
Achieving Flow Level Constant Performance Guarantees for
CICQ Switches without Speedup

Hao Jin, Deng Pan, Niki Pissinou
Florida International University

Miami, FL

Kia Makki
TUA

Miami, FL

Abstract—Performance guarantees provided by switches can
be at different granularity: port level and flow level. As a
trade-off, it is usually more expensive to provide performance
guarantees at finer granularity. Existing solutions for switches
to provide flow level performance guarantees require either
expensive hardware support or centralized scheduling algo-
rithms with multiple iterations. In this paper, we present the
Flow-level Fair Scheduling (FFS) algorithm to provide flow
level performance guarantees for combined-input-crosspoint-
queued (CICQ) switches, which are special crossbar switches
with a small exclusive buffer at each crosspoint of the crossbar.
FFS uses hierarchical and multidimensional fair queueing
to emulate the ideal Generalized Processing Sharing (GPS)
model. The main features of FFS include: constant performance
guarantees, bounded crosspoint buffer sizes, no speedup re-
quirement, and distributed operation. We theoretically analyze
the performance of FFS, and conduct simulations to verify the
analytical results.

Keywords-performance guarantees; CICQ switches;
speedup;

I. INTRODUCTION

It is important for switches and routers to provide per-
formance guarantees, to support applications with QoS re-
quirements [1] and even help defend against DoS attacks
[2]. Performance guarantees provided by switches can be
at different granularity: port level and flow level [3]. With
port level performance guarantees, a switch can differentiate
packets from different input ports. For example, if each
input port of such a switch connects to a different user,
the switch can ensure that each user has its own share of
bandwidth at every output port, and further provide delay
and jitter guarantees. However, such a switch has no way to
differentiate packets from the same input port but different
flows. With the above example, if a specific user has a file
downloading flow as well as a video streaming flow, the
former may aggressively consume all available bandwidth,
resulting in service degradation for the latter. On the other
hand, if a switch provides flow level performance guarantees,
resources are allocated on a per flow basis, and each flow
can have its guaranteed bandwidth and delay performance.

It is usually more expensive to provide flow level perfor-
mance guarantees, since there are more states to maintain
and more information to process. Existing solutions [3],
[4], [5] for switches to provide flow level performance

...
...

...

Out1

InN

...

In1

Q111
C11

X1NX11

XN1 XNN

OutN

...

...

Buffered Crossbar

...
Q112

Q1N1

Q1N2

QN11

QN12

QNN1

QNN2

C1N

CN1

CNN

Figure 1. Switch Structure

guarantees need either expensive hardware support or cen-
tralized scheduling algorithms with multiple iterations. To
be specific, the scheme in [4] needs speedup of three for the
crossbar switching fabric, i.e. the crossbar bandwidth having
three times bandwidth as that of the input port and output
port, or at least N3 on-chip buffers for the crossbar, where
N is the switch size. The scheme in [5] needs speedup of
two, and runs a centralized scheduling algorithm with N
iterations. The scheme in [3] achieves a tradeoff between
those in [4] and [5], but still needs speedup of two and N
iterations in the worst case. Furthermore, all the above three
schemes can only process fixed length cells, and need to
apply segmentation-and-reassembly (SAR) [6] for variable
length packets.

Combined input-crosspoint queued (CICQ) switches have
recently attracted considerable attentions [1], [4], [7] as
promising high speed interconnects. They are special cross-
bar switches with a small exclusive buffer at each crosspoint
of the crossbar, as shown in Figure 1. The crosspoint
buffers decouple input ports and output ports, and simplify
the scheduling process. CICQ switches can directly handle
variable length packets without SAR, and enable distributed
packet scheduling.

In this paper, we present the Flow-level Fair Scheduling
(FFS) algorithm to provide flow level performance guaran-
tees for CICQ switches without speedup. The basic idea
is to use hierarchical and two-dimensional fair queueing
to emulate the ideal Generalized Processor Sharing (GPS)
model [9], which creates a logical transmission channel with
dedicated bandwidth for each flow. The main features of
FFS can be summarized as follows. First, FFS provides



constant performance guarantees, which means that the ser-
vice difference of any flow under FFS and GPS is bounded
by constants. Second, FFS has a bounded crosspoint buffer
size, independent of the flow number and switch size.
Third, FFS needs no speedup for the crossbar, reducing the
hardware cost. Finally, FFS works in a distributed manner,
i.e. different inputs port and output ports independently
making scheduling decisions, and thus processes variable
length packets without SAR. We theoretically analyze the
performance of FFS, and present simulation data to evaluate
our design.

II. FLOW-LEVEL FAIR SCHEDULING

In this section, we formulate the flow level fair scheduling
problem and present our FFS algorithm.
A. Problem Formulation

We consider an N×N CICQ switch. For easy representa-
tion, denote the ith input port as Ini and the jth output port
as Outj . Each input port and output port have bandwidth of
R. Multiple flows may exist from Ini to Outj , and each flow
is allocated a certain amount of bandwidth. Denote the kth

flow from Ini to Outj as Fijk, and its allocated bandwidth
as Rijk. The bandwidth allocation should be feasible, i.e.

∀i,
∑
j,k

Rijk ≤ R, and ∀j,
∑
i,k

Rijk ≤ R (1)

In the ideal GPS fairness model [9], each flow has a logical
decidecated transmission channel with bandwidth Rijk, and
therefore predictable and guaranteed performance.

The objective of flow level fair scheduling is to ensure
that a flow receives the same amount of service as in GPS
at any time. Use toOijk(0, t) and toOGPS

ijk (0, t) to represent
the numbers of bits transmitted by Fijk to the output line
during interval [0, t] in FFS and GPS, respectively. The
difference toOijk(0, t) − toOGPS

ijk (0, t) is expected to be
tightly bounded independent of Rijk and t.
B. Switch Structure

The CICQ switch structure is shown in Figure 1. N
input ports and N output ports are connected by a buffered
crossbar without speedup, or in other words the bandwidth
of the crossbar is also R. Apparently, to provide performance
guarantees at the flow level, it is necessary to store packets
on a per flow basis in the input buffer to achieve traffic
isolation among flows. At the input port Ini, there is a queue
for each flow Fijk, denoted as Qijk. In addition, Ini has a
special candidate buffer for each output port Outj , denoted
as Cij , to store scheduling candidate packets to be sent to
the crossbar. Each crosspoint of the crossbar has a small
exclusive buffer. Denote the crosspoint buffer connecting Ini

and Outj as Xij . Output ports have no buffers.
C. Algorithm Description

FFS consists of three phases: flow scheduling, input
scheduling, and output scheduling. All the three scheduling
phases are based on the WF2Q fair queueing algorithm [10].

In flow scheduling, Ini selects a packet from one of the
flow queues Qijk destined for Outj , and sends the packet to
the corresponding candidate buffer Cij . For easy description,
denote the nth packet of Fijk as Pn

ijk. Flow scheduling
calculates two time stamps for each packet p: virtual flow
start time V FS(p) and finish time V FF (p). They are the
departure time of the first bit and last bit of p in GPS, and
are calculated as

V FS(Pn
ijk) = max(IA(Pn

ijk), V FF (Pn−1
ijk )) (2)

V FF (Pn
ijk) = V FS(Pn

ijk) +
L(Pn

ijk)

Rijk
(3)

where IA(p) is the arrival time of p at the flow queue Fijk,
and L(p) is its packet length. Because we do not consider
reallocating the leftover bandwidth of empty flows to back-
logged flows, the virtual time in GPS progresses at the same
pace as the real time, and the time stamp calculation is
simpler than that in [10]. The first step of flow scheduling
is to identify eligible packets. To conduct flow scheduling
at time t, a packet p is eligible if its virtual flow start time
is less than or equal to t, i.e. V FS(p) ≤ t. In other words,
a packet that has started transmission in GPS is eligible for
flow scheduling. The second step is to select among eligible
packets the one p with the smallest virtual flow finish time,
i.e. ∀p′V FS(p′) ≤ t→ V FF (p′) ≥ V FF (p). The selected
packet will be sent to the corresponding candidate buffer
Cij . If there are no eligible packets, Ini will wait until the
next earliest virtual flow start time. Accordingly, we define
two additional time stamps for p: actual flow start time
AFS(p) and finish time AFF (p), which are the time that
the first bit and last bit of p leave Qijk in flow scheduling.
If p is selected in flow scheduling at t to be sent to Cij , then
AFS(p) = t ≥ V FS(p). Flow scheduling multiplexes all
flows Fijk from Ini to Outj as a logical flow Fij to simplify
the remaining scheduling. In the logical flow Fij , we have
AFF (p) = AFS(p) + L(p)/Rij , where Rij =

∑
k Rijk is

the total bandwidth of all the flows from Ini to Outj .
In input scheduling, Ini selects a packet from one of its

N candidate buffers Cij , and sends it to the corresponding
crosspoint buffer Xij . Input scheduling also uses two time
stamps for each packet p: virtual input start time V IS(p)
and finish time V IF (p), which are equal to the actual flow
start and finish time, respectively, i.e. V IS(p) = AFS(p)
and V IF (p) = AFF (p). Similarly, the first step of input
scheduling is to identify eligible packets whose virtual input
start time is no later than the current scheduling time. The
second step is to find among eligible packets the one with
the smallest virtual input finish time. The selected packet is
then sent from the candidate buffer to the crosspoint buffer.
Accordingly, we define the actual input start time AIS(p)
and finish time AIF (p) to be the time that the first bit
and last bit of p leave Cij in input scheduling. We have
AIS(p) ≥ V IS(p) and AIF (p) = AIS(p)+L(p)/R, since
the bandwidth of the crossbar is R.



In output scheduling, Outj selects a packet from one of
its N crosspoint buffers Xij , and sends it to the output line.
Denote the nth packet from Ini to Outj as Pn

ij . Output
scheduling calculates two time stamps for each packet p:
virtual output start time V OS(p) and finish time V OF (p),
as follows

V OS(Pn
ij) = max(XA(Pn

ij), V OF (Pn−1
ij )) (4)

V OF (Pn
ij) = V FS(Pn

ij) +
L(Pn

ij)

Rij
(5)

where XA(p) is the arrival time of p at the crosspoint buffer
Xij . Similarly, the first step of output scheduling identifies
eligible packets based on the virtual output start time, and
the second step selects the packet to be transmitted based on
the virtual output finish time. Define the actual output start
time AOS(p) and finish time AOF (p) to be the time that the
first bit and the last bit of p leave Xij in output scheduling,
respectively. Since the bandwidth of the crossbar is R, we
have AOF (p) = AOS(p) + L(p)/R

Regarding the time complexity of FFS, because all the
three scheduling phases use WF2Q, they have logarithmic
time complexity [11]. In order to transfer a packet to the
output line, flow scheduling, input scheduling, and output
scheduling each will be conducted once. Note that the
scheduling at each input port and output port is independent
without a centralized controller, and hence FFS is suitable
for distributed implementation. Finally, FFS can directly
process variable length packets without SAR. On the other
hand, due to fine granularity traffic isolation, FFS has a
sophisticated input buffer structure with flow queues and
candidate buffers.

III. PERFORMANCE ANALYSIS
In this section, we theoretically analyze the performance

of FFS. We will show that it has a bounded crosspoint buffer
size and provides constant service guarantees.
A. Crosspoint Buffer Size Bound

Crosspoint buffers are expensive on-chip memories, and
we would like to find the maximum number of bits buffered
at a crosspoint to avoid overflow.

As have be seen, all the three scheduling phases use
WF2Q. WF2Q schedules packets of a number of flows, each
with its allocated bandwidth, to emulate GPS, in which
each flow has a logical dedicated channel with the allo-
cated bandwidth. Theorem 1 in [10] gives the relationship
between the amount of service of a flow in WF2Q and
GPS, and we have similar properties for the three scheduling
phases of FFS. Define toXij(t1, t2) and toOij(t1, t2) to
represent the numbers of bits transmitted by flow Fij during
interval [t1, t2] in input scheduling and output scheduling
of FFS, respectively. Additionally, define toX ′ij(t1, t2) and
toO′ij(t1, t2) to represent the numbers of bits transmitted
by Fij during [t1, t2] in the input scheduling and output
scheduling logical dedicated channels, respectively. By The-
orem 1 in [10], we have

−Lm ≤ toXij(0, t)− toX ′ij(0, t) ≤ Lm(1− Rij

R
) (6)

−Lm ≤ toOij(0, t)− toO′ij(0, t) ≤ Lm(1− Rij

R
) (7)

Lemma 1: During interval [0, t], the number of bits trans-
mitted by flow Fij in the input scheduling logical dedicated
channel is less than or equal to that in the output scheduling
logical dedicated channel plus 2Lm, i.e.

toX ′ij(0, t) ≤ toO′ij(0, t) + 2Lm (8)

Proof: Assume that Xij is empty immediately before
time s and is continuously backlogged during [s, t] in the
output scheduling logical dedicated channel. If Xij is not
backlogged at t, then s = t.

By (6), we have toXij(0, s) ≥ toX ′ij(0, s)−Lm. Because
Xij is empty before s and backlogged after s in the output
scheduling logical dedicated channel, all packets arriving at
Bij before s have been transmitted to Outj , and a new
packet arrives at Bij at s. Thus

toO′ij(0, s) ≥ toXij(0, s)− Lm ≥ toX ′ij(0, s)− 2Lm (9)

On the other hand, because Xij is continuously backlogged
during [s, t], we have

toO′ij(s, t) = Rij(t− s) ≥ toX ′ij(s, t) (10)

Adding (9) and (10), we have proved the lemma.
The following theorem gives the bound for the crosspoint

buffer size.
Theorem 1: In FFS, the maximum number of bits

buffered at crosspoint buffer Xij is bounded by 4Lm −
LmRij/R, i.e.

toXij(0, t)− toOij(0, t) ≤ 4Lm − Lm
Rij

R
(11)

Proof: Combining Lemma 1, (6), and (7), we have
proved the theorem.
B. Service Guarantees

We show below that FFS achieves constant service
guarantees, i.e. the difference between the service amount
of a flow in FFS and GPS bounded by constants. Use
toOijk(t1, t2), toXijk(t1, t2), and toCijk(t1, t2) to represent
the numbers of bits transmitted by Fijk during interval
[t1, t2] to Outj , Xij , and Cij in FFS, respectively. Cor-
respondingly, use toC ′ijk(t1, t2) to represent the numbers
of bits transmitted by Fijk during [t1, t2] to Cij in GPS.
By neglecting transmission delay, we have toC ′ijk(t1, t2) =

toOGPS
ijk (t1, t2).

Lemma 2: When a packet Pn
ijk starts to be transmitted to

the crosspoint buffer Xij , the difference between the number
of bits transmitted by its flow Fijk to the crosspoint buffer
Xij in input scheduling of FFS and that to the candidate
buffer Cij in the flow scheduling logical dedicated channel
is greater than or equal to −Lm(1 + Rijk/Rij + Rijk/R),
i.e.



toXijk(0, AIS(Pn
ijk))− toC ′ijk(0, AIS(Pn

ijk))

≥ −Lm

(
1 +

Rijk

Rij
+

Rijk

R

)
(12)

Proof: Since flow scheduling and input scheduling are
based on WF2Q, by Theorem 1 in [10] we know AFF (p) ≤
V FF (p) + Lm

Rij
and

AIF (p) ≤ V IF (p) +
Lm

R
= AFF (p) +

Lm

R

≤ V FF (p) +
Lm

Rij
+

Lm

R
(13)

Therefore

toC ′ijk(0, AIS(P
n
ijk))

≤ toC ′ijk(0, AIF (Pn
ijk))

≤ toC ′ijk

(
0, V FF (Pn

ijk) +
Lm

Rij
+

Lm

R

)
= toC ′ijk

(
0, V FF (Pn

ijk)
)
+

toC ′ijk

(
V FF (Pn

ijk), V FF (Pn
ijk) +

Lm

Rij
+

Lm

R

)
≤

n∑
x=1

L(P x
ijk) +Rijk

(
Lm

Rij
+

Lm

R

)
(14)

Note that toXijk(0, AIS(Pn
ijk)) =

∑n−1
x=1 L(P

x
ijk) and thus

the lemma is proved.
The following theorem shows that FFS achieves constant

service guarantees.
Theorem 2: At any time, the difference between the num-

bers of bits transmitted by a flow to the output port in FFS
and GPS is greater than or equal to −6Lm and less than or
equal to Lm, i.e.

−6Lm ≤ toOijk(0, t)− toC ′ijk(0, t) ≤ Lm (15)

Proof: We first prove toOijk(0, t) − toC ′ijk(0, t) ≥
−6Lm. By Lemma 2, it is easy to show that, for any t

toXijk(0, t)− toC ′ijk(0, t)

≥ −Lm

(
1 +

Rijk

Rij
+

Rijk

R

)
(16)

Note that toXijk(0, t)−toOijk(0, t) is the number of bits of
Fijk in the crosspoint buffer Xij . By Theorem 1, we know

toXijk(0, t)− toOijk(0, t) ≤ 4Lm − Lm
Rij

R
(17)

Combining (16) and (17) and noting Rij ≥ Rijk, we have

toOijk(0, t)− toC ′ijk(0, t) ≥ −6Lm (18)

Next, we prove toOijk(0, t) − toC ′ijk(0, t) ≤ Lm. By
Theorem 1 in [10]

toC ′ijk(0, t) ≥ toCijk(0, t)− Lm ≥ toXijk(0, t)− Lm

≥ toOijk(0, t)− Lm (19)

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

7000
16x16 Switch, Uniform Poisson Traffic

Effective Load

C
ro

ss
po

in
t B

uf
fe

r 
O

cc
up

an
cy

 (
by

te
s)

 

 

Maximum
Average
Theoretical Bound

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

16x16 Switch, Nonuniform Poisson Traffic

Unbalanced Probability

C
ro

ss
po

in
t B

uf
fe

r 
O

cc
up

an
cy

 (
by

te
s)

 

 

Maximum
Average
Theoretical Bound

(a) (b)
Figure 2. Crosspoint Buffer Occupancy (a) Uniform Traffic (b) Nonuni-
form Traffic

IV. SIMULATION RESULTS

In this section, we present simulation data to verify the
obtained analytical results and evaluate the effectiveness of
FFS. We consider a 16× 16 CICQ switch without speedup.
Each input port or output port has bandwidth of 1 Gbps.
There are two flows from Ini to Outj with Rij2 = 2Rij1.
The packet length is uniformly distributed between 40 and
1500 bytes [12], and packets arrive based on a Markov
modulated Poisson process [8].

We use two traffic patterns. For traffic pattern one, or
uniform traffic, we set Rij = R/N , and change the effective
load l of the incoming traffic from 0.1 to 1 by step 0.1.
For traffic pattern two, or nonuniform traffic, we fix the
effective load l to 1, and define Rij by i, j and an unbalanced
probability w as follows

Rij(t) =

{
R(w + 1−w

N ), if i = j

R 1−w
N , if i 6= j

(20)

where w is increased from 0 to 1 by step 0.1.

A. Crosspoint Buffer Occupancy
In this subsection, we measure the crosspoint buffer

occupancy. Recall that Theorem 1 gives the size bound
4Lm − LmRij/R for the crosspoint buffer Xij . For easy
plotting, we enlarge the bound slightly to 4Lm. Figure 2(a)
shows the maximum and average crosspoint occupancies of
all crosspoint buffers under uniform traffic. As can be seen,
both the maximum and average occupancies increase with
the load. The maximum occupancy value does not exceed
the theoretical bound, and is much higher than the average
value.

Figure 2(b) presents the data under nonuniform traffic.
We can see that the theoretical bound is tight. Specifically,
the maximum occupancy rises gradually while the average
one keeps relatively constant. The reason is that, as the
unbalanced probability increases, the crosspoint buffers Xii

receive more packets. On the other hand, the steady total
traffic load results in the constant average occupancy. When
the unbalanced probability becomes one, all traffic of Ini

goes to Outi and only the crosspoint buffer Xii is used. As
a result, both the maximum and average occupancies drop
suddenly.



0 0.2 0.4 0.6 0.8 1

−10000

−8000

−6000

−4000

−2000

0

2000

16x16 Switch, Uniform Poisson Traffic

Effective Load

S
er

vi
ce

 D
iff

er
en

ce
 (

by
te

s)

 

 

Maximum
Minimum
Upper Bound
Lower Bound

0 0.2 0.4 0.6 0.8 1

−10000

−8000

−6000

−4000

−2000

0

2000

16x16 Switch, Nonuniform Poisson Traffic

Unbalanced Probability

S
er

vi
ce

 D
iff

er
en

ce
 (

by
te

s)

 

 

Maximum
Minimum
Upper Bound
Lower Bound

(a) (b)
Figure 3. Service Difference (a) Uniform Traffic (b) Nonuniform Traffic

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
16x16 Switch, Uniform Poisson Traffic

Load of F
112

A
ve

ra
ge

 D
el

ay
 (

se
co

nd
)

 

 

F
111

 with Flow Scheduling

F
111

 w/o Flow Scheduling

F
112

 with Flow Scheduling

F
112

 w/o Flow Scheduling

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
16x16 Switch, Nonuniform Poisson Traffic

Load of F
112

A
ve

ra
ge

 D
el

ay
 (

se
co

nd
)

 

 

F
111

 with Flow Scheduling

F
111

 w/o Flow Scheduling

F
112

 with Flow Scheduling

F
112

 w/o Flow Scheduling

(a) (b)
Figure 4. Flow Bandwidth Guarantees (a) Uniform Traffic (b) Nonuniform
Traffic

B. Service Guarantees
In this subsection, we study the service difference between

FFS and GPS. It is proved in Theorem 2 that the service
difference of any flow in FFS and GPS has a lower bound
of −6Lm and upper bound of Lm.

Figure 3(a) shows the maximum and minimum service
differences among all the flows during the entire simulation
run under uniform traffic. As shown in the figure, the
maximum service difference increases with the traffic load,
and is always lower than the upper bound. The minimum
service difference is relatively constant and always greater
than the lower bound. Figure 3(b) plots the data under
nonuniform traffic. We can find that the maximum service
difference is almost identical with the upper bound. One
notable feature is that the maximum service difference
drops when the unbalanced probability becomes one. This is
because all packets of Ini only go to Outi in this case, and
no switching is necessary. On the other hand, the minimum
service difference is always greater than the lower bound.
It drops gradually with the increasing of the unbalanced
probability, and rises as the unbalanced probability becomes
one for the same reason as above.
C. Bandwidth Guarantees

In this subsection, we show the effectiveness of FFS by
comparing it with port level fair scheduling, i.e. without the
flow scheduling phase. We adjust the load of a particular
flow F112 from 1 to 10, and fix the load of all other flows,
including F111, at 1.

Figure 4(a) shows the average delay of F111 and F112

under uniform traffic. We can see that, with flow scheduling,
the average delay of F111 remains constant no matter what
the load of F112 is, while the delay of F112 grows steadily

with its load. Without flow scheduling, the delay of F111

is approximately the same as that of F112, which increases
with the load of F112. The results fully demonstrate that FFS
is effective in achieving traffic isolation among flows and
providing flow level performance guarantees. Figure 4(b)
plots the data under nonuniform traffic with the unbalanced
probability equal to 0.5, and similar conclusions can be
obtained.

V. CONCLUSIONS
In this paper, we have presented the Flow-level Fair

Scheduling (FFS) algorithm to provide flow level perfor-
mance guarantees for CICQ switches, which are crossbar
switches with each crosspoint of the crossbar equipped with
a small buffer. FFS uses hierarchical and multidimensional
fair queueing to emulate the ideal GPS model. FFS requires
no speedup for the crossbar and is suitable for distributed
implementation. By theoretical analysis, we show that FFS
achieves constant performance guarantees, and has bounded
crosspoint buffer sizes. We also present simulation data,
which demonstrate consistency with the analytical results.

REFERENCES
[1] J. Turner, “Strong performance guarantees for asynchronous crossbar

schedulers,” IEEE/ACM Transactions on Networking, vol. 17, no. 4,
pp. 1017-1028, Aug. 2009.

[2] X. Liu, X. Yang, and Y. Lu, “To filter or to authorize: network-layer
DoS defense against multimillion-node botnets,” ACM SIGCOMM
2008, Seattle, WA, Aug. 2008.

[3] D. Pan and Y. Yang, “Providing flow based performance guarantees
for buffered crossbar switches,” IEEE IPDPS 2008, Miami, FL, Apr.
2008.

[4] S. Chuang, S. Iyer, and N. McKeown, “Practical algorithms for per-
formance guarantees in buffered crossbars,” Proc. of IEEE INFOCOM
2005, Miami, FL, Mar. 2005.

[5] S. Chuang, A. Goel, N. McKeown and B. Prabhkar, “Matching
output queueing with a combined input output queued switch,” IEEE
INFOCOM’99, pp. 1169-1178, New York, 1999.

[6] M. Katevenis and G. Passas, “Variable-size multipacket segments
in buffered crossbar (CICQ) architectures,” IEEE ICC 2005, Seoul,
Korea, May 2005.

[7] S. He et al., “On Guaranteed Smooth Switching for Buffered Crossbar
Switches,” IEEE/ACM Transactions on Networking, Jun. 2008.

[8] D. Pan and Y. Yang, “Localized independent packet scheduling for
buffered crossbar switches,” IEEE Transactions on Computers, vol.
58, no. 2, pp. 260-274, Feb. 2009.

[9] A. Parekh and R. Gallager, “A generalized processor sharing approach
to flow control in integrated services networks: the single node case,”
IEEE/ACM Trans. Networking, vol. 1, no. 3, pp. 344-357, Jun. 1993.

[10] J. Bennett and H. Zhang, “WF2Q: worst-case fair weighted fair
queueing,” IEEE INFOCOM 1996, San Francisco, CA, Mar. 1996.

[11] P. Valente, “Exact GPS simulation with logarithmic complexity, and
its application to an optimally fair scheduler,” IEEE/ACM Transactions
on Networking, vol. 15, no. 6, pp. 1454-1466, Dec. 2007.

[12] C. Farleigh et al., “Packet-level traffic measurements from the Sprint
IP backbone,” IEEE Network, vol. 17, no. 6, pp. 6-16, Nov. 2003.


