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Abstract—Flow level bandwidth provisioning offers fine gran-
ularity bandwidth assurance for individual flows. It is especially
important for virtual network based experiment environments, to
isolate traffic of different experiments or different types, which
may be fed to the same switch or router port. Existing flow
level bandwidth provisioning solutions suffer from a number
of drawbacks, including high implementation complexity, poor
performance guarantees, and inefficiency to process variable
length packets. In this paper, we study flow level bandwidth pro-
visioning for combined-input-crosspoint-queued switches in the
OpenFlow context. We propose the FEBR (Flow lEvel Bandwidth
pRovisioning) algorithm, which reduces the switch scheduling
problem to multiple instances of fair queueing problems, each
employing a well studied fair queueing algorithm. FEBR can
tightly emulate the ideal Generalized Processing Sharing model,
and accurately guarantee the provisioned bandwidth. Further, we
implement FEBR in the OpenFlow version 1.0 software switch.
In conjunction with the capability of OpenFlow to flexibly define
and manipulate flows, we thus provide a practical flow level
bandwidth provisioning solution. Finally, we present extensive
simulation and experiment data to validate the analytical results
and evaluate our design.
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I. INTRODUCTION

Bandwidth provisioning on switches offers bandwidth as-
surance for certain types of traffic [1], [2]. The objective is
to emulate the ideal Generalized Processor Sharing (GPS)
model [3], where each traffic flow has an independent logical
transmission channel with its desired bandwidth. Based on the
traffic unit, bandwidth provisioning can be at different gran-
ularity levels [1]. Port level bandwidth provisioning assures
bandwidth for the traffic from an input to an output, while
flow level bandwidth provisioning guarantees bandwidth for an
individual flow, which may be a subset of the traffic from the
input to the output. Bandwidth provisioning at the flow level
is necessary, and is especially important for virtual network
based experiment environments like GENI [4]. In such an
environment, multiple virtual systems may reside in a single
physical box, and their traffic departs from the same physical
network adapter. Flow level bandwidth provisioning is able to
isolate traffic of different virtual systems and ensure accurate
experiment results.

Existing flow level bandwidth provisioning algorithms [1],
[2], [5] suffer from a number of drawbacks. First, they have
high hardware complexity and time complexity. Specifically,
they require a crossbar with speedup of at least two, i.e. the
crossbar having twice bandwidth as that of the input or output,
and they may need large expensive on-chip memories for the

crossbar. In addition, they run in a centralized mode with up to
N iterations for an N×N switch. Second, they cannot achieve
constant service guarantees. Constant service guarantees mean
that for any flow, the difference between its service amount in
an algorithm and in the ideal Generalized Processor Sharing
(GPS) model [3] is bounded by constants, i.e. the equations
in Theorem 1 of [6], and they are the key properties to
assure worst-case fairness. The reason is that [7] the existing
algorithms cannot emulate WF2Q [6] (including its variants),
the only fair queueing algorithm to achieve constant service
guarantees. Third, the existing algorithms can only handle
fixed length cells. When variable length packets arrive, they
have to be first segmented into fixed length cells at inputs.
The cells are then transmitted to outputs, where they are
reassembled into original packets before sent to the output
lines. This process is called segmentation and reassembly
(SAR) [8], which may waste bandwidth due to padding bits
[9].

In this paper, we study the flow level bandwidth provi-
sioning problem in the OpenFlow [10] context. OpenFlow
is an open standard to allow researchers to run experimental
protocols in realistic networks, and is currently deployed in
large-scale testbeds like GENI [11]. OpenFlow provides a
rich set of options to define flows based on a combination
of packet header fields, and use a flow table to allow users to
flexibly control their traffic. Bandwidth provisioning has been
recognized as an essential component of OpenFlow, to isolate
traffic between different experiments or even different types of
traffic within a single experiment [10]. However, the current
OpenFlow implementation supports only token bucket based
traffic shaping, which is necessary but not sufficient to provide
tight performance guarantees [6].

We first propose the FEBR (Flow lEvel Bandwidth pRo-
visioning) algorithm for combined-input-crosspoint-queued
(CICQ) switches, which are special crossbar switches with a
small exclusive buffer at each crosspoint [12]. The crosspoint
buffers decouple inputs and outputs, and greatly simplify
the scheduling process. FEBR reduces the switch scheduling
problem to multiple instances of fair queueing problems [13],
each utilizing a well studied fair queueing algorithm. As a
result, FEBR can tightly emulate the ideal GPS model and
accurately guarantee the provisioned bandwidth.

In addition, we implement the FEBR algorithm in the
OpenFlow version 1.0 software switch [14] as a practical flow
level bandwidth provisioning solution. An OpenFlow network
consists of a number of OpenFlow switches and one or more
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Fig. 1. Structure of CICQ Switches

controllers, and the controller communicates with the switches
through the OpenFlow protocol. With the implementation of
FEBR, the controller is able to arbitrarily define a flow, and
inform the OpenFlow switches on the routing path to provision
the desired bandwidth.

The rest of the paper is organized as follows. In Section II,
we present our flow level bandwidth provisioning algorithm. In
Section III, we describe the implementation of our algorithm
in the OpenFlow software switch. In Section IV, we show
simulation and experiment data to evaluate our design. Finally,
in Section V, we conclude the paper.

II. FLOW LEVEL BANDWIDTH PROVISIONING FOR
CICQ SWITCHES

In this section, we present the FEBR algorithm for CICQ
switches and analyze its performance.

A. Problem Formulation

The considered CICQ switch structure is shown in Figure
1. The switch has N inputs and N outputs, connected by a
buffered crossbar without speedup. For easy representation,
denote the ith input as Ini and the jth output as Outj .
Each input or output has bandwidth of R, and so does the
crossbar. For flow level bandwidth provisioning, it is necessary
to separate the traffic of different flows, i.e. storing incoming
packets on a per flow basis. Denote the kth flow from Ini

to Outj as Fijk, and the queue at Ini to store its packets as
Qijk. Besides the queue for each flow, Ini has a VOQ [15]
buffer for each Outj , denoted as Bij , to store a packet before
sending it to the crossbar. Each crosspoint of the crossbar
has a small exclusive buffer. Denote the crosspoint buffer
connecting Ini and Outj as Xij . Outputs have no buffers.
Buffer management can be based on existing schemes, such
as random early detection (RED) [16], and is out of the scope
of this paper.

Our objective is to accurately provision bandwidth for
each flow. Assume that a flow Fijk has been provisioned
with a certain amount of bandwidth Rijk. In the ideal GPS
model, Fijk has a logical dedicated channel with exactly Rijk

bandwidth. Use toOijk(0, t) and t̂oOijk(0, t) to represent the
numbers of bits transmitted by Fijk to the output during
interval [0, t] in our algorithm and GPS, respectively. Formally,

the objective is to bound the absolute value of the difference
toOijk(0, t)− t̂oOijk(0, t) by constants, independent of Rijk

and t.

B. Algorithm Description

The basic idea of FEBR is to reduce the switch scheduling
problem to three stages of fair queueing, which we call
flow scheduling, input scheduling, and output scheduling,
respectively. Flow scheduling selects a packet from one of
the flow queues Qijk from Ini to Outj , and sends it to the
corresponding VOQ buffer Bij . Input scheduling selects a
packet from one of the N VOQ buffers Bij of Ini, and sends it
to the corresponding crosspoint buffer Xij . Output scheduling
selects a packet from one of the N crosspoint buffers Xij of
Outj , and sends it to the output line. The detailed description
of each scheduling stage is as follows.

1) Flow scheduling utilizes the WF2Q [6] fair queueing
algorithm to multiplex different flows of the same input-output
pair as a single logical flow, to simplify input scheduling.
For easy description, denote the nth packet of Fijk as Pn

ijk.
Flow scheduling calculates two time stamps for each packet
p: virtual flow start time F̂S(p) and finish time F̂F (p). They
are the departure time of the first bit and last bit of p in GPS,
and are calculated as

F̂S(Pn
ijk) = max(A(Pn

ijk), F̂F (Pn−1
ijk )) (1)

F̂F (Pn
ijk) = F̂S(Pn

ijk) +
L(Pn

ijk)

Rijk
(2)

where A(p) is the arrival time of p, and L(p) is its packet
length. Note that our objective is to accurately provision
bandwidth, and we do not consider reallocating the leftover
bandwidth of empty flows to backlogged flows. Thus, the
virtual time in GPS progresses at the same pace as the real
time, and the time stamp calculation is simpler than that in
[6].

The first step of flow scheduling identifies eligible packets.
A packet is eligible for flow scheduling if it has started
transmission in GPS. Specifically, a packet p is eligible at
time t if its virtual flow start time is less than or equal to
t, i.e. F̂S(p) ≤ t. The second step selects among eligible
packets the one p with the smallest virtual flow finish time. The
selected packet will be sent to the corresponding VOQ buffer
Bij , to participate in input scheduling. If there are no eligible
packets, flow scheduling will wait until the next earliest virtual
flow start time. Additionally, we define two time stamps for
p: actual flow start time FS(p) and finish time FF (p), to
represent the actual departure time of its first bit and last bit
from Qijk in flow scheduling. Flow scheduling multiplexes
all flows from Ini to Outj as a logical flow Fij , which has
bandwidth Rij =

∑
k Rijk. Thus, the last bit of p will leave

Qijk at FF (p) = FS(p) + L(p)/Rij .
Note that flow scheduling is only a logical operation to

determine the sequence of packets to participate in input
scheduling. There is no actual packet transmission for flow
scheduling, because the packet is in the input buffer both
before and after flow scheduling.



2) Input scheduling uses WF2Q to multiplex the logical
flows Fij of the same input Ini to share the bandwidth to
the crosspoint buffers. Input scheduling also calculates two
time stamps for each packet p: virtual input start time ÎS(p)

and finish time ÎF (p), which are equal to the actual flow
start and finish time, respectively, i.e. ÎS(p) = FS(p) and
ÎF (p) = FF (p). Similar as flow scheduling, the first step
of input scheduling identifies eligible packets whose virtual
input start time is no later than the current scheduling time.
The second step finds among eligible packets the one with the
smallest virtual input finish time. The selected packet is then
sent from the VOQ buffer to the crosspoint buffer.

3) Output scheduling utilizes the WFQ [3] fair queueing
algorithm to allow the crosspoint buffers of the same output to
share the bandwidth to the output line. The reason to use WFQ
instead of WF2Q for output scheduling is that input scheduling
has restricted admission of packets into the crosspoint buffers.
Output scheduling uses only one time stamp for a packet p:
virtual output finish time ÔF (p), which can be calculated
as ÔF (p) = ÎF (p) + Lm/R + Lm/Rij , where Lm is the
maximum packet length. Output scheduling simply retrieves
the packet with the smallest virtual output finish time from
the crosspoint buffers of an output and send it to the output
line.

C. Performance Analysis

In this subsection, we present some analytical results on the
performance of FEBR. Due to space limitations, we present
only the main results and omit the proofs.

First, FEBR achieves accurately provisioned bandwidth, in
the sense that the difference between the service amount of any
flow in FEBR and GPS at any time is bounded by constants.

Theorem 1: At any time, the difference between the num-
bers of bits transmitted by a flow to the output in FEBR and
GPS is greater than or equal to −4Lm and less than or equal
to Lm.

FEBR also achieves delay guarantees as stated by the
following theorem.

Theorem 2: For any packet Pn
ijk , the difference between

its departure time in FEBR and GPS is greater than or equal to
L(Pn

ijk)(2/R−1/Rijk) and less than or equal to 2Lm(1/R+
1/Rij)

A nice feature of FEBR is that it has a size bound for the
crosspoint buffers, which are expensive on-chip memories.

Theorem 3: In FEBR, the maximum number of bits
buffered at any crosspoint buffer at any time is bounded by
3Lm.

D. Implementation Advantages

FEBR is practical to implement with a number of ad-
vantages. First, FEBR can be implemented in a distributed
manner, since there is no centralized scheduler, and different
inputs or outputs do not need to exchange any information.
The virtual output finish time of a packet can be calculated by
the input and carried by the packet to the crosspoint buffer
for output scheduling. Second, FEBR can directly process
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Fig. 2. Event-driven Scheduling Mechanism of FEBR enabled OpenFlow
Software Switch

variable length packets without SAR. Compared with fixed
length cell scheduling, variable length packet scheduling can
achieve higher throughput and shorter latency [9] [17]. Finally,
FEBR requires no speedup and has a small bounded crosspoint
buffer size, reducing the hardware cost.

III. OPENFLOW BASED IMPLEMENTATION

To evaluate our design in a realistic environment, we im-
plement FEBR in the OpenFlow version 1.0 software switch
[14], which converts a Linux PC with multiple NICs to an
OpenFlow switch. In conjunction with the existing capability
of OpenFlow to flexibly define and manipulate flows, we thus
provide a practical flow level bandwidth provisioning solution.
The original OpenFlow version 1.0 software switch is a user
space program and acts as an OQ switch.

Because there is no concept of a crossbar in the original
OpenFlow software switch, our first task is to create a virtual
buffered crossbar to emulate the CICQ switch. We allocate
space in the memory for the VOQ buffers Bij and crosspoint
buffers Xij , and create the flow queues Qijk on demand, i.e.
setting up a new flow queue when the controller creates a
new entry in the flow table. We configure the bandwidth of
the crossbar to be that of an input or output, and emulate
the transmission delay from the VOQ buffer to the crosspoint
buffer and from the crosspoint buffer to the output.

The next challenge is to maintain accurate system time.
Since the original program needs no time stamps, the mini-
mum time granularity is one millisecond. However, the opera-
tion of FEBR relies on time stamps, and requires maintaining
accurate system time. Thus, the existing time granularity is
not sufficiently fine, especially when the switch bandwidth
is large. For example, if the switch bandwidth is 1 Gbps,
the transmission time of a 1500 bytes packet is only 0.0015
millisecond. To address the challenge, we maintain accurate
logical time within the virtual crossbar, to calculate correct
time stamps for scheduling. Only the packet arrival time is
based on the original system time, and all other operations of
FEBR are based on the accurate logical time.

We extend the event driven mechanism of the original
program to control the operation of the virtual crossbar, as
illustrated in Figure 2. The original program uses an event
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Fig. 3. Delay Difference (a) Uniform Traffic (b) Nonuniform Traffic

driven mechanism, and monitors two types of events: packet
arrival and time out. The program is normally blocked, and
wakes up to process the assigned job when an event happens.
We add all the possible types of events of the virtual crossbar
to the event list, each with the necessary information, including
the event time, event type, and associated packet. All the events
are linked in an increasing order of the event time. When an
event triggers, the program retrieves the first event in the event
list and processes it. Note that processing an event may insert
new events to the list. Because of the coarse granularity of the
system time, multiple events may happen when the program
wakes up, in which case the program will continue processing
the event at the head of the event list until the time of the next
event is in the future.

IV. SIMULATION AND EXPERIMENT RESULTS

We have implemented the FEBR algorithm in a Java sim-
ulator and the OpenFlow version 1.0 software switch. In this
section, we present the numerical results from the simulations
and experiments, to validate the analytical results and evaluate
our design. Due to space limitations, we present only partial
results.

A. Simulation Results

In the simulations, we consider a 16 × 16 CICQ switch
without speedup. Each input and output has 1 Gbps bandwidth.
There are two flows from Ini to Outj with Rij2 = 2Rij1.
The packet length is uniformly distributed between 40 and
1500 bytes, and packets arrive based on a Markov modulated
Poisson process with the same setting as in [17].

We use two traffic patterns. For traffic pattern one, or
uniform traffic, we set Rij = R/N , and change the effective
load of the incoming traffic from 0.1 to 1 by step 0.1. For
traffic pattern two, or nonuniform traffic, we fix the effective
load to 1, and define Rij by i, j and an unbalanced probability
w as follows

Rij =

{
R(w + 1−w

N ), if i = j

R 1−w
N , if i 6= j

(3)

where w is increased from 0 to 1 by step 0.1.
Due to space limitations, we present only part of the results.
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Fig. 4. Crosspoint Buffer Occupancy (a) Uniform Traffic (b) Nonuniform
Traffic

1) Delay Difference: Recall that Theorem 2 gives the upper
bound and lower bound for the delay difference. Because
the value of the lower bound depends on the length of each
packet, it is not convenient to plot the figure. To eliminate the
dependency, we calculate the lower bound for all packets as
follows

L(Pn
ijk)(

2

R
− 1

Rijk
)

≥

{
Lm( 2

R −
1

Rijk
), if Rijk ≤ R

2

0, if Rijk > R
2

(4)

Figure 3(a) shows the maximum, average, and minimum delay
differences of one representative flow F111 under uniform
traffic. As can be seen, the minimum delay difference is almost
coincident with the lower bound, and the maximum delay
difference is always less than the upper bound. The average
delay difference is negative for all effective loads. Figure 3(b)
plots the data under nonuniform traffic. We can see that the
simulation data fall perfectly within the theoretical bounds.
With the increase of the unbalanced probability, the maximum
delay difference increases, and the minimum and average delay
differences increase.

2) Crosspoint Buffer Occupancy: We now look at the
crosspoint buffer occupancy data and compare them with
Theorem 3. Figure 4(a) shows the maximum and average
crosspoint occupancies under uniform traffic. As can be seen,
the maximum crosspoint occupancy is less than the theoretical
bound 3Lm for all the effective loads. In addition, the average
crosspoint occupancy is always less than 400 bytes, much
lower than the maximum value. Figure 4(b) presents the data
under nonuniform traffic. We can see that the theoretical cross-
point buffer size bound is tight. Specifically, the maximum
crosspoint occupancy increase constantly with the unbalanced
probability, and drops to 3000 bytes when the unbalanced
probability becomes one. The average crosspoint occupancy
is close to 300 bytes and drop to around 100 bytes when
unbalanced probability becomes one.

B. Experiment Results

We install the FEBR enabled OpenFlow software switch
on Linux PCs for the following experiments. Each PC has an
Intel Core 2 Duo 2.2 GHz processor, 2 GB RAM, and multiple
100 Mbps Ethernet NICs. The PC operating system is Ubuntu
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10.04LTS with Linux kernel version 2.6.33. NOX version 0.8
[18] is deployed as the OpenFlow controller.

1) Single Flow and Single Switch: In the first experiment,
we compare the provisioned bandwidth of a flow with the
measured bandwidth. We use a switch to connect two hosts,
and set up an iperf [19] TCP flow between the two hosts. By
TCP congestion control, the TCP flow can automatically probe
the available bandwidth in the link. We adjust the provisioned
bandwidth of the flow from 10 Mbps to 100 Mbps by step 10
Mbps. Note that because the NIC has maximum bandwidth of
100 Mbps, its ideal throughput is also 100 Mbps. As shown
in Figure 5, when the provisioned bandwidth is less than
90 Mbps, the iperf measured bandwidth perfectly matches
it. However, when the provisioned bandwidth becomes 100
Mbps, the measured bandwidth is only about 92.1 Mbps. The
reasons might include the implementation overhead and the
possibility that the NIC cannot reach its ideal throughput.
As a comparison, the original OpenFlow software switch can
achieve maximum bandwidth of about 94.5 Mbps.

2) Multiple Flows and Single Switch: In the second ex-
periment, we compare FEBR with a port level bandwidth
provisioning algorithm, i.e. without the flow scheduling phase.
Similar as in the first experiment, a switch connects two hosts.
There are now two iperf UDP flows between the two hosts,
which we call Flow A and Flow B, and they share the same
switch input and output. We provision each flow with 1 Mbps
bandwidth. We fix the load of Flow A at 1 Mbps, and adjust
the load the flow B from 1 Mbps to 10 Mbps by step 1
Mbps. As shown in Figure 6, with FEBR, the average delay
of Flow A remains constant no matter what the load of Flow
B is. The average delay of Flow B rises quickly, because it

injects traffic at a higher rate than its provisioned bandwidth.
On the contrary, with port level bandwidth provisioning, the
average delay of both flows is coincident, and grows steadily
with the load of Flow B. The results fully demonstrate that
FEBR is effective in achieving traffic isolation among flows
and providing flow level bandwidth provisioning.

V. CONCLUSIONS

In this paper, we have studied flow level bandwidth pro-
visioning for CICQ switches in the OpenFlow context. We
propose the FEBR algorithm and show that it can accurately
emulate the ideal GPS model, and achieve constant service
guarantees and tight delay guarantees. FEBR also has a num-
ber of implementation advantages, such as no speedup require-
ment, bounded crosspoint buffer sizes, distributed scheduling,
and low time complexity. In addition, we implement FEBR in
the OpenFlow software switch to provide a practical flow level
bandwidth provisioning solution. Finally, we present extensive
simulation and experiment data to validate the analytical
results and evaluate our design.
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