
Parallel Packet Switch without
Segmentation-and-Reassembly

Hao Jin, Deng Pan, and Niki Pissinou
Florida International University

Abstract—The ever increasing demand for more bandwidth at
core routers has been a challenge for switch design. To address
the challenge, parallel packet switches (PPSs) combine multiple
parallel switching fabrics and provide huge aggregate bandwidth.
However, most existing PPSs handle only fixed length packets,
also called cells, mainly because traditional switching fabrics can
process only cells. Since packets in the Internet are of variable
length, existing PPSs need segmentation-and-reassembly (SAR)
to process such packets, which will introduce padding bits and
waste precious bandwidth. In this paper, we propose a PPS
to directly handle variable-length packets without SAR. First,
we present a simplified 1 × 1 variable-length PPS. We design
the packet distribution and collection algorithms, and show that
input and output conversion buffers are bounded by 2L, where
L is the maximum packet length. Next, we present a general
N ×N variable-length PPS, and propose the packet scheduling
algorithms. We then prove our main result that such a PPS can
emulate a first-in-first-out (FIFO) output queued (OQ) switch
with speedup of two, i.e. emulating an FIFO OQ switch with
bandwidth R by 2K − 1 parallel switching fabrics each with
bandwidth r, where r = R/K.

I. INTRODUCTION

With the booming of broadband multimedia applications,
there is an ever increasing demand for more bandwidth at
core routers. However, traditional single switching fabric based
switches are more and more difficult to meet this bandwidth
demand both technically and financially. A popular solution to
this challenge is the Parallel Packet Switch (PPS) [1], which
combines several lower-speed switching fabrics or center stage
switches (CSSs) to provide huge aggregate bandwidth.

Although there exist a number of PPS designs in the
literature, most of them handle only fixed length packets, also
called cells. [1] uses k output queued (OQ) switches as center
stage switches, where k is the ratio between the external line
rate and internal line rate. Each arriving packet is divided
into fixed length cells first, and then sent into the switch.
It is showed that, such a PPS can emulate a first-in-first-out
(FIFO) OQ switch with speedup of 2, and emulate a push-
in-first-out (PIFO) switch with speedup of 3. Further, [1] also
shows that with extra buffer at each input and output, the PPS
eliminates the need for speedup when emulating the FIFO
OQ switch. [2] employs virtual input queues at multiplexers
and corresponding cell dispatch-and-reassembly algorithms to
achieve load balancing and in-order cell delivery. In [3], a
large scale ATM switch similar to PPSs is presented. It uses
a multipath parallel distribution approach to distribute ATM
cells and thus provide large switching capacity. All the above
PPSs are based on the assumption that packets are segmented
into fixed length cells at the input and then reassembled back

at the output. This segmentation-and-reassembly (SAR) [4]
[5] process simplifies the switch design [6] [7], but may
significantly affect the switch performance [8].

Recent advances in switching techniques have made it pos-
sible to directly process variable-length packets without SAR
[8] [9]. Variable-length packet switches (or packet switches for
short) have some unique advantages. First, packet switches
can better utilize available bandwidth and achieve higher
throughput. Cell switches may waste significant bandwidth
on extra traffic including cell overheads and cell padding. In
contrast, packet switches do not have such bandwidth waste.
Second, since there is no segmentation and reassembly in
packet switches, packets have shorter queuing delay than in
cell switches. Therefore, packet switches reduce the latency
that a packet experiences. Finally, no extra buffer space is
needed at the input port or output port to segment and
reassemble packets, which lowers hardware cost.

Our goal of this paper is to extend the packet switch design
from single-fabric switches to PPSs, so that PPSs can utilize
the advantages and achieve better performance with lower
cost. Although there are a few studies on packet based PPSs,
they are not able to process arbitrary variable-length packets.
[10] handles variable-length packets by sending logical cells
that belong to the same packet through the same switching
plane. Although less overhead is needed, extra padding bits,
which lower the overall throughput, are still required when
the packet size is smaller than the cell size. [11] proposes the
Flow-Mapping PPS (FM-PPS) with flow level load balancing.
It guarantees the packet order of each micro-flow and thus
eliminates the costly resequencing. However, FM-PPS works
only when packets can be organized as micro flows and
it needs k buffers at each demultiplexer which increases
hardware cost.

In this paper, we present a PPS that directly handles
variable-length packets without SAR and with low hardware
cost. We start with a simplified 1 × 1 variable-length PPS,
which is similar to the traditional inverse multiplexing system
[12]. As shown in Figure 1, two additional types of buffers,
namely input conversion buffers (ICBs) and output conversion
buffers (OCBs), are required to accommodate the speed dif-
ferences between the input/output lines and the CSSs. Two
scheduling policies are designed to limit the size of ICBs and
OCBs, respectively. We show that both the ICB size and OCB
size can be bounded by 2L, where L is the maximum packet
length. Moreover, we prove that the second policy enables
the switch to emulate an FIFO OQ switch. Next, we study

Demultiplexer
Input Conversion Buffer

(ICB)

1 x 1 OQ Center Stage Switch (CSS)

Multiplexer
Output Conversion Buffer

(OCB)

R R

R R

r r

K CSSs

Fig. 1. 1× 1 Variable-Length Parallel Packet Switch

the general N × N variable-length PPS by expanding the
1×1 switch structure and combing its two scheduling policies.
We prove that such a PPS can emulate an FIFO OQ switch
with speedup of 2, i.e. emulating an FIFO OQ switch with
bandwidth R by using 2K − 1 CSSs each with bandwidth r,
where r = R/K.

The rest of the paper is organized as follows. In Section II,
we describe the 1× 1 variable-length PPS. In Section III, we
present the general variable-length PPS. Finally in Section IV,
we conclude the paper.

II. 1× 1 VARIABLE-LENGTH PARALLEL PACKET SWITCH

Before presenting the general variable-length PPS (vPPS),
we first describe a simplified vPPS with one input and one
output, which will be the basis to design the scheduling
algorithms for the general case.

A. Switch Structure
A 1 × 1 vPPS, as shown in Figure 1, consists of a

demultiplexer with bandwidth R, K 1 × 1 CSSs each with
bandwidth r = R/K, and a multiplexer with bandwidth
R. The demultiplexer distributes variable-length packets to
CSSs, from where the packets are collected by the multiplexer.
Since a 1 × 1 switch needs no switching, the CSS in this
case is simply a queue. The demultiplexer and the CSS have
different bandwidth, and therefore each CSS needs an ICB to
accommodate the speed difference. When the demultiplexer
dispatches a packet to a CSS, the demultiplexer first sends
the packet to the corresponding ICB, from where it will be
retrieved by the CSS. If there are multiple packets in the ICB,
they are stored as a first-in-first-out queue. Similarly, each CSS
also has an OCB for the speed difference with the multiplexer.
Note that the demultiplexer has no high-speed buffer to buffer
arriving packets, and similarly the multiplexer has no high-
speed buffer to store outgoing packets.

We are interested in the scheduling policies and conversion
buffer sizes for the demultiplexer and multiplexer to be work
conserving, i.e. keeping busy if there are packets to transmit.
This seems trivial for fixed length cells, which can be easily
accomplished with a round-robin packet distribution policy
and L buffer space at each ICB and OCB, where L is
the maximum packet length. However, with variable length
packets, the problem becomes more challenging, which we
will illustrate using the following example. Consider a 1 × 1
vPPS with two CSSs. The bandwidth of the demultiplexer and

B

ABC

ICB 1

AC

L/s L/s

L/s

L/s L/s

L/s

L/2s

L/2s

(a) Time 0s: packet A arrives (b) Time 5/3s: packet C arrives

ICB 2

ICB 1

ICB 2
L/2s

L/2s

Fig. 2. A 1× 1 vPPS with ICBs of size L is not work conserving.

multiplexer is L/s, and that of the CSS is L/2s. Each ICB
has L buffer space. Three packets A,B, and C with length of
L, 2L/3, and L, respectively, arrive at the demultiplexer back
to back, as shown in Figure 2(a). Without loss of generality,
assume that at time 0s the demultiplexer start dispatching the
first packet A to the first ICB, and the dispatch will finish at
1s. Next, during [1s, 5/3s], the demultiplexer dispatches the
second packet B to the second ICB. Note that the first and
second ICBs will not become empty earlier than 2s and 7/3s,
respectively. However, the demultiplexer finished dispatching
packet B and should start dispatching the third one C at 5/3s.
Therefore, although the total bandwidth of the two CSSs is the
same as that of the demultiplexer, but the demultiplexer cannot
be work conserving with L ICB space.

In the rest of this section, we propose two scheduling
policies for packet distribution and collection, and analyze the
conversion buffer size bounds.

B. Policy A: ICB based Packet Distribution
This policy considers only packet distribution at the de-

multiplexer, and is based on the shortest queue first (SQF)
algorithm. Specifically, when a new packet arrives, the de-
multiplexer checks the queue lengths of all the K ICBs, and
selects the shortest queue to send the packet. If multiple ICBs
have the same shortest length, the demultiplexer selects the
one with the smallest index.

We will first analyze the characteristic of ICBs and prove
later that, with Policy A, the size of any ICB is bounded by
a small value, i.e. 2L, while the demultiplexer is guaranteed
to be work conserving. Denote the queue length of the ith
ICB as B̂i. (Since we always consider the values of different
variables at the same time point, we omit the time parameter
in the notation for simplicity.) Due to the space limitation, we
only show the proofs of part of the lemmas and theorems.

Lemma 1: The queue length difference between any two
ICBs is less than or equal to L, i.e.

|B̂i − B̂j | ≤ L (1)
Proof: Assume the queue length difference between any

two ICBs could be greater than L, or B̂i− B̂j > L. Since the
length L̂n of the last packet n of the ith ICBs is less than or
equal to largest packet size L, we have (B̂i − L̂n) − B̂j >

L − L̂n > L − L = 0. In other words, when packet n was
selecting its CSS, it did not choose the one with the shortest
ICB length which contradicts the policy. Hence the assumption
is not possible.

Based on whether all the CSSs are retrieving packets from
their ICBs, we define two statuses. In the partially-busy status,
at least one CSS is idle (with empty ICBs), while in the fully-
busy status, all CSSs are busy (without empty ICBs).

Theorem 1: In the partially-busy status, the queue length of
any ICB is bounded by L, i.e.

B̂i ≤ L (2)

Proof: In the partially-busy status, the minimum queue
length of ICB equals to zero when the ICB is idle. Also from
Lemma 1 we know that the maximum queue length difference
between two queues are less than or equal to L. Thus the
maximum ICB queue length is less than or equal to L when
system is in the partially-busy status.

Lemma 2: In the fully-busy status, the total length of all
ICBs is less than or equal to (K − 1)L, i.e.

K∑
i=1

B̂i ≤ (K − 1)L (3)

The proof is omitted due to space limitations.
Lemma 3: In the fully-busy status, the maximum value of

the minimum ICB queue length is less than or equal to (1−
1
K)L, i.e.

min{B̂i} ≤ (1− 1

K
)L (4)

Theorem 2: In the fully-busy status, the queue length of any
ICB is bounded by 2L, i.e.

B̂i ≤ 2L (5)

Proof: Theorem 2 can be proved by Lemma 1 and 3.
Theorem 3: For a 1×1 vPPS adopting the SQF scheduling

policy, the ICB queue length is bounded by 2L, i.e.

B̂i ≤ 2L (6)

Proof: By Theorem 1 and 2, Theorem 3 is proved.

C. Policy B: OCB based Packet Distribution and Retrieval
We now present the second policy for the 1 × 1 vPPS,

which controls both the packet distribution/collection and the
switching at CSS. First, we describe the detail process and pa-
rameter definitions of each phase, namely Packet Distribution,
Switching at CSSs and Packet Collection. Then we show by
lemmas and theorems that by employing Policy B, the 1 × 1
vPPS emulates FIFO OQ switch with small bounded OCB
size.

1) Packet Distribution: When packet n arrives, the demul-
tiplexer distributes packets to different CSSs. The basic idea
is that the demultiplexer selects the CSS i with the earliest
OCB Entry Start time ̂OESn,i, whose calculation will be
explained in detail later. If multiple CSSs has the same earliest
OCB entry start time, the one with the smallest index will be
selected.

The calculation of ̂OESn,i, which represents packet n’s
entry start time of the ith OCB, is different for different packet
categories. To simplify the analysis, we use a fixed time T̂ to
represent the maximum delay from the input port to the CSS
output queue. Denote the Input port Arrival time of packet n
as ÎAn and its CSS output queue Arrival time as ĈAn. Then
we have ĈAn = ÎAn + T̂ .

For the first K packets, according to the policy, each of
them selects the CSS with an empty OCB and with the same
index. When these packets arrive at the CSS output queues,
the OCB entry is available. However, they will not enter OCB

but wait until time X̂ , where X̂ = ĈA1 +
L
r . Thus, the first

K packets have the same OCB entry start time, i.e.̂OES1,1 = ... = ̂OESK,K = X̂ = ĈA1 +
L

r
(7)

On the other hand, when a packet after the first K one
arrives at the CSS, the output queue may already have packets.
Packet n will not start entering OCB until the last packet in
the CSS output queue finishes its OCB entry. Denote the last
packet in CSS i as packet m and its OCB Entry Finish time
as ̂OEFm,i. Then ̂OESn,i is calculated aŝOESn,i = max(ĈAn, ̂OEFm,i);∀n > K (8)

Then the demultiplexer selects the CSS with the smallest OCB
entry start time for packet n.

2) Switching at CSSs: As mentioned before, the CSS of
1 × 1 PPS can be treated as a queue. Thus, when packet n
arrives at the CSS, it will stay in the output queue until the
OCB entry start time comes and then start to enter the OCB.

3) Packet Collection: Finally, the multiplexer collects pack-
ets from OCBs. Specifically, the multiplexer collects packets
one by one according to their arrival order to the input port.
Recall that the first packet enters the OCB at time X̂ . The
multiplexer will start to collect the first packet at time D̂,
where D̂ = X̂ + L

r . Denote the OCB Departure Start time of
packet n from the ith OCB as ̂ODSn,i. Therefore,

̂ODS1,i = D̂ = X̂ +
L

r
(9)

Lemma 4: With Policy B, at any time after the OCB entry
start time of the first packet, all OCB entries are busy.

Lemma 5: Packet n is already in the OCB when the mul-
tiplexer starts to collect it. In other words, packet n’s OCB
departure start time ̂ODSn,i is greater than or equal to its
OCB entry finish time ̂OEFn,i, i.e.̂ODSn,i ≥ ̂OEFn,i (10)

Proof: Since the multiplexer collects packets by their
arriving order at rate R, we have

̂ODSn,i = ̂ODS1,i +

∑n−1
x=1 Lx

R
(11)

By (9), we have

̂ODSn,i = X̂ +
L

r
+

∑n−1
x=1 Lx

R
(12)

While ̂OEFn,i = ̂OESn,i +
Ln

r
≤ ̂OESn,i +

L

r
(13)

The OCB entry start time ̂OESn,i of packet n is maximized
when all K CSSs has the same OCB entry start time. Since all
OCBs start the packet entry at the same time and are always
busy, the maximal ̂OESn,i is calculated by

̂OESn,i ≤ ̂OES1,1 +

∑n−1
x=1 Lx

Kr
(14)

By (7) and (14), (13) becomeŝOEFn,i ≤ X̂ +

∑n−1
x=1 Lx

R
(15)

The lemma is proved by subtracting (15) from (12).
Theorem 4: The 1×1 vPPS with Policy B emulates a 1×1

FIFO OQ switch.
Proof: The multiplexer collects packet one by one by

their arriving order. In Lemma 5, we proved that every packet
is ready in the OCB when the multiplexer starts to collect it.
In other words, the multiplexer does not wait between two
packet collections. Thus the switch is working conserving. On
the other hand, the switch departure start time (OCB departure
start time) of the first packet is bounded. Thus all packets leave
the switch continuously with a bounded delay. Hence, the 1×1
vPPS with Policy B emulates an FIFO OQ switch.

Theorem 5: With Policy B, the queue length Ĉi of any OCB
is bounded by 2L, i.e.

Ĉi ≤ 2L (16)

Proof: The queue length of any OCB keeps increasing
until the multiplexer collects packet from it. So when packet n
is being collected by the multiplexer, the current queue length
Ĉn,i of the ith OCB equals to the differences between the
total packets arrived Ên,i and the total packets left D̂n,i, i.e.

Ĉn,i = Ên,i − D̂n,i (17)

In Lemma 4, it is proved that all CSSs send packets to OCB
continuously. Thus when packet n starts to depart from OCB
i at time ̂ODSn,i, Ên,i is calculated as

Ên,i = (̂ODSn,i − ̂OES1,1)r =

∑n−1
x=1 Lx

K
+ L (18)

When the nth packet departs from the ith OCB, all the
previous packets entered the same OCB has already left. Thus,
D̂n,i should equal to the total length of all the previous packets
in the same OCB, P̂n,i. Since the OCB entry is always busy.
P̂n,i is minimized when the OCB enter time of packet n is
minimized. In this case, the output queue length of the ith
CSS is L shorter than that of others. Then we have

D̂n,i = P̂n,i ≥
∑n−1

x=1 Lx − (K − 1)L

K
(19)

Thus, by (18) and (19)

Ĉn,i = Ên,i − D̂n,i = (2− 1

K
)L ≤ 2L (20)

Hence, the queue length of any OCB i is bounded by 2L.

III. GENERAL VARIABLE-LENGTH PARALLEL PACKET
SWITCH

In this section, we present the general vPPS. We first
describe the switch architecture, scheduling algorithms and
parameter definitions. Then, we show by analysis that vPPS
can emulate an FIFO OQ switch with speedup of 2.

A. Switch Architecture
As shown in Figure 3, an N × N vPPS consists of N

demultiplexers, 2K − 1 CSSs, and N multiplexers. The vPPS
has bandwidth of R, and each CSS has bandwidth r, where
r = R/K. Each demultiplexer acting as an input of the
vPPS, distributes arriving packets to the CSSs. The packets
are then transmitted through the CSSs, and finally collected

Demultiplexer ICB N x N OQ CSS MultiplexerOCB

R

R

R R

R

R

RrrR

N Inputs N Outputs

2K-1 CSSs

Fig. 3. General Variable Length Parallel Packet Switch

by multiplexers, which act as outputs of vPPS. Similar with
1×1 vPPS, each input (output) of the CSS has an ICB (OCB)
accommodate the bandwidth difference with the demultiplexer
(multiplexer). Note that the demultiplexers and multiplexers do
not have high speed buffers.

B. Scheduling Algorithms
The demultiplexers and multiplexers work as follows.
1) Packet Distribution: In general, the packet distribution

in the vPPS can be divided into two stages, and each stage
uses a policy similar to Policy A and Policy B of the 1 × 1
vPPS, respectively. In the first stage, the demultiplexer chooses
K candidates out of all 2K − 1 CSSs based on their ICB
length. Specifically, when packet n arrives, the demultiplexer
checks the ICB status of each CSS and then selects the K
CSSs with the shortest ICB queue length as candidates. In the
second stage, the demultiplexer chooses the final CSS from
the K candidates based on their OCB entry start time. To be
specific, the demultiplexer selects the CSS i with the earliest
OCB Entry Start time OESn,i, whose calculation will be
explained in detail later. If multiple CSSs has the same earliest
OCB entry start time, the one with the smallest index will be
selected.

The vPPS also calculates the OESn,i differently for dif-
ferent packet categories. Similarly, we use a fixed time T to
represent the maximum delay from the input port to the CSS
output queue. Denote the Input port Arrival time of packet n
as IAn and its CSS output queue Arrival time as CAn. Then
we have CAn = IAn + T .

For the first K packets, each of them selects the CSS with
an empty output queue and with the same index. For example,
packet 1 will select CSS1. When these packets arrive at the
CSS output queue, the OCB entry is available. However, they
will not enter OCB until time X , where X = CA1+

L
r . Thus,

the first K packets have the same OCB entry start time, i.e.

OES1,1 = ... = OESK,K = X = CA1 +
L

r
(21)

On the other hand, for packets after the first K ones, they
may have to wait to enter the OCB until the last packet in the
same CSS output queue finishes its OCB entry. Denote the
last packet in CSS i as packet m and its OCB Entry Finish
time as OEFm,i. The OCB entry start time of packet n is
calculated as

OESn,i = max(CAn, OEFm,i),∀n > K (22)

Then the demultiplexer selects the CSS with the smallest OCB
entry start time for packet n.

2) Switching at CSSs: For simplicity, we assume all the
CSSs are output queued switches. Therefore, after a packet
arrives at the CSS, it will stay in the output queue until the
OCB entry start time comes and then start to enter the OCB.

3) Packet Collection: The multiplexer collects packets one
by one according to their arrival order at the input port. Recall
that the first packet enters the OCB at time X . The multiplexer
will start to collect the first packet at time D, where D =
X + L

r . Denote the OCB Departure Start time of packet n
from the ith OCB as ODSn,i. Therefore,

ODS1,i = D = X +
L

r
(23)

C. Performance Analysis
Theorem 6: In the vPPS, the queue length Bi of any ICB

is bounded by 2L, i.e.

Bi ≤ 2L (24)

Proof: Recall that in the first stage of the packet distri-
bution policy, all 2K− 1 CSSs will be divided in two groups,
one with K − 1 CSSs and another with K CSSs. Denote the
former as Group 1 and the latter as Group 2. In the second
stage, one of the CSS i in Group 2 will be chosen as the final
CSS of the arrival packet. From the policy, we know that the
ICB queue length of CSS i is less than or equal to that of any
CSS in Group 1. Then if we consider CSS i and all K − 1
CSSs in Group 1 together as a new Group 3, we find that the
ICB queue length of CSS i is the shortest among the all K
CSSs in Group 3. In other words, the CSS selection in vPPS
can be considered as selecting the CSS with the shortest ICB
length among K selected CSSs. Thus by Theorem 3, we can
prove that the queue length of any CSS in Group 3 is bounded
by 2L. Since the CSS in Group 3 has the largest ICB queue
length, the ICB queue length of CSSs in both Group 1 and
Group 2 is bounded by 2L.

Lemma 6: In the vPPS, packet n is already in the OCB
when the multiplexer starts to collect it. In other words, packet
n’s OCB departure start time ODSn,i is greater than or equal
to its OCB entry finish time OEFn,i, i.e.

ODSn,i ≥ OEFn,i (25)

Proof: Lemma 6 can be proved by using the similar
method in Lemma 5.

Theorem 7: The vPPS can emulate an FIFO OQ switch
with speedup of 2.

Proof: Similar to the proof of Theorem 4, the FIFO
OQ switch emulation can be proved by Lemma 6. The total
bandwidth of the 2K−1 CSSs is (2−1/K)R, which indicates
speedup of 2.

Theorem 8: In the vPPS, the queue length Ci of any OCB
i is bounded by 2L, i.e.

Ci ≤ 2L (26)

Proof: The queue length of any OCB keeps increasing
until the multiplexer collects packet from it. In other words,

Ci may reach its maximum only at the time when packet n
departs from the OCB, i.e. at ODSn,i.

It is observed that, by time ODSn,i, all the packets that
entered OCB i prior to packet n have already left. Thus at this
moment, the OCB length Cn,i should equal to the total amount
of packets that entered OCB i during OESn,i to ODSn,i. And
this total amount is maximized if the ith OCB entry keeps
busy during OESn,i to ODSn,i, i.e.

Cn,i ≤ (ODSn,i −OESn,i)r (27)

By (21), (22) and (23), we have

Cn,i ≤ (ODSn,i − CAn)r = 2L (28)

Hence, the queue length of any OCB i is bounded by 2L.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have studied the PPS architecture to
directly handle variable-length packets without SAR. We first
describe a 1×1 variable-length PPS, and present two schedul-
ing policies, with which we prove that the input and output
conversion buffers can be bounded by 2L, where L is the
maximum packet length. Next, we present the general N ×N
variable-length PPS. It extends the 1×1 PPS by expanding the
switch structure and combining the two scheduling policies. It
is showed that such a PPS can emulate an FIFO OQ switch, i.e.
emulating an FIFO OQ switch with bandwidth R by 2K − 1
center stage switches each with bandwidth r, where r = R/K.
Further we prove that input and output conversion buffers of
size 2L are sufficient to achieve the emulation.

REFERENCES
[1] S. Iyer, N. McKeown, “Analysis of the parallel packet switch architec-

ture,” IEEE/ACM Trans. Networking, vol. 11, no. 2, pp. 314-324, Apr.
2003.

[2] A. Aslam and K. J. Christensen, “A parallel packet switch with multi-
plexors containing virtual input queues,” Computer Communications, vol.
27, no. 13, pp. 1248-1263, Aug. 2004.

[3] N. Moriwaki, A. Makimoto, Y. Oguri, M. Wada, and T. Kozaki, “Large
scale ATM switch architecture for Tbit/s systems,” IEEE GLOBECOM,
Sydney, Australia, Nov. 1998.

[4] S. He et al., “On Guaranteed Smooth Switching for Buffered Crossbar
Switches,” IEEE/ACM Trans. Networking, vol. 16, no. 3, pp. 718-731,
Jun. 2008.

[5] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Trans. Networking, vol. 7, no. 2, pp. 188-201, Apr.
1999.

[6] S. Mneimneh, V. Sharma, and K.-Y. Siu, “Switching using parallel input-
output queued switches with no speedup,” IEEE/ACM Trans. Networking,
vol. 10, no. 5, pp. 653-665, Oct. 2002.

[7] B. Lin, I. Keslassy, “The concurrent matching switch architecture,”
IEEE/ACM Trans. Networking, vol.18, no.4, pp. 1330-1343, Aug. 2010.

[8] J. Turner, “Strong performance guarantees for asynchronous crossbar
schedulers,” IEEE/ACM Trans. Networking, vol. 17, no. 4, pp. 1017-1028,
Aug. 2009.

[9] D. Pan and Y. Yang, “Localized independent packet scheduling for
buffered crossbar switches,” IEEE Transactions on Computers, vol. 58,
no. 2, pp. 260-274, Feb. 2009.

[10] H. Zhong, D. Xu, Z. Zhu, “A parallel packet switch supporting variable-
length packets,” IEEE ICCCAS, Hong Kong, China, May 2005.

[11] L. Shi, G. Xia, and B. Liu, “Performance guarantees for flow-mapping
parallel packet pwitch,” IEEE IPCCC, New Orleans, LA, Apr. 2007.

[12] P. Fredette, “The past, present, and future of inverse multiplexing,” IEEE
Communication Magazine, vol. 32, pp. 42-46, Apr. 1994.

