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Abstract—Buffered crossbar switches are special crossbar
switches with an exclusive buffer at each crosspoint. They demon-
strate unique advantages over traditional unbuffered crossbar
switches, such as asynchronous scheduling and variable length
packet handling. However, since crosspoint buffers are expen-
sive on-chip memories, it is desired that each crosspoint has
only a small buffer. In this paper, we propose a scheduling
algorithm called Fair Asynchronous Segment Scheduling (FASS)
for buffered crossbar switches, which reduces the crosspoint
buffer size by dividing packets into shorter segments before
transmission. FASS also provides tight constant performance
guarantees by emulating the ideal Generalized Processor Sharing
(GPS) model. Furthermore, FASS requires no speedup for the
crossbar, lowering the hardware cost and improving the switch
capacity. By theoretical analysis, we prove that FASS is strongly
stable and therefore achieves 100% throughput. We also calculate
the size bound for the crosspoint buffers and the reassembly
buffers at output ports. Moreover, we show that FASS provides
bounded delay guarantees. Finally, we present simulation data
to verify the analytical results.

I. INTRODUCTION

Buffered crossbar switches have recently attracted consid-
erable attention as the next generation of high speed intercon-
nects [1]. They are a special type of crossbar switches with an
exclusive buffer at each crosspoint of the crossbar, which has
been feasible with advances in modern VLSI technology to
integrate miniaturized on-chip memories. Crosspoint buffers
relax port contention, and greatly simplify the scheduling
process. Buffered crossbar switches have thus demonstrated
significant advantages over traditional unbuffered crossbar
switches, such as asynchronous scheduling and variable length
packet handling [2] [3] [4] [5].

However, crosspoint buffers are expensive on-chip memo-
ries, and the total crosspoint buffer size grows by the square
of the switch size, i.e., N2 crosspoint buffers for an N×N
switch. For buffered crossbar switches to be practical, it is
desired that each crosspoint has only a small size buffer,
which is one of the main motivations of our work. In addition,
it is obvious that the crosspoint buffer size depends on the
maximum packet length. For packets in the Internet, although
the maximum IP packet length is 1,500 bytes [6], about 60% of
overall packets are less than 64 bytes, including TCP ACK and
TCP control packets [7]. This indicates that even if we set large
crosspoint buffers based on the maximum packet length, they
cannot be efficiently utilized anyway. To address the issue, we
propose in this paper a segment scheduling algorithm, which
divides a packet into shorter segments before transmission.
The maximum segment length can be arbitrarily small (in the-

ory), leading to arbitrarily small crosspoint buffers. Note that
our segmentation scheme is different from that for traditional
unbuffered crossbar switches [8], because there are no padding
bits for the last segment of a packet and thus no waste of
bandwidth.

Another motivation of our work is to provide tight constant
performance guarantees for buffered crossbar switches. The
emulation of Push-In-First-Out (PIFO) Output Queued (OQ)
switches is the main approach in the literature for crossbar
switches to provide performance guarantees [9] [10] [11].
However, there are three main drawbacks with this approach.
First, it has difficulty in providing tight performance guaran-
tees, because it cannot emulate Worst-case Fair Weighted Fair
Queueing (WF2Q) [12], which is the only known fair queueing
algorithm achieving constant performance guarantees [13].
Second, the emulation approach requires the switches to have
speedup of at least two, which means that the crossbar needs
to run twice faster than the input and output port. The speedup
requirement increases the implementation cost and reduces
the switch capacity. Third, the bandwidth allocation is not
practical, because it does not consider bandwidth constraints
at input ports, while flows may oversubscribe input ports [14].
In this work, we focus on addressing the first two drawbacks.
Specifically, we use existing bandwidth allocation algorithms
[15] [16] to calculate fair bandwidth allocation, and design a
scheduling scheme to ensure the allocated bandwidth of each
flow and achieve tight performance guarantees. In addition,
our scheduling scheme requires no speedup for the crossbar.

In this paper, we propose a distributed scheduling scheme,
called Fair Asynchronous Segment Scheduling (FASS), for
buffered crossbar switches without speedup to achieve constant
performance guarantees with reduced crosspoint buffers. First,
we present a segmentation-and-reassembly (SAR) scheme to
divide packets into short segments before transmission, so as
to correspondingly reduce the crosspoint buffer size. We then
propose the FASS algorithm to schedule segment transmis-
sions, which uses a time stamp based approach to emulate
the ideal Generalized Processor Sharing (GPS) [17] model
and provides tight performance guarantees. By theoretical
analysis, we prove that FASS is strongly stable and therefore
achieves 100% throughput. We also calculate the size bound
for the crosspoint buffers and the reassembly buffers at output
ports. Moreover, we show that FASS provides bounded delay
guarantees. Finally, we conduct simulations to verify the
analytical results and measure the performance of FASS.



II. FAIR ASYNCHRONOUS SEGMENT SCHEDULING (FASS)
In this section, we present the Fair Asynchronous Segment

Scheduling (FASS) algorithm for buffered crossbar switches.
A. Packet Segmentation and Reassembly

As mentioned earlier, one of the motivations of our work
is to make buffered crossbar switches practical by reducing
crosspoint buffers. We present a packet segmentation-and-
reassembly (SAR) scheme for this purpose. After a packet
arrives at the input port, it will be divided into segments
before transmission, if it is longer than a threshold, i.e. the
maximum segment length. The maximum segment length can
be arbitrarily small in theory, and a smaller maximum segment
length leads to a smaller crosspoint buffer size. The segments
will be used as the scheduling and transmission units. After
they arrive at the output port, they will be reassembled back
to the original packet before delivered to the output line.
B. Switch Architecture

The considered switch architecture includes N input ports
and N output ports, connected by a buffered crossbar with-
out internal speedup. Buffers are located at three possible
bottlenecks: input ports, output ports, and crosspoints of the
crossbar. Let Ini denote the ith input port and Outj denote
the jth output port. The available bandwidth of each input
port and output port and also the crossbar is R. Each input
port has a buffer to store arriving packets based on their
destination output ports using Virtual Output Queues (VOQs)
[4]. VOQs avoid the head of line (HOL) problem [6], which
limits the maximum throughput of the switch [18]. Denote the
virtual queue at Ini for packets destined to Outj as Qij . Each
crosspoint is equipped with an exclusive buffer represented
by Bij to connect Ini and Outj . Each output port has a
buffer to store received segments based on their source input
ports using Virtual Input Queues (VIQs) [7]. VIQs are used to
reassemble segments back into original packets before delivery
to the output line.
C. Algorithm Description

FASS has two types of scheduling, called input scheduling
and output scheduling. In input scheduling, an input port
selects a segment from one of its N input queues and sends it
to the corresponding crosspoint buffer. In output scheduling,
an output port selects a segment from one of its N crosspoint
buffers and retrieves it to the corresponding output queue.

We use the notation “I-O” to differentiate the algorithms
for input scheduling and output scheduling, where “I” is the
scheduler for input scheduling and “O” for output scheduling.
“I” and “O” could be either FASS or GPS. If we do not care
about the scheduler for output scheduling, we use a * mark for
“O”. For example, FASS-GPS means that FASS is used for
input scheduling and GPS for output scheduling. It is noted
that, GPS is used as the ideal fairness model to compare the
received service of a flow in our algorithm and in GPS.

Define the traffic from Ini to Outj to be a flow Fij .
Use rij(t) to represent the allocated bandwidth of Fij at
time t, which is calculated by specific bandwidth allocation
algorithms [15] [16]. The calculated bandwidth should be
feasible, i.e. no over subscription at any input or output port

∀i,
∑

j

rij(t) ≤ R, and ∀j,
∑

i

rij(t) ≤ R (1)

To avoid input buffer overflow, input ports have admission
control for each flow based on its allocated bandwidth. We
use an extended leaky bucket for the admission control [6],
which will be discussed in detail in Section III-A.

Input scheduling and output scheduling of FASS rely on
only local information, and are conducted in an asynchronous
and distributed manner. To be specific, an input port needs
only the statuses of the queues in its input buffer, and does
not exchange information with any crosspoint buffer or output
port. Similarly, an output port needs only the statuses of its
crosspoint buffers.

We first explain input scheduling. For easy presentation, let
Pijk represent the kth arrived packet of Fij and Sm

ijk represent
the mth segment of Pijk. The first time stamp for Sm

ijk is called
Virtual Input Start time V ISm

ijk, which is the service start time
of Sm

ijk at the input port in GPS-*. The second time stamp is
Virtual Input Finish time V IFm

ijk, i.e. the service finish time
of Sm

ijk at the input port in GPS-*. In other words, if GPS is
the input scheduler, V ISm

ijk and V IFm
ijk are the times that

the first bit and the last bit of Sm
ijk leave Qij , respectively.

V ISm
ijk can be calculated as follows

V ISm
ijk =

{
max

(
arv(inijk), V IFm′

ij(k−1)

)
, m = 1

V IFm−1
ijk , m ≥ 2

(2)

where arv(inijk) is the arrival time of Pijk at the input port,
and V IFm′

ij(k−1) is the virtual input finish time of the last
segment Sm′

ij(k−1) of the previous packet Pij(k−1). V IFm
ijk

satisfies the following relationship∫ V IF m
ijk

V ISm
ijk

rij(x)dx = lmijk (3)

where lmijk is the length of Sm
ijk. Because rij(x) has only

discrete values in practice, V IFm
ijk can be easily calculated.

For example, if rij(x) is a constant rij during [V ISm
ijk,

V IFm
ijk], then V IFm

ijk can be obtained as
V IFm

ijk = V ISm
ijk + (lmijk/rij) (4)

In the first step of input scheduling, Ini identifies eligible
segments. A segment Sm

ijk is eligible for input scheduling if
its virtual input start time V ISm

ijk is smaller than or equal
to the current system time t. In other words, a segment that
has started transmission in GPS-* is eligible in FASS-*. If
there exist eligible segments in the input buffer, Ini will select
among them the one Sm

ijk with the smallest virtual input finish
time V IFm

ijk, and send it to Bij . If there are no eligible
segments, Ini will wait until the next earliest virtual input
start time of a segment. Note that when Ini is waiting for an
eligible segment, if an empty input queue has a new segment,
whose virtual input start time is equal to its arrival time, Ini

should immediately start transmitting this new segment.
We denote the Actual Input Start time and Finish time of

Sm
ijk in FASS-* as AISm

ijk and AIFm
ijk, which are the time

that the first bit and the last bit of Sm
ijk leave Qij in FASS-*,

respectively. Therefore
AIFm

ijk = AISm
ijk + (lmijk/R) (5)



Output scheduling of FASS is similar to input scheduling.
We define the Virtual Output Start time (V OSm

ijk) and the
Virtual Output Finish time (V OFm

ijk) as the time that the first
bit and the last bit of Sm

ijk leaves Bij in FASS-GPS. In other
words, after Sm

ijk is delivered to Bij in FASS, if GPS is the
output scheduler, Sm

ijk will start transmission at V OSm
ijk and

finish at V OFm
ijk. Therefore, V OSm

ijk is calculated as

V OSm
ijk =





max
(
arv(crsm

ijk), V OFm′
ij(k−1)

)
, m = 1

max
(
arv(crsm

ijk), V OFm−1
ijk )

)
, m ≥ 2

(6)

where arv(crsm
ijk) is the arrival time of Sm

ijk at Bij in FASS-

*, equal to AIFm
ijk, and V OFm′

ij(k−1) is the virtual input
finish time of the last segment Sm′

ij(k−1) of the previous packet
Pij(k−1). Also, V OFm

ijk satisfies the following relationship
∫ V OF m

ijk

V OSm
ijk

rij(x)dx = lmijk (7)

Similarly, in the output scheduling of FASS, Outj first
identifies the eligible segments, and a segment Sm

ijk is eligible
if its virtual output start time V OSm

ijk is less than or equal to
the current system time t. If there are eligible segments in the
crosspoint buffers, Outj selects the one Sm

ijk with the smallest
virtual output finish time V OFm

ijk among those eligible seg-
ments, and retrieves it to the output port. Otherwise, it waits
for an eligible segment.

Correspondingly, AOSm
ijk and AOFm

ijk are the Actual Out-
put Start time and Actual Output Finish time of Sm

ijk, which
are the time that the first bit and the last bit of Sm

ijk leaves
Bij in FASS-FASS, respectively. It is obvious that

AOFm
ijk = AOSm

ijk + (lmijk/R) (8)

III. PERFORMANCE ANALYSIS

In this section, we theoretically analyze the performance
of FASS. First, we introduce some properties and supporting
lemmas. The proof is omitted due to space limitations.

Property 1: The actual input start time of any segment in
FASS-* is greater than or equal to its virtual input start time
in GPS-* , i.e., AISm

ijk ≥ V ISm
ijk (9)

Property 2: The actual output start time of any segment in
FASS-FASS is greater than or equal to its virtual output start
time in FASS-GPS, i.e.,

AOSm
ijk ≥ V OSm

ijk (10)

Lemma 1: The actual input start time of any segment in
FASS-* is less than or equal to its virtual input finish time in
GPS-*, i.e., AISm

ijk ≤ V IFm
ijk (11)

Now, let toBFASS
ij (t1, t2) and toBGPS

ij (t1, t2) represent the
number of bits transmitted by Fij from Ini to Bij during time
interval [t1, t2] in FASS-* and GPS-*, respectively.

Lemma 2: During the time interval [0,t], the difference
between the number of bits sent from an input port Ini to
a crosspoint buffer Bij in FASS-* and GPS-* is l, where l is
the maximum segment length, i.e.,

|toBFASS
ij (0, t)− toBGPS

ij (0, t)| ≤ l (12)

Lemma 3: The actual output start time of any segment in
FASS-FASS is less than or equal to its virtual output finish
time in FASS-GPS, i.e.,

AOSm
ijk ≤ V OFm

ijk (13)
Use toOFASS

ij (t1, t2) and toOGPS
ij (t1, t2) to represent the

number of bits transmitted by Fij from Bij to Outj during
interval [t1, t2] in FASS-FASS and FASS-GPS, accordingly.

Lemma 4: During the time interval [0,t], the difference
between the number of bits sent from crosspoint buffer Bij

to output port Outj in FASS-FASS and FASS-GPS is at most
one maximum segment length, i.e.,

|toOFASS
ij (0, t)− toOGPS

ij (0, t)| ≤ l (14)

Lemma 5: During the time interval [0,t], the number of bits
transmitted by flow Fij from input port Ini to crosspoint
buffer Bij in GPS-* is less than or equal to that from
crosspoint buffer Bij to output port Outj in FASS-GPS plus
2l, i.e.,

toBGPS
ij (0, t) ≤ toOGPS

ij (0, t) + 2l (15)

A. Switch Stability and Throughput
In this subsection, we prove that FASS achieves strong

stability by showing that the length of input virtual queues are
finite, which implies that FASS provides 100% throughput.

Let X(t) be the vector of queue lengths at time t, and
use Qij(t) to show the occupancy of virtual queues such that
X(t) = (Q11(t), Q12(t), ..., Qij(t), ..., QNN (t)). We follow
the definitions in [22] and study the strong stability of our
scheme, which implies 100% throughput [11].

Definition 1: ‖X(t)‖ is called the Euclidean norm of vector
X(t), i.e., ‖X(t)‖ =

√
(Q11(t), ..., Qij(t), ..., QNN (t))2 .

Definition 2: A system of queues is strongly stable if
limt→∞ sup E[‖X(t)‖] < ∞.

The intuitive explanation is that segments belonging to
packets of flow Fij arrives and departs at the same rate, and
they will not infinitely accumulate at either Qij or Bij or Oij .

As discussed in Section II-C, because a specific amount of
bandwidth is allocated to each flow, it is necessary to have
admission control for the flow to avoid input buffer overflow.
The leaky bucket [6] is a widely used traffic shaping scheme,
and we will use it for the admission control. In the classical
definition of a leaky bucket, the flow rate is a constant, which
we extend in this paper to be a variable. Use toIij(t1, t2) to
denote the number of incoming bits of Fij during interval
[t1, t2]. If Fij is leaky bucket (rij(t), σij) complaint, then
during any interval [t1, t2]

toIij(t1, t2) ≤
∫ t2

t1

rij(x)dx + σij (16)

where σij is called the burst size of Fij . Intuitively, during
any time interval, Fij can have σij more incoming traffic than
what it can transmit.

Theorem 1: FASS is strongly stable when flows are leaky
bucket compliant, i.e., FASS provides 100% throughput.

Proof: Assume that flow Fij is leaky bucket (rij(t), σij)
complaint. Also assume that Qij is empty at s and [s, t] is the
last continuously backlogged period before t. This indicates
that all segments belonging to packets of Fij arriving at Qij



before s have finished transmission by s in GPS-*, and the
next packet has not arrived yet. Thus

toIij(0, s) ≤ toBGPS
ij (0, s) + l (17)

During [s, t], Qij is continuously backlogged, and hence

toBGPS
ij (s, t) =

∫ t

s

rij(x)dx (18)

Because the incoming traffic is leaky bucket (rij(t), σij)
complaint, we have

toIij(0, s) ≤
∫ t

s

rij(x)dx + σij (19)

By (17), (18), and (19), we obtain

toIij(0, s) ≤ toBGPS
ij (0, t) + l + σij (20)

We know from Lemma 5 toBGPS
ij (0, t) ≤ toOGPS

ij (0, t)+ 2l,
and from Lemma 4 that toOGPS

ij (0, t) ≤ toOFASS
ij (0, t) + l,

Hence,
toIij(0, t)− toOFASS

ij (0, t) ≤ 4l + σij (21)

By applying the fluid model [20] to our scheme and following
the notations in [4], we obtain

Qij(t) + toBFASS
ij (0, t) = toIij(0, t)− toOFASS

ij (0, t) (22)

Combining (21) and (22), we have

Qij(t) + toBFASS
ij (0, t) ≤ 4l + σij (23)

We know that l and σij are bounded values, therefore

lim
t→∞

[Qij(t) + toBFASS
ij (0, t)] ≤ lim

t→∞
[4l + σij ] < ∞ (24)

Also we know that
Qij(t) ≤ [Qij(t) + toBFASS

ij (0, t)] (25)

By comparing (24) and (25), we obtain limt→∞Qij(t) < ∞
Accordingly, we have limt→∞Qij(t) < ∞, and thus by using
Definition 1, the Euclidean norm of vector X(t), we obtain

lim
t→∞

supE[‖X(t)‖] < ∞ (26)

which satisfies Definition 2. Similar to [21], the occupancies
of input queues serves to prove the stability of the scheduling
algorithm, i.e., a scheduling policy that maintains stable queue
length, provides the maximum achievable throughput.

B. Buffer Size Bound
To avoid overflow at crosspoint buffers and reassembly

buffers, we would like to find the maximum number of bits
buffered at any crosspoint and output port, respectively.

1) Crosspoint Buffer Size Bound: The following theorem
gives the upper bound for the crosspoint buffer size.

Theorem 2: In FASS-FASS, the maximum number of bits
buffered at any crosspoint buffer is upper bounded by four
maximum segment length, i.e.,

toBFASS
ij (0, t)− toOFASS

ij (0, t) ≤ 4l (27)

Proof: By Lemma 4 toOFASS
ij (0, t) + l ≥ toOGPS

ij (0, t),
and based on Lemma 5 toOGPS

ij (0, t) + 2l ≥ toBGPS
ij (0, t),

and according to Lemma 2 toBGPS
ij (0, t)+l ≥ toBFASS

ij (0, t).
Summing the above equations, we have proved the theorem.

2) Output Buffer Size Bound: Denote the maximum packet
length as L and the maximum segment size as l. The following
theorem gives the upper bound for the reassembly buffer size.

Theorem 3: In FASS-FASS, the maximum number of bits
buffered in the reassembly buffers at the output port is upper
bounded by NL + l.

Proof: As mentioned earlier in our switch model, there
are N Virtual Input Queues (VIN) at each output port,
corresponding to N input ports. New arrival segments are
transferred through the crossbar and stored in output buffers as
VINs. Thus, at most N×L bytes of memory space is needed
per each output port for the reassembly process to recover the
original packets. The worst case happens when an output port
has received all segments belonging to packets from multiple
input ports, excluding the last segment, and all of its VINs have
been occupied in this way. If immediately upon arrival of the
last segment of a packet, the first segment of another packet is
consecutively retrieved by the same output port, more memory
space will be required to buffer the new incoming segment
and at the same time, forward the previously reassembled
packet. Because segments of Pijk need some time to finish the
reassembly process before being sent out, the upper bound of
the output buffer size is NL + l to avoid overflow. It is noted
that if SAR process is not applied, reassembly buffers will not
be required and the output buffer size will be zero, as clearly
shown in simulation results in Section IV-B2.
C. Delay Guarantees (Jitter)

In this subsection, we show that FASS-FASS can provide
bounded delay guarantees. A packet can be departed when its
last segment has been arrived to reassembly buffers at output
ports, i.e., the departure time of a packet is equal to the depar-
ture time of its last segment. For easy analysis, we assume that
the allocated bandwidth rij(t) of Fij is a constant rij during
interval [min(AISm

ijk, V ISm
ijk),max(AOFm

ijk, V OFm
ijk)].

Use V ODm
ijk to denote the Virtual Output Departure time

of segment Sm
ijk in GPS-GPS. By neglecting the propagation

delay, we have V ODm
ijk = V IFm

ijk. Similarly, AODm
ijk is the

Actual Output Departure time of segment Sm
ijk in FASS-FASS,

and AODm
ijk = AOFm

ijk if the propagation delay is neglected.
Theorem 4: The difference between the departure time of

a packet in FASS-FASS and GPS-GPS is lower bounded to
−lmijk( 1

rij
− 2

R ) and upper bounded to l( 3
rij
− 2

R ), i.e.,

−lmijk(
1
rij

− 2
R

) ≤ AODm
ijk − V ODm

ijk ≤ l(
3
rij

− 2
R

) (28)

Proof: We first prove the left side inequality as
−lmijk( 1

rij
− 2

R ) ≤ AODm
ijk − V ODm

ijk. It is obvious that
AODm

ijk = AOFm
ijk

≥ arv(crsm
ijk) +

lmijk

R
= AIFm

ijk +
lmijk

R
(29)

Based on the Property 1, we know that V ISm
ijk ≤ AISm

ijk or

by (4) and (5), V IFm
ijk −

lmijk

rij
≤ AIFm

ijk −
lmijk

R , and thus

V ODm
ijk = V IFm

ijk ≤ AIFm
ijk + lmijk(

1
rij

− 1
R

)

≤ AODm
ijk + lmijk(

1
rij

− 2
R

) (30)



Next, we prove AODm
ijk − V ODm

ijk ≤ l( 3
rij
− 2

R ). Based
on Lemma 3, we know that AOSm

ijk ≤ V OFm
ijk and thus

by (8), AOFm
ijk ≤ V OFm

ijk + lmijk

R . By Lemma 5, we know
that toBGPS

ij (0, t) − toOGPS
ij (0, t) ≤ 2l and by Lemma 2,

toBFASS
ij (0, t) − toBGPS

ij (0, t) ≤ l. Combining them, we
obtain toBFASS

ij (0, t) − toBGPS
ij (0, t) ≤ 3l. This indicates

that, after Sm
ijk arrives at Bij , the maximum queue length at

Bij in FASS-GPS is 3l. Because Bij is served by GPS output
scheduling with fixed allocated bandwidth rij in FASS-GPS,
we have

V OFm
ijk ≤ arv(crsm

ijk) +
3l

rij
≤ AIFm

ijk +
3l

rij
(31)

By Lemma 1 we know that, AISm
ijk ≤ V IFm

ijk and thus

AIFm
ijk ≤ V IFm

ijk + lmijk

R . Combining the above equations,
we obtain

AODm
ijk = AOFm

ijk ≤ V OFm
ijk +

lmijk

R

≤ AIFm
ijk +

3l

rij
+

lmijk

R
≤ V IFm

ijk +
3l

rij
+

2lmijk

R

≤ V ODm
ijk + l(

3
rij

+
2
R

) (32)
IV. SIMULATION RESULTS

We have performed simulations to evaluate the performance
of FASS and verify the analytical results.

In our simulation, we consider a 16×16 buffered crossbar
switch without speedup. Each input port and output port has
a bandwidth of 1 Gbps. Since FASS is capable of handling
variable length packets, we set the packet length in the range
of [40,1500] bytes. We use the same model as in [19] for
the bandwidth allocation. This model defines an allocated
bandwidth rij(t) of a flow Fij at time t by applying an
unbalanced probability w, i.e., 0 ≤ w ≤ 1, as follows

rij(t) =

{
R

(
w + 1−w

N

)
, if i = j

R 1−w
N , if i 6= j

(33)

To constrain the burstiness of a flow Fij , we consider a leaky
bucket (η × rij , σij), where η is the effective load and σij is
the burst size of Fij . We set σij of every flow to a fixed value
of 10,000 bytes, and the burst may arrive at any time during a
simulation run. We use two traffic patterns in the simulations.
For the first pattern, each flow has a fixed allocated bandwidth
during a single simulation run. The η is fixed to 1 and w
takes one of the 11 possible values of [0,1] with a step of 0.1.
For the second traffic pattern, a flow has a variable allocated
bandwidth. The η takes one of the 10 possible values of [0.1,1]
with a step of 0.1, and for a specific η value, a random
permutation of the 11 different w values is used. We set the
initial value of the crosspoint buffer size to 40 bytes and then
adjust it from 100 to 1,500 bytes with a step of 100.
A. Throughput

To verify Theorem 1, we present the simulation data to
show that our scheme achieves 100% throughput. Figure 1(a)
illustrates the throughput under traffic pattern one with differ-
ent segment sizes. We can observe that, the throughput for all
unbalanced probabilities is greater than 99.99%, which demon-
strates that FASS practically achieves 100% throughput. The
throughput slightly decreases when the segment size increases,
because with the same simulation time, larger segments sizes

(a) (b)
Fig. 1. Throughput of FASS. (a) With different unbalanced probabilities. (b)
With different loads.

(a) (b)
Fig. 2. Maximum Crosspoint buffer occupancy of FASS. (a) With different
unbalanced probabilities. (b) With different loads.

have smaller probabilities to finish the transmission of the
last segment. Figure 1(b) depicts the throughput under traffic
pattern two. As can be seen, the throughput grows consistently
with the effective load, independent of the segment size, and
finally reaches 100% when the effective load becomes 1. We
can make the conclusion that, different segment sizes have no
significant impact on the throughput performance.

B. Buffer Size Bounds
1) Crosspoint Buffer Size Bound: Theorem 2 gives the

upper bound of the crosspoint buffer size as 4l bytes to avoid
overflow. We now study the occupancy of crosspoint buffers
via simulations. Figure 2(a) shows the maximum crosspoint
buffer occupancy under traffic pattern one. It is observed that,
the maximum occupancy is always smaller than the theoretical
bound. The occupancy increases proportional to the segment
size and grows as the unbalanced probability increases, but
suddenly drops to about l bytes when the unbalanced probabil-
ity becomes 1. Since at this point, all packets of Ini go to Outi
and hence, no switching is necessary. Figure 2(b) displays the
maximum crosspoint buffer occupancy under traffic pattern
two. We can see that, the maximum occupancy increases as
the load and the segment size grow, but never exceeds the
theoretical bound.

2) Output Buffer Size Bound: Theorem 3 gives the upper
bound of the reassembly buffers at output ports as NL + l
bytes. Now, we evaluate the analytical results through the
simulation data. Figure 3(a) demonstrates the maximum output
buffer occupancy under traffic pattern one. As can be seen, the
maximum occupancy is always less than the theoretical bound.
As a special case, when the maximum segment size is set to
the maximum packet length, i.e., 1,500 bytes, the output buffer
occupancy suddenly drops to zero. In fact at this point, the
incoming variable length packets are directly handled to the
output lines without experiencing the SAR process. Note that,
when the unbalanced probability becomes 1, the output buffer
occupancy is significantly reduced to L, because all packets



(a) (b)
Fig. 3. Maximum Output buffer occupancy of FASS. (a) With different
unbalanced probabilities. (b) With different loads.

(a) (b)
Fig. 4. Jitter of FASS. (a) With different unbalanced probabilities. (b) With
different loads.

of Ini go to Outi without switching. It means that, only
one VIQ of each output port is occupied and the remaining
N−1 VIQs are empty. Figure 3(b) plots the maximum output
buffer occupancy under traffic pattern two. The maximum
occupancy is always less than the theoretical bound and
gradually grows when the effective load increases. Then, the
occupancy suddenly drops to zero when the maximum segment
size becomes 1,500 bytes, since the SAR process is no longer
necessary.

C. Delay Guarantees (Jitter)
Finally, we present the simulation data on jitter, which is

the difference between the departure time of a packet in FASS
and GPS. Theorem 4 gives the lower bound and upper bound
for the jitter as −lmijk( 1

rij
− 2

R ) and l( 3
rij

+ 2
R ), respectively.

Figure 4(a) shows the maximum and minimum jitter of
a representative flow F11 under traffic pattern one. Since
Theorem 4 assumes a fixed allocated bandwidth for rij , jitter
depends on the segment size lmijk. As can be seen, the minimum
jitter is almost coincident with but always greater than or equal
to the theoretical lower bound. The maximum jitter is always
less than the theoretical upper bound and slightly increases
as the segment size grows. However, the jitter suddenly drops
when the unbalanced probability becomes one, as well as when
the segment size reaches 1,500 bytes.

Figure 4(b) shows the maximum and minimum jitter of a
representative flow F11 under traffic pattern two. As can be
seen, the maximum jitter is always less than and close to the
upper bound. It slightly increases as the segment size grows,
and jumps when the effective load becomes one. The minimum
jitter decreases when the segment size increases, but is always
greater than the lower bound. Negative jitter means that most
packets in FASS depart earlier than in GPS.

V. CONCLUSIONS
In this paper, we have proposed the Fair Asynchronous

Segment Scheduling (FASS) algorithm for buffered crossbar
switches. The main features of FASS can be summarized as

follows. First, FASS reduces the crosspoint buffer size by
dividing packets into segments before transmission. It needs
no padding bits and thus does not waste the bandwidth.
Second, FASS provides tight constant performance guarantees
by tightly emulate the ideal GPS model. Third, FASS requires
no speedup for the crossbar, reducing implementation cost
and improving switch capacity. By theoretical analysis, we
prove that FASS is strongly stable and therefore achieves 100%
throughput. We also calculate the size bound for the crosspoint
buffers and the reassembly buffers at output ports. Moreover,
we show that FASS provides bounded delay guarantees. Fi-
nally, we have performed simulations, and the collected data
demonstrate consistency with the analytical results.
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