
Buffered Crossbar based Parallel Packet Switch
Zhuo Sun, Masoumeh Karimi, Deng Pan, Zhenyu Yang and Niki Pissinou

Florida International University
Email: {zsun003,mkari001, pand}@fiu.edu, yangz@cis.fiu.edu, pissinou@fiu.edu

Abstract—A parallel packet switch (PPS) provides huge aggre-
gate bandwidth by combining the capacities of multiple switching
fabrics. Most existing PPSs use output queued switches as the
switching fabrics, which require speedup and result in high
implementation cost. In this paper, we present a buffered crossbar
based parallel packet switch (BCB-PPS), whose switching fabrics
need no speedup. We propose the Batch-WF2Q algorithm to
dispatch packets to the parallel switching fabrics, and leverage
the sMUX algorithm in [7] to schedule packet transmission for
the switching fabrics. Such a design enables a simple round-robin
algorithm to efficiently collect packets from the switching fabrics.
In addition, our design requires no packet resequencing, and thus
needs no buffers at either external or internal outputs. We show
that BCB-PPS has tight delay guarantees and bounded buffer
sizes. Finally, we present simulation data to verify the analytical
results and to evaluate the performance of our design.

I. INTRODUCTION
With rapid development of broadband based multimedia ap-

plications, there is an increasing demand for more bandwidth
and better service [3]. It has been more and more difficult for
traditional single switching fabric based switches to sustain
such huge bandwidth. Parallel packet switches (PPSs) have
thus emerged as a promising solution, which combine the
capacities of multiple switching fabrics to provide large aggre-
gate bandwidth. A typical PPS is shown in Figure 1, consisting
of three parts: N external inputs, M internal switches, and N
external outputs. External inputs dispatch incoming packets to
internal switches, which switch the packets and send them to
external outputs.

There are a number of PPSs [1] [6] [8] [10] [14] [18] in the
literature. The PPS in [8] uses multiple output queued (OQ)
switches as internal switches, and the external switch emulates
an OQ switch with bounded delay and without resequencing.
[8] also shows that if there is a coordination buffer of size
NM cells at each external input and output, the external
can emulate a wide variety of quality-of-service queueing
disciplines. However, OQ switches require speedup of N , i.e.
the switching fabric running N times faster than the input
and output, and are not practical [5]. [1] presents a PPS that
uses virtual input queues at external outputs to achieve packet-
level load balancing and improve transmission delay. Similar
to [8], it uses OQ switches as internal switches. [6] proposes
a variable-length PPS to improve delay at external outputs, by
introducing a waiting-length mechanism to achieve maximum
utilization of the external output. However, the delay at the
external input is worse than that of a simple round-robin algo-
rithm. [10] proposes the multiple input-output-queued (MIOQ)
switch consisting of two parallel internal switches. The MIOQ
switch can exactly emulate an OQ switch running a variety

R

R

R

R

R

R

R

R

External Inputs Internal Switches External Outputs

Figure 1. Architecture of Proposed Parallel Packet Switches.

of scheduling algorithms. However, the design considers only
two internal switches and is not scalable. [18] presents the
Flow-Mapping PPS (FM-PPS) with flow level load balancing.
It ensures the packet order of each micro flow without costly
resequencing. The internal switches are also OQ switches. In
addition, FM-PPS needs buffers at external outputs, increasing
hardware cost. [14] designs a PPS to eliminate speedup by us-
ing multiple input-output queued internal switches. However,
the internal switches operate at the same line speed as the
external switch, which makes the PPS unable to provide higher
aggregate bandwidth. [15] designs a large scale ATM switch
similar with PPS to employ multipath parallel distribution
approach at the cell level. As can be seen, most existing PPSs
use OQ switches or other switches that require speedup as
internal switches, resulting in high implementation cost.

In this paper, we present a buffered crossbar based parallel
packet switch (BCB-PPS), which uses the sBUX buffered
crossbars [7] without speedup as internal switches. It has been
a common technique [4] [7] [8] [11] [12] [15] for high speed
switches to operate on fixed length packets, also called cells.
In this paper, we also consider a cell based design, and the
external switch and internal switches all work in time slot
modes. The length of an external (internal) time slot is the
time for an external (internal) input to send or an external
(internal) output to receive a cell. Denote the cell length as L,
and the bandwidth of an internal switch as R̂. Then the length
of a internal time slot is T̂ = L/R̂. With M internal switches,
the external switch has aggregate bandwidth of R = MR̂, and
thus the length of an external time slot is T = L/R = T̂ /M .

In this paper, we propose the Batch-WF2Q algorithm for cell
dispatch at external inputs and leverage the sMUX algorithm
in [7] for cell scheduling at internal switches. Such a design
enables a simple round-robin algorithm for efficient packet
collection at external outputs. We show that BCB-PPS has



bounded sizes for external input buffers, and needs no external
or internal output buffers. We also analyze the delay guarantees
achieved by BCB-PPS. Finally, we present simulation results
to evaluate the design.

The rest of the paper is organized as follows. In Section
II, we describe the switch architecture and present the switch
scheduling algorithms. In Section III, we theoretically analyze
the performance of our design. In Section IV, we present
simulation data to verify the analytical results. In Section V,
we conclude the paper.

II. SWITCH SCHEDULING ALGORITHMS

In this section, we present the scheduling algorithms for
BCB-PPS.

A. Switch Architecture
The architecture of BCB-PPS is illustrated in Figure 1.

External inputs have buffers to store incoming cells, which
are organized as virtual output queues (VOQs) [12] to avoid
head of line blocking [9]. Similarly, internal inputs have
buffers to store received cells, and they are organized as
VOQs as well. External and internal outputs need no buffers.
When a cell is transmitted to an internal output, it will be
immediately collected by the corresponding external output
and then immediately sent to the output line. Each internal
switch is a sBUX buffered crossbar switch as in [7], with
the same size as the external switch. In an internal switch,
the internal inputs and outputs are connected by a buffered
crossbar without speedup, which is a special crossbar with
each crosspoint equipped with a small buffer storing up to
two cells [7].

This paper considers a PPS with high aggregate bandwidth
as well as tight performance guarantees. We assume that each
flow is allocated a specific amount of bandwidth, which can be
either explicitly requested by a guaranteed performance flow or
obtained by estimating the traffic rate of a best effort flow as in
[7]. The objective of the switch scheduling algorithms is then
to guarantee the allocated bandwidth of each flow. For easy
description of the algorithms, we first define some notations.
Denote the ith external input as Ini, the jth external output
as Outj . Each Ini and Outj have bandwidth of R. Define the
traffic from Ini to Outj as a flow Fij , and denote the VOQ
at Ini for Fij as Qij . Use Rij(t) to represent the allocated
bandwidth of Fij at time t. To avoid over-subscription, we
need

∑
j Rij(t) ≤ R and

∑
i Rij(t) ≤ R. Denote the kth cell

of Fij as Cijk, which may be either a real cell or a dummy
cell. Dummy cells are sent when Qij is empty, to ensure that
each internal switch receives the same dispatched traffic.

B. Cell Dispatch for External Inputs
The main idea of cell dispatch at external inputs is to equally

dispatch arriving traffic to each internal switch. Because all
internal switches run the same scheduling algorithm, they will
then have the same cell departure patterns, enabling easy cell
collection at external outputs.

The cell dispatch problem can be modeled as a bandwidth
sharing problem, in which N flows Fi1, ..., FiN at Ini share

Table I
PSEUDO CODE ALGORITHM DESCRIPTION

Cell Dispatch:
for each external input independently {

identify eligible cells;
select among eligible cells the one with the smallest

GPS service finish time, say, a cell of Fij ;
for p = 1 to M {

if Qij is not empty {
dispatch the head cell to the pth internal switch;

}
else {

dispatch a dummy cell to the pth internal switch;
}

}
}

Cell Collection:
for each external output independently {

for p = 1 to M {
collect a cell from the pth internal switch;
if the collected cell is a real cell {

send it to the output line;
}
else {

discard it;
}

}
}

total bandwidth of R. The Generalized Processor Sharing
(GPS) [16] model provides the ideal solution for bandwidth
sharing. It divides available bandwidth into multiple logical
channels based on the allocated bandwidth of different flows,
so that each flow has its own channel and thus GPS achieves
perfect fairness. However, GPS is based on a fluid system,
which transmits traffic as continuous fluids of bits. Thus, GPS
is not applicable to practical networks, because they transmit
traffic by packets. There are a number of algorithms emulating
GPS. In particular, several algorithms, such as WF2Q [2], L-
WF2Q [19], and sMUX [7], provide the tightest O(1) fairness
guarantees.

We use an adapted version of WF2Q, which we call Batch-
WF2Q, as the cell dispatch algorithm. Similar to WF2Q,
Batch-WF2Q schedules cells based on their departure time
in GPS. Use sGPS

ijk and dGPS
ijk to represent the service start

and finish time of Cijk in GPS, which can be calculated as

sGPS
ijk = dGPS

ij(k−1), and
∫ dGP S

ijk

sGP S
ijk

Rij(t)dt = L.

The first step of Batch-WF2Q is to identify eligible cells,
and a cell is eligible if its GPS service start time is greater than
or equal to the current system time. In other words, a cell that
has started transmission in GPS is eligible in Batch-WF2Q.
The second step selects among the eligible cells the one with
the smallest GPS service finish time. Ties are broken based on
the input index. Until now, Batch-WF2Q has been very similar
to WF2Q. Next, instead of transmitting one cell at a time, after
Batch-WF2Q finds the cell with the smallest GPS service finish
time, it will transmit M cells from the same VOQ as a batch,
one to each internal switch. The batch operation is to ensure
that each internal switch receives the same dispatched traffic. If
the VOQ becomes empty when dispatching the batch, dummy
cells will be dispatched instead. Note that dummy cells will



not affect throughput, because they are only sent when there
are no real cells, which will not happen if the traffic arrival rate
of a flow is equal to its allocated bandwidth. For easy reading,
the pseudo code description of the cell dispatch algorithm is
given in Table I.

C. Cell Scheduling for Internal Switches
Internal switches use the sMUX algorithm in [7] to schedule

cell transmission. sMUX schedules cells also based on allo-
cated bandwidth of each flow. The external switch dispatches
the traffic of Fij at rate Rij(t), equally to the M internal
switches. As a result, the flow from the ith internal input to
the jth internal output has a traffic rate of Rij(t)/M at time
t, which will be used by sMUX as the scheduling criteria.
sMUX provides tight bandwidth and delay guarantees [7].

D. Cell Collection for External Outputs
Because we have taken cell collection into consideration

when design the cell dispatch and scheduling algorithms,
external outputs can use a simple round robin algorithm to
efficiently collect cells from internal switches. Note that the
cells dispatched in the same batch to different internal switches
will arrive at their internal outputs at the same time. Thus, an
external output just needs to collect cells one by one from the
corresponding internal outputs in a circular manner. Since the
cells are collected in the same order as they are dispatched to
the internal switches, out-of-order delivery is avoided. Thus,
each collected cell can be immediately sent to the output line,
and the external output needs no buffer. For easy reading,
the pseudo code description of the cell collection algorithm
is given in Table I.

III. PERFORMANCE ANALYSIS
In this section, we analyze the performance of BCB-PPS.

A. External Input Delay
We first compare the external input delay. Use dijk and

dWF 2Q
ijk to represent the departure time of Cijk from the

external input in Batch-WF2Q and WF2Q, respectively. Use
Dij(t1, t2), DWF 2Q

ij (t1, t2), and DGPS
ij (t1, t2) to represent the

numbers of bits of Fij departing from the external input during
interval [t1, t2] in Batch-WF2Q, WF2Q, and GPS, respectively.

Lemma 1: The difference between the external input depar-
ture time of a cell Cijk in Batch-WF2Q and WF2Q is bounded
by (N−1)(M−1)T , i.e. dijk−dWF 2Q

ijk ≤ (N−1)(M−1)T .
Proof: Because cells of the same flow always depart in

the same order as they arrive, additional delay to Cijk may
only be caused by cells from another flow Fij′ . Consider
the latest dispatched batch of Fij′ before Cijk, and use
Cij′k′ to represent the head cell of the batch. Use Cijk′′

to represent the head in the batch of Cijk. Because both
Cij′k′ and Cijk′′ are batch heads and Cij′k′ departs before
Cijk′′ in Batch-WF2Q, based on the Batch-WF2Q policy we
know dWF 2Q

ij′k′ < dWF 2Q
ijk′′ ≤ dWF 2Q

ijk . This indicates that Cij′k′

does not introduce additional delay to Cijk, and so do the
cells of Fij′ before Cij′k′ . Thus, only the remaining M − 1
cells after Cij′k′ in its batch may cause additional delay to

Cijk, or the additional delay from Fij′ is at most M − 1
external time slots. In the worst case, each of the the other
N − 1 flows introduces additional delay of (M − 1)T , and
thus the maximum difference between dijk and dWF 2Q

ijk is
(N − 1)(M − 1)T .

Theorem 1: The difference between the external input de-
parture time of a cell Cijk in Batch-WF2Q and GPS is
bounded by (N − 1)(M − 1)T + T , i.e. dijk − dGPS

ijk ≤
(N − 1)(M − 1)T + T .

Proof: Since dWF 2Q
ijk ≤ dGPS

ijk + T by Theorem 1 in [2],
we can prove the theorem by Lemma 1.

B. External Input Buffer Size
The external input buffer runs at high speed to accept new

arriving cells, and we would like to calculate its size bound
to avoid buffer overflow. Because Fij is allocated a specific
amount of bandwidth Rij(t), it is necessary to enforce admis-
sion control. Otherwise, if the flow can have an unrestricted
burst arrival, it is impossible to avoid buffer overflow. The
leaky bucket [9] is a widely used traffic shaping scheme, and
we will use it for admission control. In the classical definition
of a leaky bucket, the flow rate is a constant, which we extend
in this paper to be a variable. The reason is that the allocated
bandwidth of a flow may change at different time. Use
Aij(t1, t2) to denote the number of arriving bits of Fij during
[t1, t2]. If Fij is leaky bucket (Rij(t), σij) compliant, then
during any interval [t1, t2] Aij(t1, t2) ≤

∫ t2
t1

Rij(t)dt + σij .
where σij is called the burst size of Fij . Intuitively, during
any time interval, Fij can have σij more arriving traffic than
what it can transmit.

Lemma 2: Supposing that a cell Cijk is the head of a
dispatched batch, its external input departure time in Batch-
WF2Q is greater than or equal to that in WF2Q, i.e. dijk ≥
dWF 2Q

ijk .

Proof: Assume to the contrary that dijk < dWF 2Q
ijk . There

must be a cell Cij′k′ that departs before Cijk in WF2Q, i.e.

dWF 2Q
ij′k′ < dWF 2Q

ijk (1)

but after Cijk in Batch-WF2Q. Using Cij′k′′ to represent the
head cell in the batch of Cij′k′ . It is obvious that Cij′k′′ is
before Cij′k′ in Qij if k′′ 6= k′, and thus dWF 2Q

ij′k′′ ≤ dWF 2Q
ij′k′ .

Furthermore, since both Cij′k′′ and Cijk are batch heads
and Cij′k′′ departs after Cijk in Batch-WF2Q, we know by
the Batch-WF2Q policy dWF 2Q

ij′k′′ > dWF 2Q
ijk . Combining the

above two equations, we have dWF 2Q
ij′k′ > dWF 2Q

ijk , which is a
contradiction to (1).

Define Qij(t) to be the number of bits of Qij in Batch-
WF2Q at time t.

Theorem 2: Supposing that the flow Fij is leaky bucket
(Rij(t), σij) compliant, the buffer size at the external input
Ini is bounded by NML+

∑
j σij , i.e.

∑
j Qij(t) ≤ NML+∑

j σij .
Proof: Define DRij(t1, t2) to be the number of departed

real bits of Fij in Batch-WF2Q during [t1, t2]. We have
Aij(0, t) = DRij(0, t) + Qij(t) (2)



Define DDij(t1, t2) to be the number of dummy bits of Fij in
Batch-WF2Q during [t1, t2], and Dij(t1, t2) = DRij(t1, t2)+
DDij(t1, t2). Thus

Aij(0, t) + DDij(0, t) = DRij(0, t) + DDij(0, t) + Qij(t)
= Dij(0, t) + Qij(t) (3)

We consider the following two cases based on whether Fij

has sent dummy cells by time t.
Case 1: Fij has never sent a dummy cell, i.e. DDij(0, t) =

0. Since Fij is leaky bucket (Rij(t), σij) compliant, we have
Aij(0, t) + DDij(0, t) = Aij(0, t) ≤ ∫ t

0
Rij(t)dt + σij .

Case 2: Fij has sent some dummy cells. We look at the
latest batch that contains dummy cells, and denote the batch
head as Cijk. By Lemma 2, we have dWF 2Q

ijk ≤ dijk, and

thus Dij(dijk) = kL = DWF 2Q
ij (dWF 2Q

ijk ) ≤ DWF 2Q
ij (dijk).

By Theorem 1 in [2], we can obtain DWF 2Q
ij (dijk) ≤

DGPS
ij (dijk) + L ≤ ∫ dijk

0
Rij(t)dt + L. Combining the above

two equations, we have

Dij(dijk) ≤
∫ dijk

0

Rij(t)dt + L (4)

Denote the latest dummy cell as Cij(k+x). Note that x ≤
M − 1, since Cijk is the batch head and the number of cells
in a batch is M . Thus

Dij(dij(k+x)) = Dij(dijk) + xL

≤
∫ dijk

0

Rij(t)dt + L + (M − 1)L

=
∫ dijk

0

Rij(t)dt + ML (5)

Since Cij(k+x) is a dummy cell, we know that Qij is empty
at dij(k+x), i.e. Qij(dij(k+x)) = 0. Therefore

Aij(0, dij(k+x)) + DDij(0, dij(k+x))
= DRij(0, dij(k+x)) + DDij(0, dij(k+x))
= Dij(0, dij(k+x)) (6)

Because Cij(k+x) is the latest dummy cell, we know that
DDij(dij(k+x), t) = 0 and

Aij(0, t) + DDij(0, t)
= Aij(0, dij(k+x)) + DDij(0, dij(k+x)) + Aij(dij(k+x), t)
= Dij(0, dij(k+x)) + Aij(dij(k+x), t)

≤
∫ dijk

0

Rij(t)dt + ML +
∫ t

dijk

Rij(t)dt + σij

≤
∫ t

0

Rij(t)dt + σij + ML (7)

To sum up, in both case, we have

Aij(0, t) + DDij(0, t) ≤
∫ t

0

Rij(t)dt + σij + ML (8)

Sum (8) for the N flows of Ini, and we obtain

0 0.2 0.4 0.6 0.8 1

−100

0

100

200

300

Effective Load

Ji
tte

r(
N

um
be

r 
of

 E
xt

er
na

l T
im

e 
S

lo
ts

) 16x16 Switch

 

 
Maximum
Average
Bound

0 0.2 0.4 0.6 0.8 1

−100

0

100

200

300

Unbalance − Full load

Ji
tte

r(
N

um
be

r 
of

 E
xt

er
na

l T
im

e 
S

lo
ts

) 16x16 Switch

 

 
Maximum
Average
Bound

(a) (b)

Figure 2. Jitter of Batch-WF2Q (a) With different loads. (b) With
different unbalanced probabilities.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
x 10

5

Effective Load
E

xt
er

na
l I

np
ut

 B
uf

fe
r 

S
iz

e

16x16 Switch

 

 
Maximum
Average
Bound

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
x 10

5

Unbalance − Full load

E
xt

er
na

l I
np

ut
 B

uf
fe

r 
S

iz
e

16x16 Switch

 

 
Maximum
Average
Bound

(a) (b)

Figure 3. External Input buffer occupancy of Batch-WF2Q (a) With
different loads. (b) With different unbalanced probabilities.

∑

j

Aij(t) +
∑

j

DDij(t)

≤
∑

j

∫ t

0

Rij(t)dt +
∑

j

σij + NML

=
∫ t

0

∑

j

Rij(t)dt +
∑

j

σij + NML

≤
∫ t

0

Rdt +
∑

j

σij + NML

= Rt +
∑

j

σij + NML (9)

Because in each external time slot, Ini sends either a real
cell or a dummy cell, we know Dij(0, t) = Rt and therefore∑

j Qij(t) =
∑

j Aij(t) +
∑

j DDij(t) −
∑

j Dij(t) ≤∑
j σij + NML.

IV. SIMULATION RESULTS

In this section, we conduct simulations to verify the analyt-
ical results in Section III. We consider a 16 × 16 BCB-PPS
with 4 internal switches. The external switch has bandwidth
R = 1 Gbps. We use fixed packet length which is 50 bytes for
each cell. The internal switch has no speedup. For bandwidth
allocation, we use the same model as that in [17] and [13].
The allocated bandwidth Rij(t) of flow Fij at time t is defined
by an unbalanced probability ω as follows.



Rij(t) =

{
R(ω + 1−ω

N ), if i = j

R 1−ω
N , if i 6= j

(10)

When ω = 0, Ini has the same amount of allocated bandwidth
at each output port. Otherwise, Ini has more allocated band-
width at Outi, which is called the hotspot destination. Since
in a real network, packet arrival is typically bursty and packets
are highly correlated, arrival of a flow Fij is constrained by
a leaky bucket (l ∗ Rij(t), σij), where l is the effective load
and σij is the burst size. We set the burst size of each flow
to a fixed value of 10,000 bytes, and the burst may arrive at
any time during a simulation run. We use two traffic patterns
in the simulations. For the first traffic pattern, a flow has a
variable allocated bandwidth. l is changed from 0.1 to 1 with
an increment of 0.1, and for a specific l value, a random
permutation of the 11 different ω values is used. For the second
pattern, each flow has a fixed allocated bandwidth during a
single simulation run. l is fixed to 1 and ω is varied from 0
to 1 with an increment of 0.1. Each simulation run lasts for
10 seconds, half of which are used as the warm-up period.

A. External Input Delay
In this subsection, we compare the external input departure

time of a cell in Batch-WF2Q and GPS, for which Theorem
1 gives the bound of the difference. We define jitter as
the difference between the packet departure time of Batch-
WF2Q and GPS. Figure 2(a) illustrates the theoretical bound,
maximum, and average delay difference for a representative
flow F11 under traffic pattern one. As can be seen, the average
delay difference is almost zero for different effective loads.
The maximum is always less than or equal to the theoretical
bound. Figure 2(b) shows the data under traffic pattern two.
Similarly, the average delay difference is almost zero for
different unbalanced probabilities and the maximum is always
less than the theoretical bound. The maximum delay difference
drops to zero when the unbalanced probability becomes 1,
since at this point, all cells of Ini go to Outi.

B. External Input Buffer Size Bound
Theorem 2 gives the upper bound of the external input buffer

size to avoid overflow. In order to achieve 100% throughput
for admissible traffic, input ports must have enough buffer
space to avoid packet overflow. Figure 3(a) demonstrates the
maximum and average external input buffer occupancy, and
the theoretical bound under traffic pattern one. We can see
that the maximum occupancy increases as the effective load
grows, but does not exceed the theoretical bound. On the other
hand, the average occupancy does not change much until the
load increases to 1, i.e., the average occupancy is determined
by the load. Figure 3(b) shows the data under traffic pattern
two. We observe that the maximum occupancy does not
change significantly with different unbalanced probabilities
and is always smaller than the theoretical bound. Once the
unbalanced probability becomes 1, the maximum and average
occupancies fall to zero because all cells of Ini go to Outi.
The average occupancy is almost constant, and drops to zero
for the same reason when the unbalanced probability becomes

1. It implies that the average occupancy is more affected by
the load than the unbalanced probability.

V. CONCLUSIONS
In this paper, we have presented the buffered crossbar based

parallel packet switch (BCB-PPS). It uses the sBUX buffered
crossbars as internal switches, which require no speedup.
We propose the Batch-WF2Q algorithm for cell dispatch at
external inputs, and leverage the sMUX algorithm in [7]
for cell scheduling at internal switches. Such a combination
enables a simple round-robin algorithm for efficient cell col-
lection at external outputs. We show that BCB-PPS has tight
delay guarantees and bounded buffer sizes. Finally, we present
simulation data to verify the analytical results and to evaluate
the performance of our design.

REFERENCES

[1] A. Aslam and K. J. Christensen, “A parallel packet switch with mul-
tiplexors containing virtual input queues,” Computer Communications,
vol. 27, no. 13, pp. 1248–1263, August 2004.

[2] J. C. Bennett and H. Zhang, “WF2Q: worst-case fair weighted fair
queueing,” in IEEE INFOCOM 1996, San Francisco, CA, USA, 1996,
pp. 120–128.

[3] W. K. Chen, The Electrical Engineering Handbook, 1st ed. Academic
Press, November 2004.

[4] S. T. Chuang, S. Iyer, and N. McKeown, “Practical algorithms for
performance guarantees in buffered crossbars,” in IEEE INFOCOM
2005, vol. 2, Miami, FL, USA, 2005, pp. 981–991.

[5] S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching
output queueing with a combined input/output-queued switch,” Selected
Areas in Communications, IEEE Journal on, vol. 17, no. 6, pp. 1030–
1039, Jun 1999.

[6] Z. Haishan, X. Du, and Z. Zhenyu, “A parallel packet switch supporting
variable-length packets,” in 2005 International Conference on Commu-
nications, Circuits and Systems,, vol. 1, 2005, pp. 613–617.

[7] S.-M. He, S.-T. Sun, H.-T. Guan, Q. Zheng, Y.-J. Zhao, and W. Gao,
“On Guaranteed Smooth Switching for Buffered Crossbar Switches,”
IEEE/ACM Trans. Netw., vol. 16, no. 3, pp. 718–731, 2008.

[8] S. Iyer and N. W. McKeown, “Analysis of the parallel packet switch
architecture,” IEEE/ACM Trans. Netw., vol. 11, no. 2, pp. 314–324, 2003.

[9] J. F. Kurose and K. Ross, Computer Networking: A Top-Down Approach
Featuring the Internet. Addison-Wesley Longman Publishing Co., 2002.

[10] H.-I. Lee and S.-W. Seo, “Matching output queueing with a multiple
input/output-queued switch,” IEEE/ACM Trans. Netw., vol. 14, no. 1,
pp. 121–132, 2006.

[11] R. B. Magill, C. E. Rohrs, and R. L. Stevenson, “Output-queued
switch emulation by fabrics with limited memory,” Selected Areas in
Communications, IEEE Journal on, vol. 21, no. 4, pp. 606–615, 2003.

[12] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 188–201, 1999.

[13] L. Mhamdi and M. Hamdi, “MCBF: a high-performance scheduling al-
gorithm for buffered crossbar switches,” IEEE Communications Letters,
vol. 7, no. 9, pp. 451–453, 2003.

[14] S. Mneimneh, V. Sharma, and K.-Y. Siu, “Switching using parallel input-
output queued switches with no speedup,” IEEE/ACM Trans. Netw.,
vol. 10, no. 5, pp. 653–665, 2002.

[15] N. Moriwaki, A. Makimoto, Y. Oguri, M. Wada, and T. Kozaki, “Large
scale ATM switch architecture for Tbit/s systems,” in IEEE GLOBECOM
1998, vol. 1, 1998, pp. 334–338.

[16] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: the single-node
case,” IEEE/ACM Trans. Netw., vol. 1, no. 3, pp. 344–357, 1993.

[17] R. Rojas-Cessa, E. Oki, Z. Jing, and H. Chao, “CIXB-1: Combined
input-once-cell-crosspoint buffered switch,” in IEEE HPSR, Dallas, TX,
2001, pp. 324–329.

[18] L. Shi, G. Xia, and B. Liu, “Performance Guarantees for Flow-Mapping
Parallel Packet Switch,” in Proc. IEEE Internationa Performance, Com-
puting, and Communications Conference IPCCC, 2007, pp. 109–116.

[19] P. Valente, “Exact GPS simulation with logarithmic complexity, and its
application to an optimally fair scheduler,” in ACM SIGCOMM 2004 ,
New York, USA, 2004, pp. 269–280.


