
Achieve Constant Performance Guarantees using
Asynchronous Crossbar Scheduling without Speedup

Deng Pan
Florida International University

Miami, FL

Kia Makki
TUM

Miami, FL

Niki Pissinou
Florida International University

Miami, FL

Abstract—Buffered crossbar switches are special crossbar
switches with a small exclusive buffer at each crosspoint of the
crossbar. They demonstrate unique advantages, such as vari-
able length packet handling and distributed scheduling, over
traditional unbuffered crossbar switches. The current main
approach for buffered crossbar switches to provide perfor-
mance guarantees is to emulate push-in-first-out output queued
switches. However, such an approach has several drawbacks,
and in particular it has difficulty in providing tight constant
performance guarantees. To address the issue, we propose in
this paper the guaranteed-performance asynchronous packet
scheduling (GAPS) algorithm for buffered crossbar switches.
GAPS intends to provide tight performance guarantees, and
requires no speedup. It directly handles variable length packets
without segmentation and reassembly, and makes scheduling
decisions in a distributed manner. We show by theoretical
analysis that GAPS achieves constant performance guarantees.
We also prove that GAPS has a bounded crosspoint buffer
size of 3L, where L is the maximum packet length. Finally,
we present simulation data to verify the analytical results and
show the effectiveness of GAPS.

Keywords-buffered crossbar switches; performance guaran-
tees; speedup;

I. INTRODUCTION

Buffered crossbar switches have recently attracted con-
siderable attentions [1] - [16] as promising high speed
interconnects. They are special crossbar switches with a
small exclusive buffer at each crosspoint of the crossbar,
as shown in Figure 1. Such a switch architecture was once
regarded as not scalable [17]. Fortunately, recent develop-
ment in VLSI technology has made it feasible to integrate
on-chip memories to crossbar switching fabrics, and thus
build moderate-size buffered crossbar switches [1] - [4].
Buffered crossbar switches demonstrate unique advantages
over traditional unbuffered crossbar switches [5] - [7] .

Unbuffered crossbar switches have no buffers on the
crossbar, and packets have to be directly transmitted from
input ports to output ports. They usually work with fixed
length cells in a synchronous time slot mode [18]. To maxi-
mize throughput and accelerate scheduling, all the schedul-
ing and transmission units must have the same length. In
each time slot, all input-output pairs transmit cells at the
same time. When variable length packets arrive, they will
be segmented into fixed length cells at input ports. The

Figure 1. Structure of buffered crossbar switches.

cells are then transmitted to output ports, where they are
reassembled into original packets and sent to the output
lines. This process is called segmentation and reassembly
(SAR) [14].

For buffered crossbar switches, crosspoint buffers decou-
ple input ports and output ports, and simplify the scheduling
process [8]. They can directly handle variable length packets
without SAR and work in an asynchronous mode [7]. To be
specific, input ports periodically send packets of arbitrary
length to the corresponding crosspoint buffers, from where
output ports retrieve the packets one by one. Note that
packets in most practical networks are of variable length
[19]. Compared with fixed length cell scheduling of un-
buffered crossbar switches, variable length packet scheduling
of buffered crossbar switches has some unique advantages
[7] [8], such as high throughput, low latency, and reduced
hardware cost.

In this paper, we study fair scheduling algorithms for
buffered crossbar switches to provide performance guar-
antees. The considered problem is that each flow of the
switch is allocated a specific amount of bandwidth, and
the fair scheduling algorithm arranges packet transmission
to ensure that the flow receives its allocated bandwidth,
and thus provides guaranteed delay and jitter. There exist
a number of solutions [5] - [12] in the literature, and
the main approach is to emulate push-in-first-out (PIFO)



output queued (OQ) switches [5], i.e. duplicating the packet
departure time in PIFO OQ switches. As indicated by the
name, OQ switches have buffer space only at output ports.
Because input ports have no buffers, all arriving packets
have to be immediately transferred to the output buffers
by the crossbar. Thus, the crossbar of an N × N OQ
switch needs to run N times faster than the input port
and output port, or in other words has speedup of N [20].
The speedup requirement makes OQ switches difficult to
scale. On the other hand, because all packets are already
stored at the output ports, it is easy for OQ switches to
run various fair queueing algorithms, such as Deficit Round
Robin (DRR) [21], Weighted Fair Queueing (WFQ) [22],
and Worst-case Fair Weighted Fair Queueing (WF2Q) [23],
to provide performance guarantees. The objective is for each
output port to emulate the packet departure sequence in
the ideal Generalized Processor Sharing (GPS) [24] fairness
model. Specifically, a PIFO OQ switch is an OQ switch
with a push-in-first-out queueing policy. For such a switch,
an arriving packet can be put anywhere in the output queue
and a departing packet can only be removed from the head
of the queue [5].

However, the above emulation approach has several draw-
backs. In particular, it has difficulty in providing constant
performance guarantees. Constant performance guarantees
mean that for any flow, the difference between its received
bandwidth in a specific algorithm and in the ideal GPS
model is bounded by constants, i.e. the equations in Theorem
1 of [23]. They are the key properties to assure worst-
case fairness [23]. The reason is that WF2Q (including its
variants) [23] is the only known fair queueing algorithm
to achieve constant performance guarantees. Unfortunately,
WF2Q does not use a PIFO queueing policy [25], because
a packet at the head of a queue may not be eligible for
departure because it has not started transmission in GPS
[23].

In this paper, we propose the Guaranteed-performance
Asynchronous Packet Scheduling (GAPS) algorithm for
buffered crossbar switches to provide constant performance
guarantees. The considered buffered crossbar switches do
not need speedup. Because the crossbar runs at the same
speed as the output ports, no buffer space is necessary at the
output ports. When a packet is transmitted to its output port,
it will be immediately sent to the output line. GAPS uses
time stamps of packets in GPS as the scheduling criteria, and
perfectly emulates the ideal GPS model. It directly handles
variable length packets without SAR, and allows input ports
and output ports to make independent scheduling decisions
based on only local information without data exchange.
Specifically, an input port needs only the statuses of its
input queues, and an output port needs only the statuses
of its crosspoint buffers. We show by theoretical analy-
sis that GAPS provides constant performance guarantees.
Furthermore, we prove that GAPS has a crosspoint buffer

size bound of 3L, where L is the maximum packet length.
Finally, we conduct simulations to verify the analytical
results and evaluate the effectiveness of GAPS.

The rest of the paper is organized as follows. In Section
II, we introduce some preliminaries for the paper. In Section
III, we propose the GAPS algorithm. In Section IV, we
theoretically analyze the performance of GAPS. In Section
V, we present simulation data. In Section VI, we conclude
the paper.

II. PRELIMINARIES

In this section, we first provide an overview of the
approach to provide performance guarantees by emulating
PIFO OQ switches. We then analyze in detail the drawbacks
of the emulation approach, and describe the ideal fairness
model used in this paper.

A. Emulating PIFO OQ Switches

The emulation of PIFO OQ switches is the current main
approach in the literature for crossbar switches to provide
performance guarantees. It was proved in [10] that a buffered
crossbar switch with speedup of two satisfying non-negative
slackness insertion and lowest time to live (LTTL) blocking,
and LTTL fabric scheduling can exactly emulate a PIFO OQ
switch. In [11], the MCAF-LTF cell scheduling scheme for
one-cell buffered crossbar switches was proposed. MCAF-
LTF does not require costly time stamping mechanism, and
is able to emulate an PIFO OQ switch with speedup of
two. [5] studied practical scheduling algorithms for buffered
crossbar switches. It showed that with speedup of two, a
buffered crossbar switch can mimic a restricted PIFO OQ
switch (a PIFO-OQ switch with the restriction that the cells
of an input-output pair depart the switch in the same order
as they arrive), and that with speedup of three, a buffered
crossbar switch can mimic an arbitrary PIFO OQ switch
and hence provide delay guarantees. [12] presented a cell
scheduling algorithm for buffered crossbar switches with
speedup of two to emulate an arbitrary PIFO OQ switch
and achieve flow based performance guarantees. The per-
formance guarantees of packet scheduling for asynchronous
buffer crossbar switches were discussed in [7]. The Packet
GVOQ and Packet LOOFA scheduling algorithms were
designed based on existing cell scheduling algorithms. They
require 2L or more buffer space at each crosspoint. Besides
buffered crossbar switches, Combined-Input-Output-Queued
switches are also proved to be able to emulate PIFO OQ
switches with speedup of two [26] [27].

The above algorithms were designed to make exact em-
ulation of PIFO OQ switches. There are also some other
schemes that intend to emulate OQ switches but cannot
duplicate the same packet departure sequence. [28] proposed
the Distributed Packet Fair Queueing architecture for phys-
ically dispersed line cards to emulate an OQ switch with
fair queueing, and used simulation results to demonstrate its



effectiveness with modest speedup. iFS was proposed in [29]
for virtual output queued (VOQ) switches to emulate WFQ
[22] at each output port. iFS uses a grant-accept two stage
iterative matching method, and uses the virtual time as the
grant criterion. Similarly, iDRR in [30] emulates DRR [21]
at each output port of VOQ switches. iDRR uses the round
robin principle in its iterative matching steps, and thus is
able to make fast arbitration.

B. Drawbacks of Emulation Approach

There are two main drawbacks with the above approach
to provide performance guarantees by emulating PIFO OQ
switches. First, as discussed in Section I, it has difficulty
in providing tight performance guarantees. Second, the pro-
portional bandwidth allocation policy of PIFO OQ switches
is not practical, because it does not consider the bandwidth
constraints at the input ports, while flows may oversubscribe
input ports [16].

The objective of the emulation approach is to emulate
a fair queueing algorithm at each output port. Fair queue-
ing algorithms schedule packets from multiple flows of
a shared output link to ensure fair bandwidth allocation,
and they allocate bandwidth to the flows proportional to
their requested bandwidth [24]. Numerically, assume that the
available bandwidth of the shared output link is R, and φ i

and Ri are the requested bandwidth and allocated bandwidth
of the ith flow, respectively. With proportional bandwidth
allocation, we have ∀i, ∀j, Ri

φi
= Rj

φj
and

∑
i Ri ≤ R.

However, simple proportional bandwidth allocation is not
suitable for switches [31] [32]. The reason is that, while
flows of a shared output link are constrained only by the link
bandwidth, flows of a switch are subject to two bandwidth
constraints: the available bandwidth at both the input port
and output port of the flow. Naive bandwidth allocation at
the output port may make the flows violate the bandwidth
constraints at their input ports, and vice versa.

In the following, we use an example to illustrate the
issue. Consider a 2 × 2 switch. For easy representation,
denote the ith input port as Ini and the jth output port
as Outj . Assume that each input port or output port has
available bandwidth of one unit. Use φij and Rij to represent
the requested bandwidth and allocated bandwidth of In i

at Outj , respectively. Assume that each output port uses
the proportional bandwidth allocation policy, i.e. the policy
used by fair queueing algorithms for shared output links.
First we look at only Out1. Because φ11 = 0.9 and
φ21 = 0.6, by the proportional policy we have R11 = 0.6
and R21 = 0.4. The same applies to Out2. The allocated
bandwidth Rij is thus shown in (1). However, this allocation
is not feasible, because the total bandwidth allocated at In1

is R11 + R12 = 0.6 + 0.6 = 1.2, exceeding the available
bandwidth of 1. For the same reason, if bandwidth allocation
is conducted independently by each input port using the

proportional policy, the allocation will not be feasible either.

φ =
[
0.9 0.75
0.6 0.5

]
⇒ R =

[
0.6 0.6
0.4 0.4

]
(1)

In addition, to improve utilization, fair queueing algo-
rithms will reallocate the leftover bandwidth of empty flows
using the proportional policy. In other words, when a flow
temporarily becomes empty, the fair queueing algorithm
will reallocate its bandwidth to the remaining backlogged
flows in proportion to their requested bandwidth. However,
this strategy does not apply to switches either, and we
use an additional example to explain. Consider the same
2 × 2 switch, and assume that initially ∀i∀j, Rij = 0.5,
as shown in (2). Now that In1 temporarily has no traffic
to Out1, i.e. R11 = 0.5 changing to R′

11 = 0. The
fair bandwidth allocation policy would allocate the leftover
bandwidth of R11 to R21, because now only In2 has traffic
to Out1. However, it is not possible here, because it will
oversubscribe In2 by 0.5. As a matter of fact, the leftover
bandwidth of R11 cannot be reallocated at all in this case.

R =
[
0.5 0.5
0.5 0.5

]
⇒ R′ =

[
0 0.5
1 0.5

]
(2)

C. Our Fairness Model

To effectively evaluate the performance guarantees
achieved by a scheduling algorithm, it is necessary to have
an ideal fairness model as the comparison reference. A
fairness model for packet scheduling can be regarded to have
two roles. The first role is to calculate allocated bandwidth
for flows based on their requested bandwidth. The second
role is to schedule packets of different flows to ensure that
the actual received bandwidth of each flow is equal to its
allocated bandwidth.

As we have seen in Section II-B, the simple proportional
bandwidth allocation policy does not apply to switches. For-
tunately, there have been some solutions in the literature [31]
[32] to fairly allocate bandwidth for flows in a switch based
on their requested bandwidth. In this paper, we focus on
addressing the first drawback of the emulation approach. In
other words, we assume that bandwidth allocation has been
calculated by such algorithms, and the scheduling algorithms
should provide tight performance guarantees to ensure the
allocated bandwidth of each flow. Also, when a flow of the
switch temporarily becomes empty, we do not assume that its
allocated bandwidth is immediately reallocated. Instead, the
bandwidth allocation algorithms will consider the leftover
bandwidth in the next calculation. Bandwidth allocation is
recalculated when requested bandwidth changes or existing
backlogged flows become empty.

We use GPS as the ideal model for packet scheduling.
Specifically, given the allocated bandwidth, we compare the
received service of a flow in our algorithm and in GPS.
GPS views flows as fluids of continuous bits, and creates
an independent logical channel for each flow based on its



Shared Output Links
(a)

In1

Out2Out1

In2

(b)

Figure 2. GPS as the ideal fairness model. (a) For shared output links.
(b) For switches.

allocated bandwidth. Since the channel bandwidth of a flow
is equal to its allocated bandwidth, GPS achieves perfect
fairness. Fair queueing algorithms for shared output links
also use GPS as the ideal model for packet scheduling, as
shown in Figure 2(a). Similarly, GPS can apply to switch
packet scheduling by creating logical channels for different
flows based on their allocated bandwidth, as shown in Figure
2(b). Note that because GPS is a fluid based system, traffic of
a flow can smoothly stream from the input port to the output
port without buffering in the middle. We thus assume that
packets in GPS do not need to be buffered at the crosspoint
buffers of the switch.

III. GUARANTEED-PERFORMANCE ASYNCHRONOUS

PACKET SCHEDULING

In this section, we describe the considered switch struc-
ture, formulate the problem, and present the guaranteed-
performance asynchronous packet scheduling (GAPS) algo-
rithm.

A. Switch Structure

The switch structure that we consider is shown in Figure
1. N input ports and N output ports are connected by a
buffered crossbar without speedup. Denote the i th input port
as Ini and the jth output port as Outj . Use R to represent
the available bandwidth of each input port and output port,
and the crossbar also has bandwidth R. Each input port has
a buffer organized as virtual output queues (VOQ) [33]. In
other words, there are N virtual queues at an input port,
each storing the packets destined to a different output port.
Denote the virtual queue at Ini for packets to Outj as Qij .
Each crosspoint has a small exclusive buffer. Denote the

crosspoint buffer connecting Ini and Outj as Bij . Output
ports have no buffers. Define the traffic from In i to Outj to
be a flow Fij , and denote the kth arriving packet of Fij as
P k

ij . After P k
ij arrives at the switch, it is first stored in Qij ,

and waits to be sent to Bij . It will then be sent from Bij

to Outj and immediately delivered to the output line. We
say that a packet arrives at or departs from a buffer when
its last bit arrives at or departs from the buffer.

B. Problem Formulation

As explained in Section II-C, specific bandwidth alloca-
tion algorithms will calculate explicit allocated bandwidth
for each flow, and the objective of GAPS is to provide
service guarantees for each flow.

Use Rij(t) to represent the allocated bandwidth of Fij ,
which is a function of time t with discrete values in practice.
The calculated bandwidth allocation should be feasible, i.e.,
no over-subscription at any input port or output port

∀i,

N∑
x=1

Rix(t) ≤ R, and ∀j,

N∑
x=1

Rxj(t) ≤ R (3)

The feasibility requirement is only for bandwidth allocation.
It is necessary because it is impossible to allocate more
bandwidth than what is actually available. However, tem-
porary overload is allowed for an input port or output port.

Use toOij(0, t) and t̂oOij(0, t) to represent the numbers
of bits transmitted by Fij to Outj during interval [0, t] in
GAPS and in GPS, respectively. The objective of GAPS is to
ensure that toOij(0, t)−t̂oOij(0, t) is bounded by constants.

C. Algorithm Description

GAPS uses time stamps as scheduling criteria. There are
two types of time stamps. The first time stamp for P k

ij is

called virtual start time, denoted as V̂ S
k

ij , which is the
service start time of P k

ij in GPS. The second time stamp

is virtual finish time, denoted as V̂ F
k

ij , which is the service
finish time of P k

ij in GPS. In other words, if the switch

uses GPS to schedule packets, V̂ S
k

ij and V̂ F
k

ij are the time
that the first bit and last bit of P k

ij depart from the switch,

respectively. V̂ S
k

ij can be calculated as follows

V̂ S
k

ij = max
(
IAk

ij , V̂ F
k−1

ij

)
(4)

where IAk
ij is the arrival time of P k

ij at the input port. V̂ F
k

ij

satisfies the following relationship∫ V̂ F
k

ij

V̂ S
k

ij

Rij(x)dx = Lk
ij (5)

where Lk
ij is the length of P k

ij . Because Rij(x) has only dis-

crete values in practice, V̂ F
k

ij can be easily calculated. For



Table 1
PSEUDO CODE DESCRIPTION OF GAPS

Input Scheduling:
for Ini do {

while true do {
if there are packets in input queues with virtual start

time less than or equal to current system time {
select among such packets the one with the smallest

virtual finish time, say P k
ij ;

send P k
ij to crosspoint buffer Bij ;//

system time progressing by
P k

ij

R
;

}
else {

wait until the next earliest virtual start time;
}

}
}

Output Scheduling:
for Outj do {

while true do {
if there are packets in crosspoint buffers with virtual

start time less than or equal to current system time
minus L

R
{

select among such packets the one with the smallest
virtual finish time, say P k

ij ;
send P k

ij to the output line;//
system time progressing by

P k
ij

R}
else {

wait until the next earliest virtual start time plus L
R

;
}

}
}

example, if Rij(t) is a constant Rij during
[
V̂ S

k

ij , V̂ F
k

ij

]
,

V̂ F
k

ij can be calculated as

V̂ F
k

ij = V̂ S
k

ij +
Lk

ij

Rij
(6)

There are two types of scheduling in GAPS, which we call
input scheduling and output scheduling. In input scheduling,
an input port selects a packet from one of its N input queues,
and sends it to the corresponding crosspoint buffer. In output
scheduling, an output port selects a packet from one of its
N crosspoint buffers, and sends it to the output line.

Input scheduling of each input port In i is independent,
and Ini only needs to checks its input queues. First, Ini

identifies eligible packets. A packet P k
ij is eligible for input

scheduling if its virtual start time V̂ S
k

ij is less than or equal
to the current system time t. In other words, a packet that has
started transmission in GPS is eligible for input scheduling.
Next, Ini selects an eligible packet. If there exist multiple
eligible packets in the input buffer, Ini will select among

such packets the one P k
ij with the smallest virtual finish time

V̂ F
k

ij , and send it to Bij . If there are no eligible packets, Ini

will wait until the next earliest virtual start time of a packet.
Note that when Ini is waiting for an eligible packet, if an
empty input queue has a new arriving packet, whose virtual
start time is equal to its arrival time, Ini should immediately
start transmitting this new packet.

Output scheduling of GAPS is similar to input scheduling
with different eligibility criteria. In the first step, Outj

identifies eligible packets. A packet P k
ij in a crosspoint buffer

with virtual start time V̂ S
k

ij less than or equal to t − L/R
is eligible, where t is the current system time. If there are
multiple eligible packets, Outj selects the one P k

ij with the

smallest virtual finish time V̂ S
k

ij , retrieves it from Bij , and
sends it to the output line. If there are no eligible packets,
Outj waits for one. Note that the virtual start time and
virtual finish time of a packet are carried with the packet
when it is sent to the crosspoint buffer, and will be removed
before it is sent to the output line. For easy understanding,
the pseudo code description of GAPS is given in Table 1.

As can be seen, the input scheduling and output schedul-
ing of GAPS are similar to WF2Q. However, GAPS is
different in that the leftover bandwidth of empty flows is not
reallocated by the scheduling algorithm but by the bandwidth
allocation algorithm.

We define the actual input start time and finish time of P k
ij ,

denoted as ISk
ij and IF k

ij , to be the time that the first bit and
last bit of P k

ij leave Qij in GAPS, respectively. Apparently

IF k
ij = ISk

ij +
Lk

ij

R
(7)

Define the actual output start time and finish time of P k
ij ,

denoted as OSk
ij and OF k

ij , to be the time that the first bit
and the last bit of P k

ij leave Bij in GAPS, respectively. It
is obvious that

OF k
ij = OSk

ij +
Lk

ij

R
(8)

IV. PERFORMANCE ANALYSIS

In this section, we theoretically analyze the performance
of GAPS. We will show that GAPS provides constant
performance guarantees and has a bounded crosspoint buffer
size.

A. Performance Guarantees
In this subsection, we show that GAPS achieves constant

performance guarantees. According to the description of the
GAPS algorithm, we have the following property.

Property 1: For any packet, its actual input start time is
larger than or equal to its virtual start time, and its actual
output start time is larger than or equal to its virtual start
time plus L

R , i.e.



ISk
ij ≥ V̂ S

k

ij (9)

OSk
ij ≥ V̂ S

k

ij +
L

R
(10)

First we define some notations for input scheduling. We
say that Qij is backlogged at time t, if there exists k such

that V̂ S
k

ij ≤ t ≤ V̂ F
k

ij . Intuitively, Qij is backlogged at t if
Qij has buffered bits at t in GPS. Define q̂ij(t) to represent
the backlog status of Qij at t. q̂ij(t) = 1 or 0 means that
Qij is backlogged or empty at t.

Use toBij(t1, t2) and t̂oBij(t1, t2) to represent the num-
bers of bits transmitted by Fij from Ini to Bij during
interval [t1, t2] in GAPS and GPS, respectively. Based on
the definition of GPS, t̂oBij(t1, t2) can be calculated as

t̂oBij(t1, t2) =
∫ t2

t1

Rij(x)q̂ij(x)dx (11)

Use toBi∗(t1, t2) and t̂oBi∗(t1, t2) to represent the total
numbers of bits sent from Ini to all its crosspoint buffers
during interval [t1, t2] in GAPS and GPS, respectively, i.e.

toBi∗(t1, t2) =
N∑

x=1

toBix(t1, t2) (12)

t̂oBi∗(t1, t2) =
N∑

x=1

t̂oBix(t1, t2) (13)

The following lemma gives the relationship between
toBi∗(0, t) and t̂oBi∗(0, t).

Lemma 1: At any time, the number of bits sent from a
specific input port in GAPS is larger than or equal to that
in GPS, i.e.

toBi∗(0, t) ≥ t̂oBi∗(0, t) (14)

Proof: We say that Ini is busy at time t if there exists
k such that ISk

ij ≤ t ≤ IF k
ij , i.e. Ini sending bits at t in

GAPS. Otherwise, Ini is idle.
Assume that [t′, t] is the last continuous busy period

for Ini before t in GAPS. In other words, Ini is idle
immediately before t′, and is busy during [t′, t]. Assume
P k

ij to be a packet that finished transmission in GPS before

t′, and thus V̂ S
k

ij < t′, which means that P k
ij is eligible

for input scheduling in GAPS before t ′. Since Ini was
idle immediately before t′, it indicates that P k

ij finished
transmission in input scheduling of GAPS before t ′. The
analysis applies to any packet transmitted in GPS before t ′,
which means that all packets transmitted in GPS before t ′

have finished transmission in input scheduling of GAPS by
t′. In other words,

toBi∗(0, t′) ≥ t̂oBi∗(0, t′) (15)

On the other hand, because Ini is busy during [t′, t] in
GAPS, we know that

toBi∗(t′, t) = R(t − t′)

≥
∫ t

t′

N∑
j=1

Rij(x)dx

≥
N∑

j=1

∫ t

t′
Rij(x)q̂ij(x)dx

=
N∑

j=1

t̂oBij(t′, t)

= t̂oBi∗(t′, t) (16)

Adding (15) and (16), we have toB i∗(0, t) ≥ t̂oBi∗(0, t).

The following lemma compares the service time of a
packet in GAPS and in GPS.

Lemma 2: For any packet, its actual input start time in
GAPS is less than or equal to its virtual finish time in GPS,
i.e.

ISk
ij ≤ V̂ F

k

ij (17)

Proof: By contradiction, we assume that IS k
ij > V̂ F

k

ij .
We look at the numbers of bits transmitted by time IS k

ij in
GAPS and GPS, respectively.

In GAPS, P k
ij has not started transmission in input

scheduling by ISk
ij . Because input scheduling of GAPS

schedules eligible packets based on their virtual finish time,

all packets with virtual finish time greater than V̂ F
k

ij have
not started transmission either. As a result,

toBi∗(0, ISk
ij) ≤

N∑
j′=1

∑
k′ s.t. V̂ F

k′
ij′≤V̂ F

k

ij

Lk′
ij′ − Lk

ij (18)

In GPS, since ISk
ij > V̂ F

k

ij by the assumption, P k
ij and

all other packets with virtual finish time less than or equal

to V̂ F
k

ij have finished transmission by ISk
ij . Therefore

t̂oBi∗(0, ISk
ij) ≥ t̂oBi∗(0, V̂ F

k

ij)

≥
N∑

j′=1

∑
k′ s.t. V̂ F

k′
ij′≤V̂ F

k

ij

Lk′
ij′ (19)

Combining (18) and (19), we have

toBi∗(0, ISk
ij) < t̂oBi∗(0, ISk

ij) (20)

which is a contradiction to Lemma 1.
The next lemma compares toBij(0, t) and t̂oBij(0, t).
Lemma 3: At any time, the difference between the num-

bers of bits sent from input port Ini to crosspoint buffer Bij



in GAPS and GPS is greater than or equal to −L and less
than or equal to L, i.e.

−L ≤ toBij(0, t) − t̂oBij(0, t) ≤ L (21)

Proof: Without loss of generality, assume t ∈[
V̂ F

k−1

ij , V̂ F
k

ij

)
.

First, we prove t̂oBij(0, t) − toBij(0, t) ≤ L. Based on

Lemma 2, we know that ISk−1
ij ≤ V̂ F

k−1

ij ≤ t, and thus
P k−1

ij has started transmission by time t in input scheduling
of GAPS. As a result

toBij(0, t)
≥ toBij

(
0, ISk−1

ij

)
+ min

(
R
(
t − ISk−1

ij

)
, Lk−1

ij

)
=

k−2∑
x=1

Lx
ij + min

(
R
(
t − ISk−1

ij

)
, Lk−1

ij

)
(22)

On the other hand, since t < V̂ F
k

ij , P k
ij has not finished

transmission by t in GPS. Therefore

t̂oBij(0, t) =
∫ V̂ F

k−1
ij

0

Rij(x)q̂ijdx +
∫ t

V̂ F
k−1
ij

Rij(x)q̂ij(x)dx

=
k−1∑
x=1

Lx
ij +

∫ t

V̂ F
k−1
ij

Rij(x)q̂ij(x)dx (23)

By (22) and (23), we have

t̂oBij(0, t) − toBij(0, t)

≤ Lk−1
ij +

∫ t

V̂ F
k−1
ij

Rij(x)q̂ij(x)dx

−min
(
R
(
t − ISk−1

ij

)
, Lk−1

ij

)
= max

(
Lk−1

ij +
∫ t

V̂ F
k−1
ij

Rij(x)q̂ij(x)dx − R
(
t − ISk−1

ij

)
,

∫ t

V̂ F
k−1
ij

Rij(x)q̂ij(x)dx

)
(24)

Because ISk−1
ij ≤ V̂ F

k−1

ij , we know∫ t

V̂ F
k−1
ij

Rij(x)q̂ij(x)dx ≤
∫ t

ISk−1
ij

Rij(x)dx

≤
∫ t

ISk−1
ij

Rdx

= R
(
t − ISk−1

ij

)
(25)

Since t < V̂ F
k

ij , we can obtain∫ t

V̂ F
k−1
ij

Rij(x)q̂ij(x)dx ≤
∫ V̂ F

k

ij

V̂ F
k−1
ij

Rij(x)q̂ij(x)dx

= Lk
ij (26)

Combining (24), (25), and (26)

t̂oBij(0, t) − toBij(0, t) ≤ max
(
Lk−1

ij , Lk
ij

) ≤ L (27)

Next, we prove toBij(0, t) − t̂oBij(0, t) ≤ L. Be-

cause t < V̂ F
k

ij ≤ V̂ S
k+1

ij ≤ ISk+1
ij , P k+1

ij has not
started transmission by t in input scheduling of GAPS.
Thus, toBij(0, t) ≤ ∑k

x=1 Lx
ij . On the other hand, since

t ≥ V̂ F
k−1

ij , P k−1
ij has finished transmission by t in GPS.

Therefore, t̂oBij(0, t) ≥ ∑k−1
x=1 Lx

ij . Combining the above
two equations, we obtain

toBij(0, t) − t̂oBij(0, t) ≤ Lk
ij ≤ L (28)

Correspondingly, we define some notations for output
scheduling. We say that Bij is backlogged at time t, if there

exists k such that V̂ S
k

ij ≤ t ≤ V̂ F
k

ij . Bij is backlogged at t

if Bij has buffered bits at t in GPS. Define b̂ij(t) to represent
the backlog status of Bij at t. b̂ij(t) = 1 or 0 means that
Bij is backlogged or empty at t. Note that b̂ij(t) = q̂ij(t)
by neglecting the propagation delay, because GPS is a fluid
based system.

As defined earlier, use toOij(t1, t2) and t̂oOij(t1, t2) to
represent the numbers of bits transmitted by F ij from Bij to
Outj during interval [t1, t2] in GAPS and GPS, respectively.
t̂oOij(t1, t2) can be calculated as

t̂oOij(t1, t2) =
∫ t2

t1

Rij(x)b̂ij(x)dx (29)

Use toO∗j(t1, t2) and t̂oO∗j(t1, t2) to represent the total
numbers of bits sent from all the crosspoint buffers to Out j

during interval [t1, t2] in GAPS and GPS, respectively, i.e.

toO∗j(t1, t2) =
N∑

x=1

toOxj(t1, t2) (30)

t̂oO∗j(t1, t2) =
N∑

x=1

t̂oOxj(t1, t2) (31)

We have a corresponding version of Lemma 1 for output
scheduling as follows.

Lemma 4: The number of bits received by a specific
output port in GAPS by time t is larger than or equal to
that in GPS by time t − L

R , i.e.

toO∗j(0, t) ≥ t̂oO∗j(0, t − L

R
) (32)

Proof: We say that Outj is busy at time t if there exists
k such that OSk

ij ≤ t ≤ OF k
ij , i.e. Outj receiving bits at t

in GAPS. Otherwise, Outj is idle.
Assume that [t′, t] is the last continuous busy period

for Outj before t in GAPS. In other words, Outj is idle
immediately before t′, and is busy during [t′, t]. Assume
P k

ij to be a packet that finished transmission in GPS before



t′ − L
R , and thus V̂ F

k

ij < t′ − L
R . By Lemma 2, we have

ISk
ij ≤ V̂ F

k

ij , or

IF k
ij ≤ V̂ F

k

ij +
L

R
< t′ (33)

This indicates that P k
ij arrived at Bij before t′ in GAPS,

and it is eligible for output scheduling before t ′. Since Outj
was idle immediately before t′, it means that P k

ij finished
transmission in output scheduling of GAPS before t ′. The
analysis applies to any packet transmitted in GPS before
t′ − L

R , which means that all packets transmitted in GPS
before t′− L

R have finished transmission in output scheduling
of GAPS by t′. In other words,

toO∗j(0, t′) ≥ t̂oO∗j(0, t′ − L

R
) (34)

On the other hand, because Outj is busy during [t′, t] in
GAPS, we know that

toO∗j(t′, t) = R(t − t′)

= R

((
t − L

R

)
−
(

t′ − L

R

))
≥
∫ t− L

R

t′− L
R

N∑
i=1

Rij(x)dx

≥
N∑

i=1

∫ t− L
R

t′− L
R

Rij(x)b̂ij(x)dx

= t̂oO∗j(t′ − L

R
, t − L

R
) (35)

Adding (34) and (35), we have toO∗j(0, t) ≥ t̂oO∗j(0, t −
L
R ).

Similarly, we have the corresponding version of Lemma
2 for output scheduling of GAPS.

Lemma 5: For any packet, its actual output start time in
GAPS is less than or equal to its virtual finish time in GPS
plus L

R , i.e.

OSk
ij ≤ V̂ F

k

ij +
L

R
(36)

The proof is similar to that of Lemma 2 but based on Lemma
4, and is omitted.

The follow theorem shows that GAPS achieves constant
performance guarantees.

Theorem 1: At any time, the difference between the num-
bers of bits transmitted by a flow to the output port in GAPS
and GPS is greater than or equal to 2L and less than or equal
to L, i.e.

−2L ≤ toOij(0, t) − t̂oOij(0, t) ≤ L (37)

Proof: Without loss of generality, assume that

t ∈
[
V̂ F

k−1

ij + L
R , V̂ F

k

ij + L
R

)
.

First, we prove t̂oOij(0, t) − toOij(0, t) ≤ 2L. Based

on Lemma 5, we know that OSk−1
ij ≤ V̂ F

k−1

ij + L
R ≤ t,

and thus P k−1
ij has started transmission by time t in output

scheduling of GAPS. As a result

toOij(0, t)
≥ toOij

(
0, OSk−1

ij

)
+ min

(
R
(
t − OSk−1

ij

)
, Lk−1

ij

)
=

k−2∑
x=1

Lx
ij + min

(
R
(
t − OSk−1

ij

)
, Lk−1

ij

)
(38)

On the other hand, in GPS we have

t̂oOij(0, t)

=
∫ V̂ F

k−1
ij

0

Rij(x)b̂ij(x)dx +
∫ t

V̂ F
k−1
ij

Rij(x)b̂ij(x)dx

≤
k−1∑
x=1

Lx
ij +

∫ t

V̂ F
k−1
ij

Rij(x)b̂ij(x)dx (39)

By (38) and (39), we have

t̂oOij(0, t) − toOij(0, t)

≤ Lk−1
ij +

∫ t

V̂ F
k−1
ij

Rij(x)b̂ij(x)dx

−min
(
R
(
t − OSk−1

ij

)
, Lk−1

ij

)
= max

(
Lk−1

ij +
∫ t

V̂ F
k−1
ij

Rij(x)b̂ij(x)dx − R
(
t − OSk−1

ij

)
,

∫ t

V̂ F
k−1
ij

Rij(x)b̂ij(x)dx

)
(40)

Because OSk−1
ij − L

R ≤ V̂ F
k−1

ij by Lemma 5, we know∫ t

V̂ F
k−1
ij

Rij(x)b̂ij(x)dx ≤
∫ t

OSk−1
ij − L

R

Rij(x)dx

≤
∫ t

OSk−1
ij − L

R

Rdx

= R

(
t − OSk−1

ij +
L

R

)
= R

(
t − OSk−1

ij

)
+ L (41)

Since t < V̂ F
k

ij + L
R , we can obtain∫ t

V̂ F
k−1
ij

Rij(x)b̂ij(x)dx

≤
∫ V̂ F

k

ij+
L
R

V̂ F
k−1
ij

Rij(x)b̂ij(x)dx

≤
∫ V̂ F

k

ij

V̂ F
k−1
ij

Rij(x)b̂ij(x)dx +
∫ V̂ F

k

ij+
L
R

V̂ F
k

ij

Rij(x)dx

≤ Lk
ij +

∫ V̂ F
k

ij+ L
R

V̂ F
k

ij

Rdx

≤ Lk
ij + L (42)



Combing (40), (41), and (42)

t̂oOij(0, t) − toOij(0, t) ≤ max
(
Lk−1

ij + L, Lk
ij + L

)
≤ 2L (43)

Next, we prove toOij(0, t)− t̂oOij(0, t) ≤ L. Because a
packet Pij has to be transmitted to Bij before sent to Outj ,
it is obvious that toOij(0, t) ≤ toBij(0, t). In addition,
by neglecting propagation delay, we have t̂oOij(0, t) =
t̂oBij(0, t). Thus

toOij(0, t) − t̂oOij(0, t) ≤ toBij(0, t) − t̂oBij(0, t)
≤ L (44)

The next theorem gives the delay bounds. For easy
analysis of the delay difference lower bound, we assume
that the allocated bandwidth Rij(t) of Fij is a constant Rij

during interval
[
min

(
ISk

ij , V̂ S
k

ij

)
, max

(
OF k

ij , V̂ F
k

ij

)]
.

Theorem 2: For any packet P k
ij , the difference between its

departure time in GAPS and GPS is greater than or equal to
−Lk

ij

(
1

Rij
− 2

R

)
and less than or equal to 2L

R , i.e.

−Lk
ij

(
1

Rij
− 2

R

)
≤ OF k

ij − V̂ F
k

ij ≤ 2L

R
(45)

Proof: First, we prove OF k
ij − V̂ F

k

ij ≥
−Lk

ij

(
1

Rij
− 2

R

)
. Because a packet P k

ij has to be
buffered at Bij before sent to Outj , it is obvious that

OF k
ij ≥ IF k

ij +
Lk

ij

R
(46)

Based on Property 1, we know V̂ S
k

ij ≤ ISk
ij or in other

words V̂ F
k

ij − Lk
ij

Rij
≤ IF k

ij − Lk
ij

R , and thus we obtain

V̂ F
k

ij ≤ IF k
ij + Lk

ij

(
1

Rij
− 1

R

)
≤ OF k

ij + Lk
ij

(
1

Rij
− 2

R

)
(47)

Next, we prove OF k
ij − V̂ F

k

ij ≤ 2L
R . By Lemma 5, we

know OSk
ij ≤ V̂ F

k

ij + L
R . Because OF k

ij = OSk
ij + L

R , we

obtain OF k
ij − V̂ F

k

ij ≤ 2L
R .

B. Crosspoint Buffer Size Bound

Crosspoint buffers are expensive on-chip memories, and
it is desired that each crosspoint has only a limited size
buffer. To avoid overflow at crosspoint buffers, we would
like to find the maximum number of bits buffered at any
crosspoint.

Theorem 3: In GAPS, the maximum number of bits
buffered at any crosspoint buffer is upper bounded by 3L,
i.e.

toBij(0, t) − toOij(0, t) ≤ 3L (48)

Proof: By Lemma 3,

toBij(0, t) − t̂oBij(0, t) ≤ L (49)

By Theorem 1,

t̂oOij(0, t) − toOij(0, t) ≤ 2L (50)

Because GPS is a fluid based system, we have
t̂oBij(0, t) = t̂oOij(0, t) by neglecting the propagation
delay. Summing the above equations, we have proved the
theorem.

V. SIMULATION RESULTS

We have conducted simulations to verify the analytical
results obtained in Section IV and evaluate the effectiveness
of GAPS.

In the simulations, we consider a 16×16 buffered crossbar
switch without speedup. Each input port and output port
have bandwidth of 1G bps. Since GAPS can directly handle
variable length packets, we set packet length to be uniformly
distributed between 40 and 1500 bytes [19]. For bandwidth
allocation, we use the same model as that in [9] and [15].
The allocated bandwidth Rij(t) of flow Fij at time t is
defined by an unbalanced probability w as follows

Rij(t) =

{
R
(
w + 1−w

N

)
, if i = j

R 1−w
N , if i �= j

(51)

When w = 0, an input port Ini has the same amount of
allocated bandwidth R

N at each output port. Otherwise, Ini

has more allocated bandwidth at Outi, which is called the
hotspot destination. Because each flow is allocated a specific
amount of bandwidth, it is necessary to have admission
control flow to avoid over-subscription. Arrival of a flow
Fij is constrained by a leaky bucket (l×Rij(t), σij), where
l is the effective load. We set the burst size σij of every flow
to a fixed value of 10,000 bytes, and the burst may arrive at
any time during a simulation run. We use two traffic patterns
in the simulations. For traffic pattern one, each flow has fixed
allocated bandwidth during a single simulation run. l is fixed
to 1 and w is one of the 11 possible values from 0 to 1 with
a step of 0.1. For traffic pattern two, a flow has variable
allocated bandwidth. l is one of the 10 possible values from
0.1 to 1 with a step of 0.1, and for a specific l value, a
random permutation of the 11 different w values is used.
Each simulation run lasts for 10 seconds.



0 0.2 0.4 0.6 0.8 1
−3000

−2000

−1000

0

1000

2000

3000

4000

5000

Unbalanced Probability

S
er

vi
ce

 D
iff

er
en

ce
 (

by
te

s)

16x16 Switch

 

 

Maximum
Minimum
Upper Bound
Lower Bound

0 0.2 0.4 0.6 0.8 1
−3000

−2000

−1000

0

1000

2000

3000

4000

5000

Effective Load

S
er

vi
ce

 D
iff

er
en

ce
 (

by
te

s)

16x16 Switch

 

 

Maximum
Minimum
Upper Bound
Lower Bound

(a) (b)

Figure 3. Service difference of GAPS. (a) With different unbalanced
probabilities. (b) With different loads.

A. Service Guarantees

By Theorem 1, we know that the service difference of a
flow in GAPS and GPS at any time has a lower bound of
−2L and upper bound of L. We look at the simulation data
on service guarantees.

Figure 3(a) shows the minimum and maximum service
differences among all the flows during the entire simulation
run under traffic pattern one. As can be seen, the minimum
service difference is always greater than the lower bound. It
drops gradually when the unbalanced probability increases.
This indicates that when the traffic distribution is more
unbalanced, flows tend to transmit less traffic in GAPS than
in GPS. Note that when the unbalanced probability becomes
one, the minimum service difference jumps suddenly to
−1500 bytes. The reason is that when the unbalanced
probability is one, all packets of Ini go to Outi, and
there is no switching necessary. The only difference between
GAPS and GPS is that a packet needs to be buffered at the
crosspoint buffer in GAPS but not in GPS. Thus, the service
difference in the worst case is equal to the maximum packet
length. On the other hand, the maximum service difference
is always less than but very close to the upper bound.
However, when the unbalanced probability becomes one,
the maximum service difference drops to a negative value.
As analyzed in the above, when the unbalanced probability
is one, the only difference between GAPS and GPS is the
extra buffering at the crosspoint buffer. As a result, a flow
always transmits less traffic in GAPS than in GPS, and the
actual maximum service difference depends on the length of
the first packet, which is a random number between 40 and
1500.

Figure 3(b) shows the minimum and maximum service
differences under traffic pattern two. The minimum service
difference is always greater than the lower bound, and keeps
relatively constant. This indicates that the minimum service
difference is not sensitive to the change of effective load.
The maximum service difference increases steadily with the
effective load, but is always less than the upper bound.

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2x 10
−4

Unbalanced Probability

D
el

ay
 D

iff
er

en
ce

 (
se

co
nd

)

16x16 Switch

 

 

Average
Maximum
Minimum
Upper Bound
Lower Bound

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2x 10
−4

Effective Load

D
el

ay
 D

iff
er

en
ce

 (
se

co
nd

)

16x16 Switch

 

 

Average
Maximum
Minimum
Upper Bound

(a) (b)

Figure 4. Delay difference of GAPS. (a) With different unbalanced
probabilities. (b) With different loads.

B. Delay Guarantees

Theorem 2 gives the lower bound and upper bound for
the delay difference of a packet in GAPS and GPS. In
this subsection, we present the simulation data on delay
guarantees.

Figure 4(a) shows the minimum, maximum, and average
delay differences of a representative flow F11 under traffic
pattern one. Note that the delay difference lower bound
in Theorem 2 assumes fixed allocated bandwidth R ij and
depends on the packet length Lk

ij . For easy plotting of the
figure, we calculate the delay difference lower bound for all
packets of flow Fij as follows

−Lk
ij

(
1

Rij
− 2

R

)
≥
{
−L

(
1

Rij
− 2

R

)
, if Rij ≤ R

2

0, if Rij > R
2

(52)

As can be seen, the minimum delay difference is almost
coincident with the theoretical lower bound, and the max-
imum delay difference is almost identical with the upper
bound. This shows that the theoretical bounds are tight.
While the minimum delay difference increase as the unbal-
anced probability increases, the maximum delay difference
is not sensitive to the change of the unbalanced probability.
The average delay difference is initially negative. This is
reasonable because when the traffic is uniformly distributed,
most packets leave earlier than their departure time in GPS.
When the unbalanced probability increases, the average
delay difference also increases. Note that when the unbal-
anced probability becomes one, the minimum, maximum,
and average delay differences all become 1.2×10−5 second.
The explanation is the same as above, and a packet P k

ij needs

to wait until V̂ S
k

ij + L
R = V̂ S

k

ij +1.2×10−5 second to start
transmission from Bij in GAPS.

Figure 4(b) shows the minimum, maximum, and average
delay differences of flow F11 under traffic pattern two.
Because the delay difference lower bound in Theorem 2
assumes fixed allocated bandwidth, the lower bound curve
cannot be plotted. We can still see that the maximum delay
difference is always less than and very close to the upper
bound. Both the minimum and average delay differences



0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

Unbalanced Probability

C
ro

ss
po

in
t B

uf
fe

r 
O

cc
up

an
cy

 (
by

te
s)

16x16 Switch

 

 

Maximum
Average
Bound

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

Effective Load

C
ro

ss
po

in
t B

uf
fe

r 
O

cc
up

an
cy

 (
by

te
s)

16x16 Switch

 

 

Maximum
Average
Bound

(a) (b)

Figure 5. Crosspoint buffer occupancy of GAPS. (a) With different
unbalanced probabilities. (b) With different loads.

are relatively constant, and the average delay difference
is always negative, which means that most packets depart
earlier in GAPS than in GPS.

C. Crosspoint Buffer Size

Theorem 3 gives the bound of the crosspoint buffer size as
3L. In this subsection, we look at the maximum and average
crosspoint buffer occupancies in the simulations.

Figure 5(a) shows the maximum and average crosspoint
buffer occupancies under traffic pattern one. As can be see,
the maximum occupancy is always smaller than the theoret-
ical bound. It grows as the unbalanced probability increases,
but suddenly drops to about 3000 bytes when the unbalanced
probability becomes one. The reason is that now there will
be at most 2L bits buffered in crosspoint buffers B ii. For
the average occupancy, it does not change significantly with
different unbalanced probabilities. It drops to about 100
bytes, when the unbalanced probability becomes one. This is
because only crosspoint buffers Bii are now used, and the
remaining crosspoint buffers are empty. We can find that
the average occupancy is more affected by the load than the
unbalanced probability.

Figure 5(b) shows the maximum and average crosspoint
buffer occupancies under traffic pattern two. We can see that
the maximum occupancy increases as the load increases,
but does not exceed the theoretical bound. On the other
hand, the average occupancy does not change much and is
smaller than 150 bytes before the load increases to one.
This also confirms the previous observation that the average
occupancy is determined by the effective load.

D. Throughput

Next, we present the simulation data on throughput. Fig-
ure 6(a) shows the throughput under traffic pattern one. We
can see that the throughput for all unbalanced probabilities
is greater than 99.99%, which demonstrates that GAPS
practically achieves 100% throughput. Figure 6(b) shows
the throughput under traffic pattern two. As can be seen,
the throughput grows consistently with the effective load,
and finally reaches one.

0 0.2 0.4 0.6 0.8 1
0.9999

1

1.0001

Unbalanced Probability

T
hr

ou
gh

pu
t

16x16 Switch

 

 

Simulation Result
Theoretical Result

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Effective Load

T
hr

ou
gh

pu
t

16x16 Switch

 

 

Simulation Result
Theoretical Result

(a) (b)

Figure 6. Throughput of GAPS. (a) With different unbalanced probabili-
ties. (b) With different loads.

VI. CONCLUSIONS

Recent development in VLSI technology has made
buffered crossbar switches to be feasible, and they demon-
strate unique advantages over traditional unbuffered cross-
bar switches. The current emulation approach for buffered
crossbar switches to provide performance guarantees has
difficulty in providing tight constant performance guaran-
tees, because of its inability to emulate WF2Q. To address
the issue, we have presented in this paper the guaranteed-
performance asynchronous packet scheduling (GAPS) al-
gorithm for buffered crossbar switches. GAPS requires no
speedup, and directly handles variable length packets with-
out segmentation and reassembly (SAR). Different input
ports and output ports conduct scheduling independently
without any data exchange. We show by theoretical analysis
that GAPS achieves constant performance guarantees. In
addition, we prove that GAPS has a crosspoint buffer size
bound of 3L. Finally, we present simulation data to verify
the analytical results and evaluate the effectiveness of GAPS.

REFERENCES

[1] G. Kornaros, “BCB: a buffered crossBar switch fabric utilizing
shared memory,” EUROMICRO 2006, Aug. 2006.

[2] L. Mhamdi, C. Kachris, and S. Vassiliadis, “A reconfigurable
hardware based embedded scheduler for buffered crossbar
switches,” 14th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pp. 143-149, Monterey, CA, Feb.
2006.

[3] I. Papaefstathiou, G. Kornaros, and N. ChrysosUsing,
“Buffered crossbars for chip interconnection,” 17th Great
Lakes Symposium on VLSI, pp. 90-95, Stresa-Lago Maggiore,
Italy, Mar. 2007.

[4] K. Yoshigoe, K. Christensen, and A. Jacob, “The RR/RR CICQ
switch: hardware design for 10-Gbps link speed,” 22nd IEEE
International Performance, Computing, and Communications
Conference, pp. 481-485, Phoenix, AZ, Apr. 2003.

[5] S. Chuang, S. Iyer, and N. McKeown, “Practical algorithms for
performance guarantees in buffered crossbars,” Proc. of IEEE
INFOCOM 2005, Miami, FL, Mar. 2005.



[6] S. He et al., “On Guaranteed Smooth Switching for Buffered
Crossbar Switches,” IEEE/ACM Transactions on Networking,
Jun. 2008.

[7] J. Turner, “Strong performance guarantees for asynchronous
crossbar schedulers,” IEEE/ACM Transactions on Networking,
Aug. 2009.

[8] D. Pan and Y. Yang, “Localized independent packet scheduling
for buffered crossbar switches,” IEEE Transactions on Com-
puters, vol. 58, no. 2, pp. 260-274, Feb. 2009.

[9] L. Mhamdi and M. Hamdi, “MCBF: a high-performance
scheduling algorithm for buffered crossbar switches,” IEEE
Communications Letters, vol. 7, no. 9, pp. 451-453, Sep. 2003

[10] B. Magill, C. Rohrs and R. Stevenson, “Output-queued switch
emulation by fabrics with limited memory,” IEEE Journal on
Selected Areas in Communications, vol 21, no. 4, pp. 606-615,
May 2003.

[11] L. Mhamdi and M. Hamdi, “Output queued switch emula-
tion by a one-cell-internally buffered crossbar switch,” IEEE
GLOBECOM 2003, San Francisco, CA, Dec. 2003.

[12] D. Pan and Y. Yang, “Providing flow based performance
guarantees for buffered crossbar switches,” IEEE IPDPS 2008,
Miami, FL, Apr. 2008.

[13] M. Katevenis, G. Passas, D. Simos, I. Papaefstathiou, and
N. Chrysos, “Variable packet size buffered crossbar (CICQ)
switches,” Proc. IEEE ICC 2004, Paris, France, June 2004.

[14] M. Katevenis and G. Passas, “Variable-size multipacket seg-
ments in buffered crossbar (CICQ) architectures,” IEEE ICC
2005, Seoul, Korea, May 2005.

[15] R. Rojas-Cessa et al., “CIXB-1: Combined input-once-cell-
crosspoint buffered switch,” IEEE HPSR 2001, Jul. 2001.

[16] X. Zhang, S. Mohanty, and L. Bhuyan, “Adaptive max-min
fair scheduling in buffered crossbar switches without speedup,”
IEEE INFOCOM 2007, Anchorage, AK, May 2007.

[17] H. Ahmadi and W. Denzel, “A survey of modern high-
performance switching techniques,” IEEE Journal on Selected
Areas in Communications, vol. 7, pp. 1091-1103, Sep. 1989.

[18] N. McKeown, “A fast switched backplane for a gigabit
switched router,” Business Communications Review, vol. 27,
no. 12, 1997.

[19] C. Farleigh et al., “Packet-level traffic measurements from the
Sprint IP backbone,” IEEE Network, vol. 17, no. 6, pp. 6-16,
Nov. 2003.

[20] J. Dai and B. Prabhakar, “The throughput of data switches
with and without speedup,” IEEE INFOCOM 2000, Tel Aviv,
Israel, Mar. 2000.

[21] M. Shreedhar and G. Varghese, “Efficient fair queuing using
deficit round robin,” IEEE/ACM Trans. Networking, vol. 4, no.
3, pp. 375-385, Jun. 1996.

[22] A. Demers, S. Keshav, and S. Shenker, “Analysis and simu-
lation of a fair queueing algorithm,” ACM SIGCOMM 1989,
Sep. 1989.

[23] J. Bennett and H. Zhang, “WF2Q: worst-case fair weighted
fair queueing,” IEEE INFOCOM 1996, San Francisco, CA,
Mar. 1996.

[24] A. Parekh and R. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: the
single node case,” IEEE/ACM Trans. Networking, vol. 1, no.
3, pp. 344-357, Jun. 1993.

[25] S. Iyer and N. McKeown, “Analysis of the parallel packet
switch architecture,” IEEE/ACM Transactions on Networking
(TON), vol. 11, no. 2, pp. 314-324, Apr. 2003.

[26] S. Chuang, A. Goel, N. McKeown and B. Prabhkar, “Match-
ing output queueing with a combined input output queued
switch,” IEEE INFOCOM’99, pp. 1169-1178, New York, 1999.

[27] I. Stoica and H. Zhang, “Exact emulation of an output
queueing switch by a combined input output queueing Switch,”
6th IEEE/IFIP IWQoS ’98, Napa, CA, May 1998.

[28] D. Stephens and H. Zhang, “Implementing distributed packet
fair queueing in a scalable switch architecture,” IEEE INFO-
COM 1998, San Francisco, CA, March 1998.

[29] N. Ni and L. Bhuyan, “Fair scheduling for input buffered
switches,” Cluster Computing, Apr. 2003.

[30] X. Zhang and L. Bhuyan, “Deficit round-robin scheduling
for input-queued switches,” IEEE Journal on Selected Areas
in Communications, no. 4, pp. 584-594, May 2003.

[31] D. Pan and Y. Yang, “Max-min fair bandwidth allocation
algorithms for packet switches,” IEEE IPDPS 2007, Mar. 2007.

[32] M. Hosaagrahara and H. Sethu, “Max-min fairness in input-
queued switches,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 19, no. 4, pp. 462-475, Apr. 2008.

[33] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Wal-
rand, “Achieving 100% throughput in an input queued switch,”
IEEE Trans. Commun., vol. 47, no. 8, pp. 1260-1267, Aug.
1999.

[34] J. Kurose and K. Ross, “Computer networking: a top-down
approach,” Addison Wesley, 4th edition, April 2007.

[35] E. Leonardi, M. Mellia, F Neri, and M. Marsan, “On the
stability of input-queued switches with speed-up,” IEEE/ACM
Trans. Networking, vol. 9, no. 1, pp. 104-118, Feb. 2001.


