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Abstract—A group of switch schedulers make packet schedul-
ing decisions based on predefined bandwidth allocation for each
flow. Allocating bandwidth for best effort flows is challenging
due to lack of allocation criteria and fairness principles. In this
paper, we propose sequential and parallel algorithms to allocate
bandwidth for best effort flows in a switch, to achieve fairness
and efficiency. The proposed algorithms use the queue length
proportional allocation criterion, which allocates bandwidth to
a best effort flow proportional to its queue length, giving more
bandwidth to congested flows. In addition, the algorithms adopt
the max-min fairness principle, which maximizes bandwidth
utilization and maintains fairness among flows. We first formulate
the problem based on the allocation criterion and fairness
principle. Then, we present a sequential algorithm and prove that
it achieves max-min fairness. To accelerate the allocation process,
we propose a parallel version of the algorithm, which allows
different input ports and output ports to conduct calculation
in parallel, resulting in fast convergence. Finally, we present
simulation data to demonstrate that the parallel algorithm is
effective in reducing the convergence iterations.

Index Terms—bandwidth allocation; max-min fairness; paral-
lel processing

I. INTRODUCTION

There exists an important group of switch scheduling al-
gorithms that rely on pre-calculated bandwidth allocation to
make scheduling decisions [1], [2]. With such algorithms,
each traffic flow of the switch needs to be allocated a certain
amount of bandwidth, which the scheduling algorithms will
try to guarantee by arranging packet transmissions for differ-
ent flows. The objective is to emulate the ideal Generalize
Processor Sharing (GPS) model [3], where each flow has an
logical independent transmission channel with the allocated
bandwidth. The bandwidth allocation has to be feasible, which
means that the total amount of allocated bandwidth at any
input or output port cannot exceed its physically available
bandwidth. In addition, it should be efficient, which means to
fully utilize any potential transmission capacity and allocate
bandwidth in a fair manner.

Switches handle two broad categories of traffic flows [4]:
guaranteed performance flows with strong bandwidth and
delay requirements, such as multimedia streaming traffic, and
best effort flows requiring no strict delay, such as file sharing
traffic. Since the former have higher priority than the latter,
the switch first satisfies the bandwidth requests of the former,
and uses the remaining available bandwidth for the latter. We
will focus on the issue of how to efficiently and fairly allocate
the leftover bandwidth to the best effort flows.

Bandwidth allocation for best effort flows faces two diffi-
culties. In the first place, an criterion is necessary as the band-
width allocation policy. For guaranteed performance flows, the
allocation criteria are easy to find, which can be application
requests or historical statistics. However, best effort flows have
no such apparent information. In this paper, we propose the
queue length proportional criterion, with the reasoning that
if a flow has more packets waiting in the queue, then it
needs more bandwidth. More importantly, a fairness principle
is necessary to resolve the conflicts among flows. Each flow
of the switch competes bandwidth with two different sets of
flows, one departing from the same input port and one destined
for the same output port. It is thus important to maintain
fairness among flows. In this paper, we use max-min fairness
for this purpose, which has long been a popular fairness
principle for resource allocation [5], [6]. As suggested by the
name, max-min achieves fairness by maximizing the minimum
allocation. Hosaagrahara and Sethu proposed a bandwidth
allocation algorithm based on the max-min fairness principle,
which is called Fair Resource Allocation (FRA) [5]. However,
FRA is specific to virtual output queueing switches, and is
integrated with the Largest Credit First scheduling algorithm
in [5].

It is challenging to calculate bandwidth allocation schemes
following the above policies. As mentioned earlier, each flow
is subject to two bandwidth constraints, at its input port
and output port respectively. Since each input port has the
bandwidth information of its own flows, it does not know how
much bandwidth the corresponding output port will allocate
to a specific flow, and the same happens to the output port.
Thus, a naive bandwidth allocation scheme may be under-
utilized or over-utilized. For the under-utilized case, the unused
bandwidth should be allocated to make full use of available
resource. For the over-utilized case, it is necessary to fairly
scale down the claimed bandwidth of each flow to make the
scheme feasible. In this sense, centralized global controllers
are appropriate. However, centralized controllers are usually
slow and cannot satisfy the time constraints of high speed
switches and routers.

In this paper, we propose bandwidth allocation algorithms
for best effort flows, which are independent of switch struc-
tures and scheduling algorithms. We first formulate the prob-
lem based on the queue length proportional criterion and max-
min fair principle. We then present a sequential algorithm
and prove that it achieves max-min fairness. To accelerate the



allocation process, we further propose a parallel version of the
algorithm, which enables different input and output ports to
conduct calculation in parallel, and thus achieves fast conver-
gence. Finally, we present simulation data to demonstrate that
the parallel algorithm is effective in reducing the convergence
time.

The rest of the paper is organized as follows. In Section II,
we discuss the background and related works. In Section III,
we propose the sequential and parallel bandwidth allocation
algorithms. In Section IV, we present simulation data. In
Section V, we conclude the paper.

II. BACKGROUND AND RELATED WORKS

In this section, we provide a brief overview of switch
structures and corresponding scheduling algorithms based on
pre-defined bandwidth allocation.

Switches buffer packets at three possible locations: output
ports, input ports, and crosspoints, and can be consequently
divided into several categories. Output queued (OQ) switches
have buffers only at output ports. Since there is no buffer at
the input side, if multiple input ports have packets arriving
at the same time that are destined to the same output port,
all the packets must be transmitted simultaneously. Thus, OQ
switches need large speedup to achieve optimal performance,
and are not practical [7]. On the other hand, since all the
packets are already in output buffers, OQ switches can run
various fair queueing algorithms, such as WFQ [3] and DRR
[8], to provide different levels of performance guarantees.
The fair queueing algorithm schedules packets to ensure the
allocated bandwidth of each flow as in the ideal GPS [3] fluid
model.

Input queued (IQ) switches have buffers at input ports,
and eliminate speedup requirements. Input buffers are usually
organized as multiple virtual output queues (VOQ) [9], with
a logical separate queue for flows to a different destination,
to avoid the Head of Line (HOL) blocking. Scheduling al-
gorithms based on allocated bandwidth for IQ switches try
to emulate the corresponding fair queueing algorithms for
OQ switches with iterative matching. For example, iFS [10]
and iDRR [11] emulate WFQ [3] and DRR [8], respectively.
In addition, WPIM [12] improves PIM [13] with bandwidth
enforcement and provides probabilistic bandwidth guarantees.
However, those algorithms cannot duplicate the exact packet
departure time to achieve perfect emulation.

Combined input-crosspoint queued (CICQ) switches and
combined input-output queued (CIOQ) switches are special
IQ switches with additional buffers at output ports and cross-
points, respectively. Such switches are shown to be able to
perfectly emulate certain OQ switches with small speedup.
Thus, various scheduling algorithms [1], [14]–[17] have been
proposed to duplicate the packet departure time of existing
fair queueing algorithms for OQ switches, and provide desired
performance guarantees.

Fig. 1. Switch structure.

III. QUEUE-LENGTH PROPORTIONAL AND MAX-MIN FAIR
BANDWIDTH ALLOCATION

In this section, we formulate the switch bandwidth alloca-
tion problem, present the solution algorithms, and prove that
they achieve the design goals.

A. Problem Formulation

We consider an N×N switch as shown in Figure 1, without
assuming any specific switching fabrics to make the analysis
general. Use Ini (Outj) to denote the ith input (jth output)
port, and IBi(t) (OBj(t)) to denote its leftover bandwidth
at time t, after satisfying requests of guaranteed-performance
flows. Our algorithms work in a cycle mode, i.e. allocating
bandwidth at the beginning of each new cycle. Thus we
consider only the statues of all the variables at the same time,
and omit the time parameter t in the variables for easy reading.
We use the input queue length as the bandwidth allocation
criterion, to allocate bandwidth to more congested flows. We
do not consider output queues and crosspoint queues, because
the former stores packets already transmitted to output ports,
and the latter have limited and small capacities.

Denote the best-effort flow from Ini to Outj as Fij , and
use Qij to represent its input queue length at time t. Use Rij

to denote the allocated bandwidth of Fij at time t. Define the
ratio between Rij and Qij to be the bandwidth share Sij , i.e.

Sij =
Rij

Qij
(1)

which represents the bandwidth allocated to each unit of the
queue length. If Fij has no buffered packets at t, i.e. Qij = 0,
set Rij and Sij to zero as well. Define the bandwidth share
matrix S to be the N × N matrix formed by all Sij , which
determines the bandwidth allocation scheme.

We now define feasibility for bandwidth allocation. A
bandwidth allocation scheme is feasible if there is no over-
subscription at any input port or output port, i.e.

∀i
∑
j

Rij ≤ IBi,∀j
∑
i

Rij ≤ OBj (2)

Note that feasibility only makes a bandwidth allocation
scheme possible to be applied in practice. However, a feasible



scheme may not be an efficient one. Thus, we adopt max-
min fairness to make the best use of available bandwidth and
allocate bandwidth in a fair manner.

We next define fairness based on the max-min fairness
principle. A bandwidth allocation scheme is max-min fair if it
is feasible and there is no way to increase the allocated band-
width of any flow without reducing the allocated bandwidth of
another flow with a lower bandwidth share value. Formally, a
feasible bandwidth share matrix S is max-min fair, if for any
feasible bandwidth share matrix S′ the following condition
holds

S′ij > Sij → ∃i′∃j′
(
Si′j′ ≤ Sij ∧ Si′j′ > S′i′j′

)
(3)

As can be seen, the objective of max-min fairness is twofold:
increasing the bandwidth share of each flow as much as
possible to fully utilize available bandwidth, and maximizing
the minimum bandwidth share of all the flows to achieve
fairness.

Theorem 1: A max-min fair bandwidth allocation scheme
is unique.

Proof: By contradiction, assume that two bandwidth
allocation matrices S and S′ are both max-min fair, and
S 6= S′. Without loss of generality, assume that Sij is the
smallest entry among all the ones in S that are different from
their counterparts in S′, i.e.

Sij 6= S′ij ∧ ∀i′∀j′
(
Si′j′ 6= S′i′j′ → Si′j′ ≥ Sij

)
(4)

We look at two possible cases regarding the relationship
between Sij and S′ij .

Case 1: Sij < S′ij . Because S is max-min fair and S′ is
feasible, by the definition there exist i′ and j′ such that Si′j′ ≤
Sij and Si′j′ > S′i′j′ . Define x = i′ and y = j′, and we have
Sij ≥ Sxy and Sxy > S′xy .

Case 2: Sij > S′ij . Define x = i and y = j, and we have
Sij ≥ Sxy and Sxy > S′xy .

Noting that in both cases Sxy > S′xy , because S′ is max-
min fair and S is feasible, there exist x′ and y′ such that
S′x′y′ ≤ S′xy and S′x′y′ > Sx′y′ , and therefore S′xy > Sx′y′ .
Since Sx′y′ 6= S′x′y′ and Sij is the smallest different entry in S,
we have Sx′y′ ≥ Sij . Combined with the previous inequality
S′xy > Sx′y′ , we obtain S′xy > Sij , which is a contradiction
with Sij > S′xy obtained in the above two cases.

Next, we give the definition of bottleneck ports, which will
be the base to calculate a max-min fair bandwidth allocation
scheme. Given a bandwidth share matrix, a port is the bottle-
neck port of a flow if the flow has the highest bandwidth share
among all the flows traversing the port, and the bandwidth of
the port is fully allocated. Formally, Ini is a bottleneck port
of flow Fij in satisfaction matrix S if

∀j′Sij ≥ Sij′ ∧
∑
x

SixQix = IBi (5)

and Outj is a bottleneck port of Fij in S if

∀i′Sij ≥ Si′j ∧
∑
x

SxjQxj = OBj (6)

The following theorem shows how to calculate max-min fair
bandwidth allocation.

Theorem 2: A feasible satisfaction scheme is max-min fair
if and only if each flow has a bottleneck port in it.

Proof: Assume that S is a feasible bandwidth share matrix
and each flow has a bottleneck port in S. Suppose S′ is also
feasible and S′ij > Sij . Then we know that Sij < S′ij . Since
each flow has a bottleneck port in S, we first assume that Ini

is a bottleneck port of Fij in S. By the definition of bottleneck
ports, we know that ∀j′Sij ≥ Sij′ and

∑
j SijQij = IBi. On

the other hand, since S′ is feasible, we have
∑

j S
′
ijQij ≤ IBi

and thus
∑

x S
′
ixQix ≤

∑
x SixQix. Because S′ij > Sij , there

must exist j′ such that Sij′ > S′ij′ , otherwise we can obtain
the contradiction that

∑
x S
′
ixQix >

∑
x SixQix. Noticing that

Sij ≥ Sij′ , we have found i′ = i and j′ such that Si′j′ ≤
Sij and Si′j′ > S′i′j′ , and thus S is max-min fair. Similar
reasoning can be applied to the case that Outj is a bottleneck
port of Fij in S.

B. Sequential Bandwidth Allocation Algorithm

We are now ready to present the bandwidth allocation
algorithm. The main idea is to find the bottleneck ports for
all the flows in an iteration manner, after which a max-min
fair bandwidth share scheme is obtained by Theorem 2.

We define some notations before describing the algorithm.
Initialize the bandwidth share of each flow to zero, i.e. Sij = 0.
Define the remaining bandwidth of a port Ini (Outj) at the
beginning of the nth iteration to be the available bandwidth
that has not been allocated, and denote it as Bi∗(n) (B∗j(n)),
i.e.

Bi∗(n) = IBi −
∑

Six 6=0

SixQix (7)

B∗j(n) = OBj −
∑

Sxj 6=0

SxjQxj (8)

Define the remaining queue length of a port Ini (Outj) at the
beginning of the nth iteration to be the total queue length of
the flows that have not been assigned bandwidth share values,
and denote it as Qi∗(n) (Q∗j(n)), i.e.

Qi∗(n) =
∑

Six 6=0

Qix (9)

Q∗j(n) =
∑

Sxj 6=0

Qxj (10)

Define the bandwidth share of a port Ini (Outj) at the
beginning of the nth iteration to be the ratio of the remaining
bandwidth and remaining queue length, and denote it as Si∗(n)
(S∗j(n)), i.e.

Si∗(n) =
Bi∗(n)

Qi∗(n)
(11)

S∗j(n) =
B∗j(n)

Q∗j(n)
(12)

In each iteration, the algorithm first finds the port with the
smallest bandwidth share, and assigns the bandwidth share of
the port to its flows without bandwidth share values. As will
be formally shown later, the port is the bottleneck port of all



such flows. Processing the ports one by one guarantees that
eventually each flow will have a bottleneck port.

In detail, each iteration consists of the following three steps.
1) Calculation: Calculate the bandwidth share of each

remaining port.
2) Comparison and Assignment: Select the port with the

smallest bandwidth share, and assign the value as the
bandwidth share of all the remaining flows of the port.

3) Update: Remove the above selected port and the flows
assigned bandwidth share values. Update the remaining
bandwidth and queue length for each of the rest ports.

In the following, we show that the proposed algorithm
achieves max-min fairness.

Lemma 1: The bandwidth share of a port does not decrease
between iterations.

Proof: Without loss of generality, assuming that the port
is an input port Ini, we show that Si∗(n) ≥ Si∗(n+ 1). The
proof for an output port is similar.

First, assume that a different input port Ini′ instead of Ini is
selected in the nth iteration with the smallest bandwidth share.
Because Ini′ and Ini have no common flows, the remaining
bandwidth and queue length of Ini do not change, and thus

Si∗(n+ 1) =
Bi∗(n+ 1)

Qi∗(n+ 1)
=

Bi∗(n)

Qi∗(n)
= Si∗(n) (13)

Next, assume that an output port Outj is selected in the
nth iteration with the smallest bandwidth share. Note that
S∗j(n) ≤ Si∗(n) and that Fij will be assigned the bandwidth
share value of S∗j(n), and we have

Si∗(n+ 1) =
Bi∗(n+ 1)

Qi∗(n+ 1)

=
Bi∗(n)− S∗j(n)Qij

Qi∗(n)−Qij

≥ Bi∗(n)− Si∗(n)Qij

Qi∗(n)−Qij

=
Bi∗(n)

Qi∗(n)

= Si∗(n) (14)

Theorem 3: The bandwidth allocation algorithm achieves
max-min fairness.

Proof: The key is to see that if a port assigns bandwidth
share for a flow, then it is the bottleneck port of the flow.

Without loss of generality, assume that Fij is assigned
bandwidth share by Ini in the nth iteration. Consider another
flow Fij′ of Ini. If Fij′ is assigned bandwidth share by
Outj′ in an earlier iteration m, based on Lemma 1 we have
Sij′ = S∗j(m) ≤ Si∗(m) ≤ Si∗(n) = Sij . Otherwise, if
Fij′ is assigned bandwidth share by Ini in the same iteration,
we know Sij′ = Si∗(n) = Sij . Therefore, Fij has the largest
bandwidth share among all flows of Ini. In addition, since Ini

is selected in the nth iteration, all its remaining bandwidth
is fully allocated, i.e. Bi∗(n) = Si∗(n)Qi∗(n). Based on
Theorem 2, we know that S is max-min fair.

(a) (b)
Fig. 2. Parallel processing for independent port sets. (a) Ports correlated. (b)
Ports divided into independent sets.

The time complexity of the algorithm is O(N logN),
because the algorithm runs O(N) iterations and the sorting
operation in each iteration takes O(logN). As can be seen,
the algorithm finds bottleneck ports sequentially, and requires
O(N) iterations in both the best and worst cases. Large-
size switches thus need long convergence time, which creates
obstacles for high speed processing.

C. Parallel Bandwidth Allocation

To accelerate the bandwidth allocation process, we propose
a parallel version of the algorithm. The design is based on
the observation that an input (output) port only needs to be
compared with the output (input) ports which it has a flow
heading to (coming from). After some iterations, an input
(output) output has flows only to (from) a small number
of output (input) ports. It is thus possible to find multiple
bottleneck ports in a single iteration by parallel comparison.
For example, in Figure 2(a), the ports are correlated with
each other. However, in Figure 2(b), it is easy to see that
two port sets {In1, In2, Out1} and {In3, Out3, Out4} are
independent, and that bandwidth allocation can be conducted
in parallel in the two sets.

Similarly, each entry of the bandwidth share matrix S is
initialized to zero. The parallel algorithm also works in itera-
tions. One iteration of the algorithm consists of the following
three steps, each of which can be conducted by different input
and output ports in parallel.

1) Calculation and Distribution: An input (output) port
Ini (Outj) calculates its bandwidth share, and sends
the result to every output (input) port that it has a flow
heading to (coming from).

2) Comparison and Assignment: An input (output) port Ini

(Outj) compares its own bandwidth share with that of
every output (input) port received in the first step. If its
bandwidth share is the smallest, the value is assigned as
the bandwidth share for all its remaining flows.

3) Notification and Update: An input (output) port Ini

(Outj) notifies every output (input) port its bandwidth
share, if it has the smallest bandwidth share in the
second step. The output (input) port will then know
that the flow Fij has been assigned a bandwidth share,
and updates its remaining bandwidth and queue length.
Flows already assigned with bandwidth share are re-
moved.
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Fig. 3. Convergence iteration numbers of sequential and parallel bandwidth
allocation algorithms.

We show that the parallel algorithm also achieves max-min
fairness.

Theorem 4: The parallel bandwidth allocation algorithm
achieves max-min fairness.

Proof: It is easy to see that Lemma 1 still applies to
the parallel algorithm. Thus, with the same reasoning as in
the proof of Theorem 3, we know that if a port assigns its
bandwidth share to a flow, then it is the bottleneck port of the
flow. Since each flow has a bottleneck port, by Theorem 2,
the bandwidth allocation scheme is max-min fair.

IV. SIMULATION RESULTS

We now present simulation results to demonstrate the ef-
fectiveness of the parallel bandwidth allocation algorithm. In
the simulations, we consider switch sizes of 2n with n from
1 to 10. We assign random values between 0 and 10000 as
the queue lengths for the flows. For a specific switch size, we
conduct 20 simulation runs for the sequential algorithm and
parallel algorithm each, and calculate the average number of
convergence iterations. Figure 3 shows the simulation results.
As can be seen, although the convergence iteration numbers of
both algorithms grow approximately linearly with the switch
size, the result of the parallel algorithm increases much slower
than that of the sequential algorithm. In detail, the average
convergence iteration number of the sequential algorithm is
about twice of the switch size, which is consistent with the
analysis. The reason is that a switch of size N has N input
ports and N output ports, and each iteration of the sequential
algorithms finds one bottleneck port. On the other hand, due
to parallel processing at each port, the average convergence
iteration number of the parallel algorithms is about half of the
switch size. We can thus make the conclusion that the parallel
algorithm is effective in reducing the running time.

V. CONCLUSIONS

In this paper, we have studied bandwidth allocation for best
effort flows in a switch. We propose the queue-length propor-
tional allocation criterion, the max-min fairness principle, and

bandwidth allocation algorithms that are independent of switch
structures and scheduling algorithms. First, we formulate the
problem, and define feasibility and fairness for bandwidth
allocation. Then, we present the first version of the algorithm,
which calculates the allocation bandwidth in a sequential
manner. Furthermore, to accelerate the algorithm convergence,
we propose a parallel version of the algorithm, by allowing
different input ports and output ports to conduct calculation
in parallel. We prove that both the sequential and parallel
algorithms achieve the initial design objectives. Finally, we
present simulation data to demonstrate that the parallel algo-
rithm is effective in reducing the convergence iterations. Since
multicast traffic is also an important component of the Internet,
our future work includes extending the parallel bandwidth
allocation algorithm to switches with multicast flows.
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