or receive from the
crosspoint buffer and does not need to wait for other input
ports or output ports.

Compared with cell scheduling, variable length packet
scheduling (or packet scheduling for short) has some unique
advantages. First, packet scheduling can better utilize
available bandwidth and achieve higher throughput. For
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cell scheduling, when a packet is segmented into cells, its
length may not be a multiple of the cell length, and the last
segment has to be padded with empty bits to reach the cell
length. The padding bits do not contain useful information
and waste transmission capacity of the switch. In the worst
case, if all packets happen to have a slightly longer length
than the cell length, each packet has to be segmented into
two cells, and the switch can only achieve about half of the
maximum throughput. Second, since there is no segmenta-
tion and reassembly in packet scheduling, newly arrived
packets at input ports can be immediately transferred
through the crossbar, and similarly, transmitted packets at
the output ports can be immediately sent to the output lines.
Especially when the load is light, packets have short
queuing delay, and the time for segmentation and reassem-
bly can hardly be overlapped with other waiting time.
Therefore, packet scheduling reduces the latency that a
packet experiences in the switch. Third, no extra buffer
space is needed at the input or output side to segment and
reassemble the packets, which lowers hardware cost.
Finally, cell scheduling can be regarded as a special case
of packet scheduling, or in other words, packet scheduling
can also handle fixed length cells.

Two packet scheduling algorithms for asynchronous
buffered crossbar switches, Packet GVOQ (PGV) and Packet
LOOFA (PLF), were proposed in [12], and their perfor-
mance guarantees were analyzed. It was proved that, with
speedup of two and 2L or more buffer space at each
crosspoint, where L is the maximum packet length, PGV
and PLF can provide work-conserving guarantees or
emulate push-in-first-out (PIFO) scheduling algorithms for
OQ switches. In order to be work conserving, the algorithms
proposed in [12] usually impose an order on buffered
packets and make scheduling decisions by sorting the
packets. With slightly more buffer space at each crosspoint,
they can emulate any PIFO fair scheduling algorithm for
OQ switches by ordering the packets based on the
departure sequence of the packets in the reference algo-
rithm and, thus, provide bandwidth and delay guarantees.
Scheduling algorithms delivering strong performance guar-
antees are certainly important, especially considering that
nowadays many broadband-based multimedia applications
have quality of service (QoS) requirements. On the other
hand, it is also worth studying scheduling algorithms that
are simple and easy to implement.

The objective of this paper is to design packet scheduling
algorithms for buffered crossbar switches with low time
complexity and easy hardware implementation. We present
a packet scheduling scheme called Localized Independent
Packet Scheduling (LIPS). LIPS conducts scheduling in an
independent and distributed mode. An input port or output
port makes scheduling decisions solely based on the state
information of its local crosspoint buffers, i.e., the cross-
point buffers where the input port sends packets to or the
output port retrieves packets from. Since no comparison
operation is required, scheduling arbiters can be efficiently
implemented using priority encoders, which can make
decisions quickly in hardware. LIPS requires only L buffer
space at each crosspoint. Considering that on-chip buffers are
expensive resources, LIPS minimizes the hardware cost of

switches. We theoretically analyze the performance of LIPS
and, in particular, prove that LIPS achieves 100 percent
throughput for any admissible traffic with speedup of two.
We also present the detailed implementation architecture of
LIPS and analyze the packet transmission timing in different
scenarios. Finally, simulations are conducted to verify the
analytical results and to measure the performance of LIPS.

The rest of this paper is organized as follows: In Section 2,
we provide an overview of the scheduling algorithms
proposed in the literature for buffered crossbar switches. In
Section 3, we present the LIPS scheduling scheme and
analyze its performance. In Section 4, we discuss the
hardware architecture of LIPS and other implementation
issues. In Section 5, we present the simulation results to verify
the analytical results obtained in Section 3 and test the
performance of LIPS. In Section 6, we conclude this paper.

2 RELATED WORK

Scheduling algorithms for buffered crossbar switches are
generally designed with two possible objectives: to achieve
high throughput or to emulate scheduling algorithms for
OQ switches. The latter is a stronger requirement than the
former, i.e., an algorithm that emulates an OQ switch-based
algorithm usually delivers 100 percent throughput, but the
reverse is not always true. On the other hand, if 100 percent
throughput is the only objective, an algorithm can be
simpler or have less time complexity.

A buffered crossbar switch architecture called CIXB-1
was proposed in [18], where each crosspoint has a one-cell
buffer. CIXB-1 offers several advantages for feasible
implementation such as scalability and timing relaxation.
It was shown that, in conjunction with round-robin (RR)
arbitration, CIXB-1 can provide 100 percent throughput
under uniform traffic. CIXOB-k [19] is the extended version
of CIXB-1 with a k-cell buffer at each crosspoint and small
speedup for the crossbar. CIXOB-k was shown to be able to
achieve 100 percent throughput under uniform traffic as
well as nonuniform traffic. Kornaros [20] presented a
buffered crossbar switch architecture called BCB to reduce
storage requirements and offer better memory utilization.
The architecture can provide superior performance in
situations of bursty traffic and in variable size packet-based
environments. A cell scheduling scheme for buffered
crossbar switches called Most Critical Buffer First (MCBF)
was proposed in [21]. It conducts scheduling based on the
crosspoint buffer information and has low hardware
complexity. MCBF exhibits good performance and shows
optimal stability in simulations. Shortest Crosspoint Buffer
First (SCBF) [22] is another cell scheduling scheme, which
finds a matching with minimum weight in each time slot. It
was proved that SCBF achieves 100 percent throughput for
any admissible traffic without speedup requirement. In
order to facilitate hardware implementation, a maximal
solution of SCBF was also proposed in [22], which achieves
low OðlogNÞ time complexity and is shown to have almost
identical performance. A rate-based flow control scheme
called sMUX was proposed in [23]. It can utilize 100 percent
of the switch capacity to provide deterministic guarantees
of bandwidth and fairness, delay, and jitter bounds for each
flow. In [24], it was proved that a buffered crossbar switch

262 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 2, FEBRUARY 2009

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 13, 2009 at 15:28 from IEEE Xplore.  Restrictions apply.



with a large number of ports asymptotically achieves
100 percent throughput for uniform Bernoulli i.i.d. traffic.
The algorithms discussed above are cell scheduling algo-
rithms targeting high throughput.

The emulation of OQ switches by buffered crossb0.ar
switches was studied in [27]. It was proved that a buffered
crossbar switch with speedup of two satisfying nonnegative
slackness (NNS) insertion and lowest time to live (LTTL)
blocking, and LTTL fabric scheduling can exactly emulate
an OQ switch with PIFO scheduling policies. In particular,
it was shown that the GBVOQ_OCF scheduling algorithm
can exactly emulate an FIFO OQ switch, and the GBFG_SP
scheduling algorithm can exactly emulate a strict priority
OQ switch. In [25], the MCAF-LTF cell scheduling scheme
for one-cell buffered crossbar switches was proposed.
MCAF-LTF does not require costly time stamping mechan-
ism and is able to emulate an OQ switch with speedup of
two. Chuang et al. [26] studied practical scheduling
algorithms for buffered crossbar switches. It was shown
that with speedup of two, a buffered crossbar switch can
mimic the restricted PIFO-OQ switch (a PIFO-OQ switch
with the restriction that the cells of an input-output pair
depart the switch in the same order as they arrive),
regardless of the incoming traffic pattern, and that with
speedup of three, a buffered crossbar switch can mimic an
arbitrary PIFO-OQ switch and hence provide delay guar-
antees. It was also shown that buffered crossbar switches
can achieve 100 percent throughput with speedup of two
for any Bernoulli i.i.d. admissible traffic. The above
algorithms also consider cell scheduling but were designed
to emulate scheduling algorithms for ‘OQ switches.

A buffered crossbar switch architecture supporting
packet scheduling was proposed in [28]. The chip layout
was presented and the hardware cost was analyzed.
The simulation results demonstrate that the proposed
architecture outperforms unbuffered crossbar switches. A
segmentation-and-reassembly (SAR) scheme was proposed
in [29]. It uses variable size segments while merging multiple
packets into each segment. The proposed scheme eliminates
padding overhead, reduces header overhead and crosspoint
buffer size, and is suitable for use with external, modern
DRAM buffer memory in ingress line cards. The simulation
results show that it outperforms existing segmentation
schemes in buffered as well as unbuffered crossbar switches.
The performance guarantees of packet scheduling for
asynchronous buffer crossbar switches were discussed in
[12], and two algorithms were designed based on existing
cell scheduling algorithms. It was theoretically proved that,
with speedup of two, the PGV scheduling algorithm
provides work-conserving guarantees with 2L crosspoint
buffer space and can emulate a PIFO scheduling algorithm
for OQ switches with 5L crosspoint buffer space. The PLF
scheduling algorithm provides work-conserving guarantees
with 16L=3 crosspoint buffer space and can emulate a PIFO
scheduling algorithm for OQ switches with 22L=3 crosspoint
buffer space. Stephens and Zhang [17] proposed the
Distributed Packet Fair Queueing (DPFQ) architecture for
physically dispersed line cards to emulate an OQ switch with
fair queuing, and the simulation results demonstrate that the
resulting system provides service that closely approximates

an output buffered switch employing fair queuing with
modest speedup. The above schemes use variable length
packets as the scheduling and switching units.

3 LOCALIZED INDEPENDENT PACKET SCHEDULING

In this section, we present our new LIPS scheme and
analyze its performance.

3.1 Switch Model

The switch model considered in this paper is illustrated in
Fig. 2, where N input ports and N output ports are
connected by a crossbar switching fabric, which has
speedup of two. We denote the bandwidth of an input port
or output port by R, and the crossbar has bandwidth 2R. An
input port has N virtual queues to store packets destined for
different output ports. Each crosspoint has an exclusive
buffer of size L. Depending on the granularity level of
performance guarantees, an output port may have a
single queue, or multiple logical queues. For example, if
bandwidth is to be fairly allocated among input ports,
packets in output ports should be buffered on a per input
port basis, and if different flows require different packet
delay guarantees, an output port needs to set up as many
queues as the number of flows. Different input ports and
output ports work independently and asynchronously.
After a packet arrives at the switch, it is first stored in the
input queue. The packet is sent from the input queue to
the crosspoint buffer, and then from the crosspoint buffer to
the output queue and finally delivered to the output line.

Based on the locations of the packets to be scheduled,
there are three types of scheduling involved in such a
buffered crossbar switch, which we call input scheduling,
crossbar scheduling and output scheduling, respectively. In
input scheduling, an input port selects one of the virtual
queues and sends its head packet to the crosspoint buffer.
In crossbar scheduling, an output port selects one of the
crosspoint buffers and retrieves the buffered packet to the
output queue. In output scheduling, an output port selects a
buffered packet from the output queue and sends the
packet to the output line.
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Over the last decade, output scheduling has been well
studied, and a lot of output scheduling algorithms have
been proposed, such as WFQ [1] and DRR [2]. By using
different approaches, the algorithms provide different
performance guarantees and have different time complex-
ity. It was reported in [13] that a fundamental tradeoff exists
between the performance guarantees that an algorithm can
provide and its time complexity. It should be noted that
output scheduling algorithms usually do not affect the
throughput performance as long as they are work conser-
ving. In other words, if an output scheduling algorithm
sends packets to the output line whenever there is a packet
in the output queue, 100 percent throughput can be
achieved given that the input scheduling algorithm and
crossbar scheduling algorithm deliver packets to the output
queue in time. Therefore, in the rest of this paper, we will
mainly consider input scheduling and crossbar scheduling
and adopt a simple FIFO algorithm for output scheduling,
which is work conserving.

3.2 Algorithm Description

Input scheduling and crossbar scheduling of LIPS are
conducted in an independent and distributed manner, and
they only rely on the state information of local crosspoint
buffers. Local crosspoint buffers of an input port or output
port are the crosspoint buffers that the input port sends
packets to or the output port receives packets from.

In input scheduling, when the transmission channel of
an input port to the crosspoint buffers is idle, the input
port selects one of its backlogged virtual queues whose
corresponding crosspoint buffer is empty and sends the
head packet to the crosspoint buffer. When there are
multiple eligible virtual queues, different arbitration rules
can be used, such as fixed priority (FP), random priority, or
RR. In particular, the RR rule is able to avoid starvation by
alternatively giving each virtual queue the highest priority.
We will see later in this section that any work-conserving
rule is able to achieve 100 percent throughput. It should be
noted that since the crossbar has speedup of two, the
packet is transferred from the virtual queue to crosspoint
buffer with bandwidth of 2R. After the last bit of the packet
is sent to the crosspoint buffer, the scheduling and
transmission process is repeated again. Crossbar schedul-
ing is similar to input scheduling. When the transmission
channel of an output port for receiving packets from the
crosspoint buffers is idle, the output port selects a cross-
point buffered packet and saves it in its output queue. The
transmission rate from the crosspoint buffer to the output
queue is also 2R, and different arbitration rules can be used
as well.

In order to reduce packet latency and increase switch
throughput, we use cut-through switching in the crossbar.
In other words, when a packet is being sent from the virtual
queue to the crosspoint buffer, if the transmission channel
to its output is idle, the packet can be directly sent to the
output queue without waiting for the whole packet to be
buffered at the crosspoint buffer. Similarly, if the output
port has cut-through switching capability, a packet can also
be immediately sent to the output line as soon as its first bit
arrives at the output queue. Thus, with the cut-through
technique, it is possible that a packet is directly sent from the
input queue to the output line without being fully buffered

anywhere on the way. Since the bandwidth from the input
queue to the crosspoint buffer and from the crosspoint buffer
to the output queue is 2R, and the bandwidth from the output
queue to the output line isR, a packet can be safely delivered
to the output line without being blocked in the middle.
However, it should be noted that, because the bandwidth
from the input line to the virtual queues isR, cut-throughput
switching cannot be used at the input port. In other words,
only after all the bits of a new incoming packet have been
saved in the virtual queue, the packet can begin to be sent to
the crosspoint buffer.

For easy understanding, the pseudo code description for
the input scheduling and crossbar scheduling of LIPS is
presented in Table 1. Note that, in input scheduling, the
scheduling candidates of an input port are only the virtual
queues whose crosspoint buffers are empty. This restriction
seems to be unnecessary, because a crosspoint buffer may
be able to contain more than one packets of shorter length.
However, instead of calculating the remaining free space of
the buffer, testing only whether it is empty or occupied
greatly simplifies the operation. In this way, only one bit of
information needs to be tested for each crosspoint buffer
during input scheduling, and the testing of all the cross-
point buffers of the same input port can be conducted in
parallel to minimize the time cost. Similarly, in crossbar
scheduling, an output port only needs to test whether a
crosspoint buffer is occupied or empty due to the cut-
through switching capability of the crossbar.

3.3 Performance Analysis

In this section, we analyze the performance of LIPS. First,
we use the fluid theory in [8] to prove that LIPS is able to
achieve 100 percent throughput for any admissible traffic
with speedup of two, regardless of the arbitration rules
used by input scheduling and crossbar scheduling.

Before starting the analysis, we define some notations
and variables. Let Ini denote the ith input port, and Outj
denote the jth output port. Qij represents the virtual queue
of Ini to buffer the packets destined for Outj, and Bij

represents the crosspoint buffer connecting Ini and Outj.
The following variables are used to represent the status of
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the switch. Their initial values (at time 0) are conventionally
assumed to be zero:

. QijðtÞ: the number of bits buffered in Qij at time t;

. BijðtÞ: the number of bits buffered in Bij at time t;

. AijðtÞ: the number of bits arrived at Qij up to time t;

. DijðtÞ: the number of bits left from Qij up to time t;

. EijðtÞ: the number of bits left from Bij up to time t.

AijðtÞ satisfies a strong law of large numbers (SLLN), i.e.,

lim
t!1

AijðtÞ
t
¼ �ij; ð1Þ

where �ij is called the arrival rate of Qij.
A traffic is said to be admissible if it has no over-

subscription at any input port or output port, i.e.,

8i;
X
k

�ik < R; ð2Þ

8j;
X
k

�kj < R: ð3Þ

Following the definition in [8], we say that a scheduling
scheme achieves 100 percent throughput if the following
equation holds for any admissible traffic:

8i; 8j; lim
t!1

EijðtÞ
t
¼ �ij: ð4Þ

limt!1

P
j
EijðtÞ
t is the average rate that packets are

transmitted to the jth output port. limt!1

P
j
EijðtÞ
t ¼

P
j �ij

means that all traffic to the jth output port is delivered to

the output queue. Thus, 100 percent throughput can be

achieved, as long as the output scheduling algorithm is

work conserving. Intuitively, traffic arrives at Qij and

leaves from Bij with the same speed, and thus packets will

not infinitely accumulate at either Qij or Bij.

A packet is saved to the virtual queue only after it has been

fully received by the input port, and thus the value of AijðtÞ
changes only at some specific time points ft0; t1; . . . ; tn; . . .g,
where t0 ¼ 0 and tnðn > 0Þ is the time that the nth packet is

saved into the virtual queue. For tn < t < tnþ1, we have

AijðtÞ ¼ AijðtnÞ. Similar to [8], AijðtÞ is right continuous and

has left limit in ½0;1Þ.
In reality, DijðtÞ and EijðtÞ are discrete functions,

because a packet is removed from the buffer only after

the whole packet has been fully transmitted. In order to

make DijðtÞ and EijðtÞ continuous as in [8], in the following

analysis, we assume that a bit is immediately released from

the buffer after it has been transmitted. In other words,

suppose that sn ðs0 ¼ 0Þ and rn ðr0 ¼ 0Þ are the time that

the nth packet is removed from Qij and Bij, respectively.

For sn � s < snþ1,

DijðsÞ ¼ DijðsnÞ þ
s� sn

snþ1 � sn
Dijðsnþ1ÞÞ �DijðsnÞ
� �

; ð5Þ

and for rn � r < rnþ1,

EijðrÞ ¼ EijðrnÞ þ
r� rn

rnþ1 � rn
Eijðrnþ1ÞÞ � EijðrnÞ
� �

: ð6Þ

When fðtÞ is differentiable at t, use _fðtÞ to denote the

derivative. Notice that _DijðtÞ is equal to 2R when Qij is

sending a packet to Bij, and is zero otherwise. Similarly,
_EijðtÞ is equal to 2R when Bij is sending a packet to the

output queue and is zero otherwise.
Regarding the relationship of the defined variables, we

have the following fluid equations:

QijðtÞ ¼ �ijt�DijðtÞ; ð7Þ

BijðtÞ ¼ DijðtÞ � EijðtÞ; ð8Þ

QijðtÞ þBijðtÞ ¼ �ijt� EijðtÞ: ð9Þ

It should be noted that, because AijðtÞ satisfies an SLLN,

we can use �ijt to approximate AijðtÞ when t is sufficiently

large. In order to prove 100 percent throughput of LIPS, we

need the following lemma from [8].

Lemma 1. Let f : ½0;1Þ ! ½0;1Þ be an absolutely continuous

function with fð0Þ ¼ 0. Assume that _fðtÞ � 0 for almost

every t (with respect to Lebesgue measure) such that fðtÞ > 0

and f is differentiable at t. Then, fðtÞ ¼ 0 for almost every t.

The basic idea to prove 100 percent throughput of LIPS is

to first define the function fðtÞ in Lemma 1 as follows:

V ðtÞ ¼
X
ij

QijðtÞ
X
k

QikðtÞ
 !

þ
X
ij

ZijðtÞ
X
k

ZkjðtÞ
 !

; ð10Þ

where ZijðtÞ is the sum of QijðtÞ and BijðtÞ, i.e.,

ZijðtÞ ¼ QijðtÞ þBijðtÞ: ð11Þ

Then, we prove that V ðtÞ has a negative derivative when it

is positive, and thus by Lemma 1, V ðtÞ ¼ 0 for almost

every t. Since ZijðtÞ � V ðtÞ, we know that ZijðtÞ ¼ 0 for

almost every t as well, which means that the length of each

virtual queue is always bounded, or in other words, all

incoming traffic is transmitted to the output queue.
Next, we introduce some supporting lemmas.

Lemma 2. If Bij is not empty at time t,
P

k ZkjðtÞ has a negative

derivative, i.e.,

BijðtÞ > 0)
X
k

_ZkjðtÞ < 0: ð12Þ

Proof. The intuitive explanation for this lemma is that, if Bij

has buffered bits, Outj must be receiving packets.
Since the crossbar scheduling of LIPS is work

conserving and Bij > 0, Outj is either receiving bits from
Bij or another crosspoint buffer Bkj. Noticing that the
bandwidth from the crosspoint buffer to the output
queue is 2R, we can obtain

P
k

_EkjðtÞ ¼ 2R.
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According to the fluid equation ZijðtÞ ¼ �ijt�EijðtÞ,
we have X

k

_ZkjðtÞ ¼
X
k

�kj � _EkjðtÞ
� �

¼
X
k

�kj �
X
k

_EkjðtÞ

<R� 2R

< 0:

It should be noted that, due to the cut-through switching

technique, even if Bkj has only received part of the

packet but not the complete packet, Bkj can start to send

the packet to the output queue of Outj. tu

Lemma 3. If Qij is not empty at time t,
P

k QikðtÞ þ
P

k ZkjðtÞ
has a negative derivative, i.e.,

QijðtÞ > 0)
X
k

_QikðtÞ þ
X
k

_ZkjðtÞ < 0: ð13Þ

Proof. The intuitive explanation for this lemma is that,

when Qij has buffered bits, either a virtual queue of Ini
is sending packets to its crosspoint buffer, or Outj is

receiving packets from one of the crosspoint buffers.
Based on the state of Bij, we consider two possible

cases.

Case 1. Bij is empty. Since the input scheduling of

LIPS is work conserving and QijðtÞ > 0, either Qij is

sending packets to Bij, or another virtual queue Qik of

the ith input port is sending packets to Bik. For either

case,
P

k
_Dik ¼ 2R.

Case 2. Bij is occupied, including the case that Bij has

a fully buffered packet, and the case that Bij is receiving

a packet from Qij and simultaneously sending the packet

to the output queue of Outj and BijðtÞ ¼ 0. Since the

crossbar scheduling of LIPS is work conserving and the

crossbar switching fabric uses cut-through switching,

either Bij or another crosspoint buffer Bkj is sending

packets to Outj. For either case,
P

k
_Ekj ¼ 2R.

Note that _DijðtÞ � 0 and _EijðtÞ � 0. Thus, for both of the

above cases, we can obtain
P

k
_DikðtÞ þ

P
k

_EkjðtÞ � 2R.

According to the fluid equations QijðtÞ ¼ �ijt�DijðtÞ
and ZijðtÞ ¼ �ijt�EijðtÞ, we haveX

k

_QikðtÞ þ
X
k

_ZkjðtÞ

¼
X
k

�ik � _DikðtÞ
� �

þ
X
k

�kj � _EkjðtÞ
� �

¼
X
k

�ik þ
X
k

�kj �
X
k

_DikðtÞ �
X
k

_EkjðtÞ

< RþR� 2R

¼ 0:

ut

Theorem 1. With speedup of two, LIPS achieves 100 percent

throughput for any admissible traffic.

Proof. We define

V ðtÞ ¼
X
ij

QijðtÞ
X
k

QikðtÞ
 !

þ
X
ij

ZijðtÞ
X
k

ZkjðtÞ
 !

¼
X
ijk

QijðtÞQikðtÞ þ ZijðtÞZkjðtÞ
� �

:

It is clear that V ð0Þ ¼ 0. In addition,

_V ðtÞ ¼
X
ijk

_QijðtÞQikðtÞþQijðtÞ _QikðtÞþ _ZijðtÞZkjðtÞZijðtÞ _ZkjðtÞ
� �

¼ 2
X
ijk

QijðtÞ _QikðtÞ þ ZijðtÞ _ZkjðtÞ
� �

¼ 2
X
ijk

QijðtÞ _QikðtÞ þ QijðtÞ þBijðtÞ
� �

_ZkjðtÞ
� �

¼ 2
X
ijk

QijðtÞ _QikðtÞ þ _ZkjðtÞ
� �

þ 2
X
ijk

BijðtÞ _ZkjðtÞ

¼ 2
X
ij

QijðtÞ
X
k

_QikðtÞ þ
X
k

_ZkjðtÞ
 !

þ 2
X
ij

BijðtÞ
X
k

_ZkjðtÞ
 !

:

When V ðtÞ > 0, there exists eitherQijðtÞ > 0 orBi0j0 ðtÞ > 0.
By Lemma 3, we know that

2
X
ij

QijðtÞ
X
k

_QikðtÞ þ
X
k

_ZkjðtÞ
 !

� 0;

and it is strictly less than zero if QijðtÞ > 0. Similarly, by
Lemma 2,

2
X
ij

BijðtÞ
X
k

_ZkjðtÞ
 !

� 0;

and it is strictly less than zero if Bi0j0 ðtÞ > 0. Thus, we can
obtain that when V ðtÞ > 0,

_V ðtÞ < 0:

By Lemma 1, we know that V ðtÞ ¼ 0 for almost every t.
Since QijðtÞ � V ðtÞ, QijðtÞ ¼ 0 for almost every t. Noti-
cing that BijðtÞ � L, we can obtain

lim
t!1

EijðtÞ
t
¼ lim

t!1

AijðtÞ �QijðtÞ �BijðtÞ
t

¼ lim
t!1

AijðtÞ
t
� lim

t!1

QijðtÞ þBijðtÞ
t

¼�ij � 0

¼�ij:

The above equation holds for any admissible traffic.
Thus, by the definition, LIPS achieves 100 percent
throughput. tu

It should be pointed out that although it is desirable to
analyze the switch throughput in a practical environment
with bounded buffer size, no switch with bounded buffer
size, independent of its structure and scheduling algorithm,
can guarantee 100 percent throughput. Recall that �ij is the
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long-term average traffic rate. Given bounded buffer size, it
is possible to oversubscribe a specific output port for an
arbitrarily long period but still satisfy the long-term
average traffic rate, in which case there will be packet loss
and a certain number of packets cannot be delivered to the
output line.

In the following, we discuss the delay and queue length
properties.

Before a packet is sent to the output line, it may be stored at

the input buffer, the crosspoint buffer, and the output buffer.

We define three types of delay to represent the waiting time of

a packet at the three different locations. Input queuing delay

is the interval from the time that the last bit of a packet arrives

at the virtual queue to the time that the last bit of the packet

leaves the virtual queue. In other words, input queuing delay

measures the delay that a packet experiences at the input

buffer. Similarly, we can define crossbar queuing delay and

output queuing delay to be the time that a packet waits at the

crosspoint buffer and at the output buffer, respectively. It

should be noted that due to the cut-through switching

technique, the last bit of a packet may leave the crosspoint

buffer as soon as it arrives, which makes the crossbar queuing

delay of the packet be zero.

Since the traffic arrival rate at an input port
P

i �ij is less

than or equal to R, and the bandwidth of the crossbar is 2R,

most packets are immediately transmitted through the

crossbar after they arrive but are buffered in output queues.

This indicates short input and crossbar (IC) queuing delay

and long output queuing delay. The observation is

consistent with the simulation results obtained in Section 5.

Assume that the traffic arrives according to a Poisson

process and the packet length follows an exponential

distribution with mean M. Then, Ini can be approximately

modeled as an M/M/1 system, and accordingly,

Average input queuing delay ¼ M

2R�
P

i �ij
: ð14Þ

Applying Little’s law, we can obtain

Average input queue length ¼ M
P

i �ij
2R�

P
i �ij

: ð15Þ

4 HARDWARE IMPLEMENTATION

Practical scheduling algorithms are expected to be effi-

ciently implemented in hardware to make fast decisions for

high-speed switching. In this section, we discuss the

implementation issues of LIPS.

4.1 Architecture and Timing

We first describe the implementation architecture and then

give the timing for the entire transmission of a packet in the

switch. The architecture diagram of LIPS is shown in Fig. 3.

The left part depicts an input port, which consists of a

receiver, a memory module, and a controller. The receiver is

connected to the input line to accept packets, and the

packets are stored into the corresponding virtual queues in

the memory module based on their destinations. The

controller makes scheduling decisions and sends packets

stored in the memory to crosspoint buffers, which are

shown in the middle of the figure. Since the input port

sends a packet to only one crosspoint buffer at a time, the

input port is connected to its crosspoint buffers through

control, address, and data buses. Each crosspoint buffer

contains a number of memory cells, so that it is sufficiently

large to store a single packet of the maximum length. The

output port, shown in the right part of the figure, is also

connected to the memory cells of its crosspoint buffers

through control, address, and data buses. It is symmetric to

the input port, consisting of a controller, a memory module,

and a transmitter. The controller is responsible for retriev-

ing packets from the crosspoint buffers to the memory. The

transmitter sends packets from the memory to the output

line. The input port has an interrupt line connected to the

output port and can send an interrupt to the output port

when it starts sending a packet to the crosspoint buffer.

Similarly, the output can send an interrupt to inform the
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input port that it has finished retrieving a packet from the
crosspoint buffer.

We now look at the transmission of a packet in LIPS and
the timing of the transmission. A packet will be moved in
sequence from the input buffer to the crosspoint buffer, the
output buffer, and finally the output line. Fig. 4a illustrates
the scenario that the packet is fully buffered at the
crosspoint buffer and output buffer before being trans-
mitted to the next stop. In Fig. 4b, as soon as the first bit of
the packet arrives at the crosspoint buffer or output buffer,
it is immediately sent out using cut-through switching.
Figs. 4a and 4b represent the transmission timing of two
extreme cases, but there are also other possible scenarios,
such as the case that part of the packet has been received
when the first bit is sent out.

We next explain in detail each step of the transmission
along with the corresponding delay in the transmission
timing. As the first step, the packet is received by the
receiver and put into the input buffer, where it waits to be
transmitted to the crosspoint buffer and experiences the
input queuing delay. As defined in Section 3.3, input
queuing delay is the interval from the time that the last bit
of the packet arrives at the input buffer to the time that the
last bit leaves the input buffer, as shown in the left side of
both Figs. 4a and 4b.

The input port controller obtains the occupancy infor-
mation of all its virtual queues from the memory module
and knows whether the crosspoint buffers are empty from
the interrupts sent by the output ports or by simple
periodic polling. Based on a specific scheduling arbitration
policy, the controller selects one backlogged virtual queue

in the input buffer to send its head packet. The transmis-

sion of the packet from the input buffer to the crosspoint

buffer can be done by either synchronous or asynchronous

communication. To transmit the packet, the input port

controller first puts the destination crosspoint buffer

address on the address bus and asserts necessary control

signals on the control bus indicating a write. The packet

bits can then be put on the data bus from the input buffer

and received by the crosspoint buffer. For synchronous

communication, the control bus connecting the input port

controller and the crosspoint buffer has a clock line to

provide clock signals to synchronize all the operations. For

asynchronous communication, acknowledgment-based

handshaking protocols can be used between the sender

and receiver. After the input port finishes sending one

packet, it simply repeats the process for the next packet,

thus variable packet length is no longer an issue. There are

two parts in the transmission time of a packet from the

input buffer to the crosspoint buffer: propagation delay

and transmission delay, as shown in Figs. 4a and 4b. The

propagation delay is the time for the signal of 1 bit to

propagate from one end to the other end on the data bus. It

is usually short because both ends are within the system.

The transmission delay is the time for the input port to put

all the bits of the packet on the data bus. Its value depends

on the packet length and the data bus bandwidth. If we

denote the packet length by l, the transmission delay is

l=ð2RÞ because the bandwidth of the transmission channel

connecting the input buffer and the crosspoint buffer is 2R

due to the speedup of the crossbar.

268 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 2, FEBRUARY 2009

Fig. 4. The timing for the transmission of a packet. (a) Without cut-through switching. (b) With cut-through switching.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 13, 2009 at 15:28 from IEEE Xplore.  Restrictions apply.



Normally, when a packet is transmitted to the crosspoint
buffer, it will wait some time before being sent to the output
buffer, resulting in a nonzero crossbar queuing delay, as
shown in Fig. 4a. However, when an input port starts
transmitting a packet to the crosspoint buffer, it can send an
interrupt request to the corresponding output port as a
notification. If the output port is currently not receiving any
packet, it handles the interrupt by immediately starting to
retrieve the packet from the crosspoint buffer to achieve cut-
through switching. In this case, the packet has a zero
crossbar queuing delay, as indicated in Fig. 4b. Otherwise, if
the output port is already busy in receiving another packet,
it handles the interrupt by simply updating the status of the
specific crosspoint buffer to occupied, so that it is eligible
for crossbar scheduling later.

For an output port, it can obtain the statuses of its
crosspoint buffers from the interrupts sent by the input
ports or by periodic polling. The output port controller uses
an arbitration policy to decide from which occupied
crosspoint buffer to retrieve the next packet. Similarly, the
communication between the crosspoint buffer and the
output buffer can be either synchronous or asynchronous.
The transmission time of the packet from the crosspoint
buffer to the output buffer also includes the propagation
delay and transmission delay, and the latter is l=ð2RÞ, as
shown in Figs. 4a and 4b. When the output port receives the
first bit of a packet, it checks whether its transmitter is busy.
If the transmitter is idle, it can immediately start sending
the packet to the output line using cut-through switching.
However, the transmitter has smaller bandwidth than the
crossbar, and thus there is always a nonzero output
queuing delay, as shown in Figs. 4a and 4b. Since the
bandwidth of the transmitter is R, it can be calculated that
the transmission delay for the transmitter to send the packet
to the output line is l=R. After the output port finishes
retrieving a packet from the crosspoint buffer, it can send an
interrupt to the corresponding input port so that the input
port can update its status of the crosspoint buffer to empty
to be eligible to receive a new packet.

4.2 Implementation Advantages

We discuss in the following some unique implementation
advantages of LIPS.

First, the localized feature makes LIPS suitable for a
distributed implementation. In LIPS, each input port or
output port makes scheduling decisions solely based on the
state information of its local crosspoint buffers, and there-
fore, the scheduling of different input ports or output ports
can be conducted in an independent and asynchronous
mode. Since there is no information exchange between
different arbiters, LIPS can be implemented in a distributed
manner, which makes it highly scalable.

Moreover, because LIPS requires no comparison, the
scheduling arbiters can be efficiently implemented using
priority encoders [14] to make fast decisions in hardware.
The theoretical time complexity to make an arbitration is
OðlogNÞ. In practice, priority encoders perform all the
operations in hardware and technically achieve constant
time complexity for moderate switch size [36]. Depending
on the arbitration rules, different types of priority encoders
may be used. For example, if arbitration candidates are
assigned different priorities at different time, such as the

situation in an RR arbiter, a programmable priority encoder
can be used to implement the arbiter.

At the first glance, the cost of crosspoint buffers may
seem to be a problem for the implementation of buffered
crossbar switches. Fortunately, with the recent development
of VLSI technology, it has been feasible to integrate a small
amount of memory to chips. For example, the latest Quad-
Core Intel Xeon Processor 5400 Series have 12-Mbyte
integrated on-chip memory used as L2 caches [30]. Several
implemented prototypes of buffered crossbar switches have
been reported in the literature [20], [31], [32], [33]. In
addition, LIPS requires only L buffer space at each
crosspoint and minimizes the switch hardware cost. If the
switch size N is 32, and the maximum packet length L is
equal to 1,500 bytes, thus 1.5-Mbyte on-chip memory is
sufficient for all crosspoint buffers.

4.3 Comparison with Other Schemes

In this section, we compare LIPS with existing scheduling
algorithms and summarize its characteristics.

First of all, LIPS is a packet scheduling algorithm dealing
with variable length packets. Most existing scheduling
algorithms operate on fixed length cells, for which packets
have to be segmented into cells upon arrival, and the cells
are then reassembled back to the original packets before
departure. Based on the buffered crossbar structure, LIPS
improves the switch efficiency by eliminating the SAR
process and achieves higher throughput and shorter packet
latency.

Second, LIPS has low time complexity. The time
complexity of LIPS is OðlogNÞ, because each input port or
output port makes scheduling decisions independently by
selecting an arbitrary candidate from up to N candidates.
Furthermore, as analyzed above, the arbiters can be
implemented using priority encoders to make fast arbitra-
tion in hardware, which technically achieves constant time
complexity for moderate switch size [36]. In comparison,
most existing scheduling algorithms have higher time
complexity. For example, maximum size matching and
maximum weight matching algorithms have time complex-
ity of OðN2:5Þ [34] and OðN3Þ [35], respectively. Maximal
matching algorithms usually work in iterative modes with
lnN þ e=ðe� 1Þ average convergence iterations [9], while
the time complexity of each iteration is the same as that of
LIPS. Algorithms emulating OQ schedulers need to main-
tain the reference scheduling systems and sort packets
based on their leaving sequences in the reference systems,
and are obviously more complex than LIPS.

Finally, LIPS is a truly distributed algorithm. In LIPS, the
arbiter of an input port or output port only needs the state
information of its local crosspoint buffers, and thus
different arbiters can be distributed at different locations.
On the contrary, most existing algorithms require different
arbiters to exchange information when making scheduling
decisions. Maximum size matching and maximum weight
matching algorithms collect the information of all the
queues to compute a globally maximum value. In iterative
maximal matching algorithms, output ports need to receive
requests from and send grants back to input ports. For
algorithms emulating OQ schedulers, packets of different
input ports destined for the same output port are compared
so that their departure order is consistent with that in the
reference system.
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5 SIMULATION RESULTS

We have conducted simulations to verify the 100 percent
throughput of LIPS and to evaluate its performance.

For the input or crossbar scheduling of LIPS, when there
are more than one eligible virtual queues or crosspoint
buffers, different scheduling decisions can be made
depending on the rules to make the arbitration. In the
simulations, we consider five different LIPS implementa-
tion versions with different arbitration rules:

1. FP assigns an FP order to all the virtual queues of the
same input port or all the crosspoint buffers to the
same output port and always picks the candidate
with the highest priority. In our implementation,
higher priorities are assigned to virtual queues to
output ports with smaller indices (e.g., Qij has
higher priority than Qijþ1), or to crosspoint buffers
from input ports with smaller indices (e.g., Bij has
higher priority than Biþ1j).

2. Random (RD) does not favor any particular candi-
date but makes arbitration on a random basis.

3. RR sets up an RR pointer for the virtual queues of
the same input port or the crosspoint buffers to the
same output port and grants to the first candidate
that is equal to or larger than the RR pointer (in a
modular manner). After making an arbitration, the
RR pointer is updated to the next candidate of the
current assigned one (in a modular manner).

4. Oldest packet first (OPF) uses the packet arrival time
as the arbitration criterion. In input scheduling, the
eligible virtual queue whose head packet arrives
earliest at the input port is selected. In crossbar
scheduling, the eligible crosspoint buffer whose
packet arrives earliest at the crosspoint is selected.

5. Longest queue first (LQF) uses the queue length as
the arbitration criterion. In input or crossbar sche-
duling, the eligible packet whose virtual queue or
crosspoint buffer has the longest queue is selected.

FP, RD, and RR rely only on the state information, i.e., for
input scheduling, whether a virtual queue has packets and
its crosspoint buffer is available, and for crossbar schedul-
ing, whether a crosspoint buffer has a buffered packet. As
discussed earlier, since there is no comparison operation
involved, these algorithms can be efficiently implemented
using priority encoders. In particular, RR is also able to
avoid starvation in the scheduling, by giving each candidate
the chance to obtain the highest priority. On the other hand,
LQF and OPF need to compare either the packet arrival
time or the queue length when making arbitrations and
require more sophisticated hardware support. Our purpose
to include these two algorithms is that LQF and OPF
demonstrate advantages in the scheduling for VOQ
switches [7], and we want to study whether they are also
superior in the scheduling for buffered crossbar switches.

In order to reflect the burst nature of real network traffic,
we emulate the incoming traffic by a Markov modulated
Poisson process, as illustrated in Fig. 5. The intensity of the
Poisson process is defined by the state of a Markov chain.
The Markov chain has two states: ON and OFF. In the ON

state, the intensity of the Poisson process is �1, and in the
OFF state the intensity is �2. The probability to switch from
the ON state to the OFF state is p, and the probability to

switch from the OFF state to the ON state is q. In the

simulations, we set p ¼ q ¼ 0:2 and �2 ¼ 0, and change the

value of �1 to adjust the load.
For the destination of the packets, we consider both

uniform traffic and nonuniform traffic. For uniform traffic,

the destination of a new incoming packet is uniformly

distributed among all the output ports, i.e., �ij ¼ lR=N ,

where l is the effective load. For nonuniform traffic, we use

the same model as that in [18] and [21]. The traffic arrival

rate �ij is defined by i, j, and an unbalanced probability w

as follows:

�ij ¼
lR wþ 1�w

N

� �
; if i ¼ j;

lR 1�w
N ; if i 6¼ j:

�
ð16Þ

The packet length in the simulation is uniformly dis-

tributed between [50, 1,500] bytes. We consider a 16 � 16

switch, and each input port or output port has a bandwidth

of 1 Gbps. All packets to an output port are buffered in the

same queue, and FIFO is used as the output scheduling

policy for all the algorithms.

5.1 Throughput

In Section 3, we have theoretically proved that with

speedup of two LIPS achieves 100 percent throughput for

any admissible traffic. Now, we verify the analytical results

by simulation.
Fig. 6a depicts the relationship between the throughput

of different algorithms and the effective load under
uniform traffic. As can be seen, all algorithms have similar
curves and achieve 100 percent throughput. Fig. 6b shows
the results under nonuniform traffic. We fix the load of the
switch to one and adjust the unbalanced probability.
Again, all the five algorithms achieve 100 percent through-
put. As we have seen, both the simulation data under
uniform traffic and nonuniform traffic support the pre-
vious analytical results well. It also can be noticed that,
when speedup is equal to two, the five algorithms have no
significant difference on the throughput performance.

In the rest of the simulations, the unbalanced probability
of the nonuniform traffic is fixed to 0.5 if not specifically
noted.

5.2 Average Delay

In this section, we study the delay performance of different
algorithms. In Section 3.3, we defined the input, crossbar,
and output queuing delay to be the waiting time of a packet
at the input, crosspoint, and output buffer, respectively. In
particular, we theoretically analyzed the input queuing
delay and obtained an expression to compute it under the
assumption of Poisson arrival and exponential packet
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length distribution. In the following, we verify the applic-
ability of the expression by simulation.

Figs. 7a and 7b show the input queuing delay of different
algorithms under uniform traffic and nonuniform traffic,
respectively. We can see that all the five algorithms have
similar input queuing delay, which grows gradually with the
increase of the effective load. The theoretical results are also
illustrated in the figures by dashed lines. Although the
incoming traffic is not Poisson traffic and the packet length
does not follow an exponential distribution, it can be seen that
the theoretical results are reasonably consistent with the
simulation results, especially when the effective load is small.

Next, we consider tw more delay measures. The first one
is called nodal delay, which is the sum of the input,
crossbar, and output queuing delay. Nodal delay is the total
time that a packet stays in the switch and is an important
performance criterion. The other measure is called IC
queuing delay, which is the sum of the input and crossbar
queuing delays. In this paper, we mainly discuss the input
scheduling and crossbar scheduling of buffered crossbar
switches, and all the simulation algorithms use the same
output scheduling principle. Thus, IC queuing delay is a
good measure to compare the different arbitration rules
used in different algorithms. On the other hand, the nodal
delay of a packet is equal to its IC queuing delay plus
output queuing delay. With the above two measures, it is

possible to determine the proportion of time that packets

spend at different buffering locations in the switch.
The average nodal delay and IC queuing delay of the five

algorithms under uniform traffic and nonuniform traffic are

shown in Figs. 8a and 8b, respectively. The solid lines

represent the nodal delay, and the dashed lines represent the

IC queuing delay. First, we can notice that, for any

algorithm, compared with the nodal delay (10�3 second),

the IC queuing delay (10�5 second) is small enough to be

neglected. Second, we can also see that the IC queuing delay

of different algorithms does not have significant difference.

Combining the above two observations, we can draw the

conclusion that, for buffered crossbar switches with speed-

up of two, input scheduling and crossbar scheduling do not

significantly affect the nodal delay of the packet. Thus, when

considering implementation cost, the simplest algorithms,

such as RR and FP, are the preferred choices. On the other

hand, since the IC queuing delay is very small, most packets

are immediately transmitted to their output buffers after

they arrive at input ports. Thus, we can expect LIPS to

exhibit similar performance as OQ switch-based scheduling

algorithms. Moreover, in conjunction with LIPS, existing fair

scheduling algorithms, such as WFQ and DRR, can be used

as the output scheduling principles to provide deterministic

performance guarantees.
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5.3 Maximum Queue Length

In order to achieve 100 percent throughput for admissible
traffic, input ports and output ports must have enough
buffer space to avoid packet overflow. We also collect the
maximum queue length at both the input side and output
side during the simulations to reveal the buffer requirement
of the algorithms. The maximum output queue length is
defined to be the maximum number of bytes buffered at
any output queue during the entire simulation time. The
maximum input queue length is defined to be the
maximum number of bytes buffered at all the virtual
queues of any input port.

Figs. 9a and 9b show the maximum queue length of the
algorithms under uniform traffic and nonuniform traffic,
respectively. The solid lines represent the maximum output
queue length, and the dashed lines represent the maximum
input queue length. It can be seen that all the algorithms
exhibit similar buffer requirement at both the input side and
the output side. On the other hand, the input ports have
much shorter maximum queue length than the output
ports. This indicates that, with speedup of two, packets can
be quickly transferred through the crossbar, and more
packets are buffered at output ports than at input ports.

5.4 Speedup Less than Two

In the above, we have theoretically proved and verified by
simulation that LIPS achieves 100 percent throughput with

speedup of two. With two being the theoretical bound, we
are interested in finding out whether it is possible for LIPS
to achieve 100 percent throughput with speedup less than
two in practice. In the following, we measure the through-
put performance of LIPS under different speedup values.

Among the five algorithms, we choose two for this
experiment, in which RR is a representative of the
algorithms without sorting and OPF of the algorithms with
sorting involved. We fix the load to be one and adjust the
speedup value from 1 to 2 with a step of 0.1 and adjust
the unbalanced probability from 0 to 1 with a step of 0.1.
The throughput of the RR and OPF is depicted in Figs. 10a
and 10b, respectively.

First, we look at the Y -axis, which denotes the speedup
value. As can be seen, when the speedup is approximately
1.3, both RR and OPF have reached 100 percent
throughput under all different unbalanced probabilities.
This does not necessarily mean that speedup of 1.3 can
guarantee 100 percent throughput for LIPS, because there
is no way to test it under all possible traffic. However, the
results do indicate that the theoretical bound of two may
be further tightened, which is an interesting problem for
our future work.

We now look at the X-axis, which is the unbalanced
probability. We can notice that, under the same speedup,
the two algorithms achieve the lowest throughput when the
unbalanced probability is around 0.5. This observation is
consistent with the definition of the nonuniform traffic.
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Fig. 8. Average delay of different algorithms. (a) Uniform traffic. (b) Nonuniform traffic.

Fig. 9. Maximum queue length of different algorithms. (a) Uniform traffic. (b) Nonuniform traffic.
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When the unbalanced probability is equal to zero, the
defined traffic is actually the uniform traffic, and the
packets from any input port have equal probabilities to go
to different output ports. The uniform traffic is friendly to
scheduling algorithms and enables them to easily achieve
100 percent throughput. On the other hand, if the
unbalanced probability is equal to one, all the packets of
an input port are destined for the same output port, and
packets from different input ports have different destina-
tions. In this situation, no scheduling is necessary. By
always connecting every input port with its corresponding
output port, 100 percent throughput is guaranteed. When
the unbalanced probability is between zero and one,
packets are distributed to all output ports but one of them
receives more packets than the rest, and the traffic is more
difficult to schedule.

Comparing the two figures, we can see that, when the
speedup value is less than 1.3, OPF almost always achieves
higher throughput than RR with the same speedup value
and unbalanced probability. This is easy to explain. RR, FP,
and RD always equally treat all the scheduling candidates,
while OPF and LQF take the traffic distribution information
into consideration. The observation also suggests that, if the
speedup bound of two is to be tightened, sorting-based
algorithms may be first considered.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have studied packet scheduling for
buffered crossbar switches. Buffered crossbar switches are
a special type of CIOQ switches, whose crosspoints are
associated with small on-chip buffers. The introduction of
crosspoint buffers eliminates output and input contention
and greatly simplifies the scheduling process. Furthermore,
the scheduling of different input ports or output ports are
conducted in an independent and asynchronous mode, and
variable length packets can be directly scheduled and
transmitted without segmentation or reassembly. Compared
with cell scheduling, packet scheduling has some unique
advantages: higher throughput, shorter packet delay, and
cheaper hardware cost. We have presented a packet
scheduling scheme called LIPS for buffered crossbar
switches. With LIPS, each crosspoint needs as little as
L buffer space, which minimizes the hardware cost for

switches. Another advantage of LIPS is that the scheduling
of an input port or output port relies only on the state
information of its local crosspoint buffers. The localization
feature makes LIPS suitable for a distributed implementa-
tion and thus highly scalable. Since there is no comparison
needed, priority encoders can be used to quickly make
scheduling arbitrations in hardware. We theoretically
proved that LIPS with speedup of two achieves 100 percent
throughput for any admissible traffic and presented the
detailed implementation architecture of LIPS. We also
conducted extensive simulations to verify the analytical
results and evaluate the performance of LIPS.

Finally, regarding future work, there are several ways to
further extend the work in this paper, and the following
problems are of particular interest. First, it might be possible
to further reduce the size of crosspoint buffer. We showed
that each crosspoint buffer only needs to store a single
packet to achieve 100 percent throughput. However, when
the incoming packets have an extremely large maximum
packet length, the crossbar will require a large amount of
buffer space. Moreover, if most packets have shorter lengths
than the maximum length, the crosspoint buffers may have
low utilization. It might be possible to break a large packet
into smaller pieces (but not necessarily fixed length cells) to
transmit and still guarantee 100 percent throughput, which
will substantially reduce the total size of crosspoint buffers.
Second, loosen or eliminate the interaction between input/
output ports and crosspoint buffers. In the current design,
input/output ports need to check whether the correspond-
ing crosspoint buffers are empty or occupied before making
scheduling decisions. Although a single bit is sufficient to
indicate the status of a crosspoint buffer, the transmission of
the status information still introduces delay to the switch
scheduling. Potential techniques may be explored to
compensate the delay or completely remove it. Third,
tighten the speedup requirement. As indicated by the
simulation results in Section 5.4, the speedup bound of
two for 100 percent throughput might be further tightened.
How to use sorting-based scheduling strategies to lower the
speedup requirement is an interesting and important
question, which will allow the same crossbar hardware to
deliver a significantly higher capacity.
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Fig. 10. Throughput with speedup less than two. (a) RR. (b) OPF.
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