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Abstract—Application-layer overlay networks are receiv-
ing considerable popularity due to its flexibility and readily
deployable nature thereby providing support for a plethora
of Peer-to-Peer (P2P) applications. Currently, the real-world
deployment of Internet-scale P2P media streaming systems
involve the usage of tracker server for content discovery
in on-demand model with asynchronous interactivity. The
inherent drawbacks of tracker-server based approach are
obvious due to scalability and bottleneck issues, which
prompted us to pursue a structured P2P based proposition
such as Distributed Hash Tables (DHT) which are already
proved to be stable substrates. The challenging issue of
accommodating a large number of update operations with the
continuous change of user’s playing position in DHT-based
overlay is addressed in our previous work by the concept
of Temporal-DHT which exploits the temporal dynamics
of the content to estimate playing position. In this paper,
we incorporate the notion of popularity awareness in the
Temporal-DHT framework which will help to adapt the
query resolution mechanism by addressing the skewness
of content popularity typically found in real multimedia
user access patterns. The essential objective of popularity
awareness mechanism is to increase the overall performance
of Temporal-DHT by optimizing the search cost among
the entire content set within the system. We formulate
the problem and provide practical solutions with extensive
simulation results that demonstrates the effectiveness of
popularity-aware Temporal-DHT by achieving optimized
query resolution cost and high streaming quality for on-
demand systems in a dynamic network environment where
user’s are free to asynchronously join/leave the system.

Index Terms—peer-to-peer; popularity awareness; stream-
ing; overlay network;

I. Introduction

P2P revolution started with the initial unstructured
systems such as Gnutella, Napster, etc. slowly followed
by the more efficient structured approaches such as DHTs
typically represented by Chord [23], CAN [19], Pas-
try [21], etc. P2P supported applications started with
web caching, distributed storage, etc. slowly followed
by the more popular ones such as file sharing (e.g.,
BitTorrent [5]), multicasting (e.g., Narada [12]) and live-
streaming (e.g., CoolStreaming [28], PPLive [22], Any-
See [15], etc.). The potential advantage of P2P-based
applications is mainly associated with the fact that
peers share their resources such as processing power,
storage and bandwidth to help each other in search-
ing/distributing content, thereby considerably alleviating

the server load. Internet traffic is largely dominated by
multimedia data which is bandwidth-hungry in nature,
therefore imposing more importance to the management
and distribution of content particularly critical with re-
spect to P2P applications.

Some of the recent studies revealed that On-demand
streaming can be immensely benefited from the ap-
plication of P2P techniques [13], [14]. To address the
challenging problem of efficient content discovery in
On-demand systems, we advocate a DHT-overlay based
approach which is already proved to be stable a substrate
with nice characteristics such as scalable, decentralized
control, self-organizing, and resilient to network/peer
dynamics. Incorporating DHT in On-demand streaming
systems is not a trivial issue since it will generate a flurry
of update operations with the continuously changing
play position of the user. This difficult issue of accommo-
dating a large number of update operations is addressed
by the concept of Temporal-DHT [1] which exploits the
temporal dynamics of the content to estimate playing
position. Temporal-DHT combines the advantage of high
streaming efficiency due to the buffer overlap relation
between parent and child peers from cache-and-relay
based approach with more adept support in dynamic
and asynchronous operations such as random jumps by
avoiding the dependency on playing position between
peers typically represented through static-cache based
approaches. Temporal-DHT employs a skilful integration
of static and dynamic buffer management schemes to
handle the request dynamics and streaming efficiency in
a seamless fashion. It is an augmented version of generic
DHT semantics by implementing query reformulation, TTL
filtering, and access workload self-profiling techniques.

Popularity Awareness concept is generally employed for
optimizing the search cost of the system by exploiting
the content popularity factor. The primary intention is
to reduce the search cost of more popular contents since
they are queried frequently which will ultimately help
to improve the overall performance of the system [18].
It is already found to be useful in web caching and
file sharing systems where the data objects are typically
characterized with varying popularity ratios. Web re-
quests in the Internet are found to be highly skewed with
a Zipf-like distribution [26] with typical characteristics of
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a few objects having a very high popularity, a medium
number of objects with average popularity, followed by
a huge number of objects with very low popularity.
Zipf-distributions are universally used for popularity
modeling in various scenarios. It is usually realized by
replicating the data objects at the various intermediate
nodes in the query resolution path which eventually
helps to reduce the number of search hops of the popular
contents. The process should be adaptive under varying
popularity scenarios since there is an associated tradeoff
relation between the higher performance due to lower
search complexity and the replication cost for caching
the data objects at various intermediate nodes. The repli-
cation context is not applicable for media applications
since it does not make sense to continuously cache large-
sized media objects which consumes a lot of network
bandwidth. VMesh [26] employs a popularity-based seg-
ment storage mechanism where the cached segments are
continuously replaced in accordance with the current
content popularity distribution. The downside of this
mechanism is the network bandwidth consumed for
constantly replacing the media objects which makes it
a heavy-weighted technique.

The incorporation of popularity awareness in
Temporal-DHT is performed in a unique context with
a light-weighted fashion by adapting the update interval
based on the popularity distribution. Temporal-DHT
employs a query reformulation technique where the
generic exact match DHT prefix routing is augmented
with a range query and the span of the range query is
dependent on the object update interval. The current
Temporal-DHT framework assumes a fixed value for
the object update interval thereby rendering increased
search cost with respect to popularity skewness of
content. There exists a tradeoff relation between the
performance benefits of decreasing search cost and the
increased cost of update operations i.e., if we intend
to minimize the search cost then we need to decrease
the update interval which will trigger more number
of update operations thereby increasing the messaging
overhead. Due to this situation, it is essential to find an
efficient solution to optimize the search-update cost in
the context of popularity-awareness, whereby each data
objects will have different update intervals based on
the popularity distribution. We address the following
important problem: How to minimize the search cost with a
given threshold constraint of update interval? In this paper,
we propose a technique to adapt the update interval
for optimizing the search cost according to the varying
popularity distribution of the content in the context of a
Temporal-DHT with the primary objective of reducing
the search cost of the popular data objects.

To summarize, our contributions in this paper are
as follows: (a) We incorporated the notion of popular-
ity awareness in the context of a Temporal-DHT with
the objective of optimizing the search and update cost

in varying conditions, (b) We formulate the problem
in a representative manner and propose solutions to
achieve the objective, (c) We implement the solutions in
a Temporal-DHT based P2P Video-on-Demand system
model and provide extensive simulation studies to show
the effectiveness of the popularity awareness approach in
a media streaming scenario and the performance benefits
associated with the optimization of search cost. The rest
of this paper is organized as follows: We present some
basic background stuff related to DHT and Temporal-
DHT in Sec. II which will be required to understand
the problem. Sec. III illustrates the detailed functional
mechanism of the popularity awareness approach and
its interpretation in Temporal-DHT systems. We analyze
our experimental results from our simulation study in
Sec. IV. We summarize related work from the literature
in Sec. V. Finally, we conclude the paper in Sec. VI.

II. Background

We provide some basic and specific details of
Temporal-DHT and P2P VoD systems which will be
required to understand the later parts and also develop
terminologies/notations represented in Table I for later
reference.

TABLE I: List of used symbols

Definition Notation
Participating Peers pi with P = {p1, p2, .., pN}

of size N = |P|
In/Out-bound Bandwidth Ii/Oi of pi
Video Server S with out-bandwidth

So
Video Stream C = {c1, c2, .., cM} of size

M = |C|
Video Segment Size D MB
Video Data Rate d Kbps
Play time of one video segment tM =

D∗1000∗8
d

Dynamic/Random Buffer Bp of size k segments
(i.e., kD MB)

Static/Sequential Buffer Bs of size b segments
(i.e., bD MB)

Publish Interval T = z × tM
Time-To-Live TTL
Content Successor/Predecesor pointers psucc/ppred

Temporal-DHT is a novel conceptual augmentation
to the traditional DHT for indexing content with tem-
poral dynamics which provides considerable savings
in messaging overhead as already proposed in our
earlier work [1]. It cherishes two distinctive proper-
ties: (1) Application-level Characteristics: Temporal-DHT
advocates a new DHT-proactive design approach as we
believe that DHT can provide better service if it knows
the internal behavior of the application and take a more
active role; (2) Data Transiency: Temporal-DHT exploits
predictive temporal dynamics of the content for effective
query resolution and the indexing records are flushed off
from the system at a periodic interval.

A typical Temporal-DHT indexing record is a tuple
of 〈p, c,TTL〉 with p∈P and c∈C, which indicates that
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ci ci+1 ci+2 ci+3 ci+4

h(ci)
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ti ti+tM ti+2tM ti+3tM ti+4tM
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(a)

(b)
t1 t2 t3 t4 t5 t6 t7

Playing Buffer of pA Playing Buffer of pB

Query(q)

t-DHT
Content
Linkage

Fig. 1: Sketch to illustrate (a) Temporal-DHT content
linkage and updates and (b) range query reformulation
and buffer sliding

peer p holds segment c and TTL (Time-To-Live) speci-
fies the expiration time of the record. For the indexing
of dynamic segments, TTL is initialized to z whereas
for the indexing of static segments it is initialized to
∞. Temporal-DHT performs lazy updations i.e., indexing
records are updated in a predefined constant periodic
interval T and therefore employing query reformulation
and TTL filtering techniques to improve query accuracy
by taking hint from the dynamics of content workload
and allowing certain degree of inconsistencies in the
DHT indexing structure. We present an intuitive illus-
tration of the Temporal-DHT indexing and range query
as follows: Referring to Fig: 1(a) and assuming k=1, we
can observe that a Temporal-DHT update 〈pi, ci, 4 ∗ tM〉 is
performed by VoD peer, pi at ti with z=4. The buffer
slides by one segment after each tM interval and the
next Temporal-DHT update 〈pi, ci+4, 4∗ tM〉 is performed at
ti+4∗tM by pi. Any Temporal-DHT query, q posted by other
VoD peers for ci+4 during time interval [ti, ti+4tM−δ] (i.e.
δ is a very small time unit which signifies ci+4 already
loaded in Bp but the Temporal-DHT update is not yet
performed) needs to be transformed into a range query
〈q, q−z〉 for effectively reaching to pi. The accurate query
resolution phenomenon is formalized in Theorem II.1
taken from [1]. For proofs and other TTL filtering details,
please refer to [1].

Theorem II.1. Given the size of playback buffer k and the
publish interval z, a peer that searches for dynamic segment
ci needs to perform a range query of at most k+ z segments.

Temporal-DHT initiates a content-based overlay for
accelerating the range query process where the linkage
pointers represent a semantic sequential relationship
between segments, such that c1↔c2↔...↔cM. The content
linkage is used to facilitate fast in-order access. The

content distance is used to decide whether a query
should be forwarded through content linkage or generic
DHT routing; the idea is similar to VMesh [26]. To
harness the advantage of both static-cache and cache-
relay approaches, a Temporal-DHT based Mesh (TDHTM)
was designed which provides an overarching framework
that seamlessly integrates the power of asynchronous
interactivity support from static indexing and smooth
streaming efficiency from dynamic indexing. TDHTM
administers a combined static-dynamic buffer manage-
ment which is basically a combination of Bp and Bs
wherein the Bs segments are indexed with TTL = ∞ kept
constant throughout the peer’s lifetime followed by the
BP segments are published to the Temporal-DHT with
TTL = z and performs i.e. buffer sliding after each segment
playback. Dynamic indexing involves the publication of
indexing record in a periodic interval of T and any query
is reformulated by a range search whereas static indexing
involves a one-time publication of indexing record at
initialization and its query is processed as a generic DHT
routing based resolution. TDHTM involves adaptive con-
tent distribution by adaptively switching between random
seek mode (handled by static indexing) and continuous
playback mode (handled by dynamic indexing) with the
help of access workload self-profiling at the client end.

III. Details

In this section we present our detailed strategy for
incorporating popularity-awareness in the context of a
Temporal-DHT based P2P VoD system model.

A. Search Cost

In this section we will analyze the cost of a search
query in Temporal-DHT by considering the range query
reformulation technique as already described before.
A typical Temporal-DHT search query consist of two
parts: (a) an initial exact match generic DHT query
resolution with prefix routing through the help of finger
table, followed by (b) a Temporal-DHT range query
resolution by linear traversal of the content-based over-
lay through the psucc/ppred linkage pointers in the for-
ward/backward directions respectively. From [23], based
on Chord’s finger allocation principle, the query cost
between any pair of source and destination pair is given
by O(logN). This can be derived from the fact that in
each routing hop it is able to traverse at most half
of the remaining distance between the source and the
destination in the identifier space i.e., let the ith. node
in Chord have a node ID i, then the kth. item in the
finger table points to the successor node of ID (i + 2k−1)
where 1≤k≤logN and therefore, the distance travelled by
a routing hop is given by 2x for 1≤x≤logN and the query
is forwarded to the node in the xth. entry from the finger
table. Next, the search cost for the range query part of
Temporal-DHT can be derived from Theorem: II.1 where
it is stated that the maximum search span consist of
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k + z segments. Each segment can be probed by a single
message hop and therefore the total complexity for the
range search can be equated to O(k + z). Thus, the total
search cost in terms of number of hops to search any
content object cx is given as follows:

Hx = O(logN + k + z) (1)

This result can be equivalently mapped to the result in
Theorem: 4 from [18] with a slight change since their
work is based in the context of replication.

B. Problem Formulation
We propose the following problem in the context of

Temporal-DHT:
• MIN-SEARCH: Minimize the total query cost (H)

in terms of lookup hops with a given threshold
constraint of update interval (zthreshold).

It can be observed that this problem is relevant in the
context of a Temporal-DHT for maximizing the perfor-
mance benefits with respect to the messaging complex-
ity of the system which consumes valuable network
bandwidth. This problem is ignored in the previous
Temporal-DHT framework [1] by providing a constant
value of z thereby increasing the cost of the overall
system which will be efficiently addressed in this paper.

C. MIN-SEARCH
Based on the definition of popularity, content cx with

popularity quotient px receives a fraction px of all
searches. The average search cost (Hx) was derived in
Eq: (1). Given certain content popularity distribution, the
total search cost H of M data objects (i.e., video stream
divided into M number of segments) can be represented
as follows:

H =
M∑

x=1

(px · Hx) =
M∑

x=1

px · (logN + k + z) (2)

The optimization objective is to minimize the value of
H. For the above problem, we derive our solutions from
Theorem: 5 in [18] by modifying it to fit in our scenario
since our problem can be equivalently mapped to the
problem in [18]. It is stated as follows:

• Let the cost of each update operation be denoted as lx
(i.e., lx = 1

z ) and the total number of update operations
as L, then it is observed that for

∑M
x=1 lx = L = M

z , H is
minimized when ∀x : lx = px · L = px · M

z .
In accordance to the popularity-based proportional prin-
ciple, we verify by substituting lx = px · L into Eq: (2) and
get:

H = logN + k − logL − M
z

M∑

x=1

(px · logpx) (3)

We notice that the term
∑M

x=1 px · logpx is actually the
entropy of the popularities px. This is in concurrence
with the intuition since we have expected that popularity

distribution skewness will play a major role in the cost
optimization objective, and taking the popularity as an
entropy is a sound measure of skew of the distribution.
Thus, we can observe that the average search cost H
depends upon N, k, L, M, z and the entropy of px.

D. Estimation of Content Popularity
We employ a practical approach for estimating popu-

larity with the help of distributed averaging algorithm
in a decentralized fashion. We exploit the algorithm
proposed in [26] to calculate the average number of
segment request received over distributed nodes for
estimating the content popularities. A brief description
of the algorithm is as follows: Each node connects to r
random neighbors and exchange messages with them.
Assume node i has a local value of zi and the require-
ment is to estimate the average value of all zi over
the network. Additionally, each node maintains a local
dynamic variable xi which is initialized with a value of zi.
Each node periodically communicates with its neighbors
and performs a set of actions as follows: (a) Node i
sends its local value xi to Node j; (b) Node j updates
its local value xj to xj + γ j(xi − xj) where 0 < γ j < 1
is a local parameter. Node j also send back a value
γ j(xi − xj) to node i; (c) Node i updates its local value
xi to xj to xj − γ j(xi − xj). The central idea behind the
algorithm is to conserve the sum of all the values in
the system by performing alternative increment and
decrement operation between two neighboring nodes
thereby approaching closer to the average value at each
update. The algorithm can be extended to cope with
node dynamics where each node i maintains a variable
ηi j associated with each neighbor j which aggregates all
the changes made due to j. On detection of node j’s
departure, node i substract ηi j from xi which essentially
ensures the conservation of the total sum of values.

The above algorithmic technique is utilized to keep
track of the total number of each segment requests
from different users in the context of Temporal-DHT
which will be used to estimate the popularity quotients.
Each Temporal-DHT peer maintains an array ai for each
segment i indicating its access to segment i. If the peer
receives a request for segment i, then it sets ai = 1
otherwise ai = 0. A Temporal-DHT peer also maintains
a local set of variables bi which keeps track of the
number of received requests of segment i and runs the
averaging algorithm to exchange and update bi con-
tinuously with its neighboring nodes. The information
gets disseminated through each peers neighborhood to
eventually arrive on a local bi value which represents a
good approximation of the global popularity distribution
for every segment i. It is now trivial to compute the
estimated popularity p̂i of segment i from its local set
of average bi values as follows:

p̂i =
bi∑M

x=1 bx
(4)
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Thus, we are able to estimate popularity p̂i distribution
coefficients which will help to improve performance by
proportionately adapting the update interval separately
for each segment with the help of the techniques dis-
cussed in Sec: III-C.

IV. Experiments

In this section we present our simulation results for
Popularity-Aware Temporal-DHT based Mesh (TDHTM-
PA) by studying different system properties. The simu-
lator is implemented in C++, featuring a discrete event-
driven timeout mechanism for various P2P operations.
All peer dynamics, including random jumps, joins and
departures, are simulated with events scheduled at their
respective times. Chord [23] is used as the base DHT
overlay due to its simplistic construction and prov-
able performance guarantees. To portray the distinc-
tive features of TDHTM-PA, we have also implemented
VMesh [26] for experimental comparison. We also exper-
imentally compared TDHTM-PA with Temporal-DHT
based Mesh (TDHTM) which is the same framework
without the popularity-awareness module. This compar-
ison will essentially draw out the performance benefits
of the popularity-awareness concept if any found.

A. Simulation Model

We start our discussion with details of network topol-
ogy followed by system data model.

Network Topology: The underlying physical network
topology is generated using GT-ITM [27].The whole
network consists of 15 transit domains, each with 25
transit nodes and each transit node is connected to 10
stub domains, each with 15 stub nodes. We randomly
place the video server on a transit node and client
peers on the stub nodes. The delay of each link is
selected proportional to the Euclidean distance between
the nodes. For each experimental result presented, we
repeat the placement and simulation 10 times to mitigate
the effect of randomness.

Data Model: The TDHTM-PA overlay size or user
population (i.e., N) is varied in the range of 256 to 4096.
We model the user arrival process as a Poisson distribu-
tion with an average inter-arrival time λ = 1 second.
The peer lifetime follows an exponential distribution
with an expected mean of 30 minutes. The outgoing
bandwidth (i.e., Oi) is randomly distributed between
500∼1000 Kbps so that it can support a minimum of
one stream and a maximum of two streams as the video
data rate is d = 500 Kbps. The user request pattern
is divided into 2 classes: (a) 50% of the nodes follow
a Zipf distribution with various values of α. (b) The
rest 50% of the nodes are simulated with a playback
workload as hinted by [14] which states that each user
initially performs 6∼7 random forward/backward jumps
on average for scanning the entire video and then settles
down with continuous in-order playback. For simplicity,

the user viewing lifetime in our experiment is divided
into two regions as follows.

• Region 1: The number of random forward/backward
jumps is uniformly distributed in the range of
1st∼10th minute in each peer’s respective life cycle.

• Region 2: The user stabilizes in continuous playback
mode starting at the point when Region 1 ends and
remains in the same mode till the end of its viewing
period.

Each segment size (i.e., D) is set to be 3.84 MB which cor-
responds to one minute video length. The total viewing
length of the video stream is 128 minutes (i.e., M = 128).
Each simulation session length is set to be 2 hours. Other
parameters are: Ii = 4 Mbps, So = 500 Mbps, k = 5, b = 4,
and z = 10.

B. Server Stress
We define server stress as the number of streams di-

rectly supported by the server, which is the average
upload bandwidth used by server for supporting the
system divided by the data rate of the video stream.
Figure 2 plots the server stress as the function of user
population. As shown, TDHTM performs much better
than VMesh when the system size increases. Specifically
for 4096 nodes, the server stress of VMesh is around
998.6 in comparison to 557.6 of TDHTM. TDHTM-PA is
found to consistently fare better than TDHTM and the
best performance is derived from TDHTM-PA (α=2.0).
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Fig. 2: Server Stress for various user populations.
The reduction of server stress indicates the effective-

ness of the integration of the static-dynamic caching
technique employed by TDHTM. In VMesh, many peers
can request a particular segment from the static buffer
of a peer due to the proximity of playing position and
since it has limited upload bandwidth, thereby most of
the queries may not be resolved resulting in the increase
of server stress. The access of segments in TDHTM is
better organized. We can infer that popularity-awareness
approach provides a substantial amount of performance
enhancement on top of a temporal-DHT framework
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with different values of Zipf parameter α. The better
performance of TDHTM-PA can be reasoned by the fact
that it is able to optimize the search cost by an adaptive
updation mechanism taking the popularity distribution
into account.

C. Streaming Quality

One important streaming quality metric of a video
streaming system is playback continuity which has signifi-
cant influence in the user experience. We define playback
continuity as the number of segments that are received
within deadline divided by the total number of segments
a peer should play during its lifetime in the continuous
playback mode. Figure 3 plots the playback continuity
against various user populations for VMesh, TDHTM
and TDHTM-PA. As shown, all the schemes perform
pretty good (average above 80%). To further compare,
TDHTM performs consistently better than VMesh with
around 10% improvement and less variation. If we want
to verify the usefulness of popularity-awareness, then
we can observe that TDHTM-PA performs better than
TDHTM i.e., For a 4096 node network, the continuity
index for TDHTM-PA (α=0.4) and TDHTM-PA (α=2.0)
are 0.9738 and 0.9837 respectively which is substan-
tially better than 0.9453 of TDHTM. The reason could
be attributed to the fact, that optimized search-update
cost according to content popularity essentially improves
the query success rate especially for the more popular
contents which in turn helps to boost the playback
continuity.
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Fig. 3: Playback continuity against various user popula-
tions.

Next, we evaluate the distribution of playback conti-
nuity in a VoD streaming session which is also important
for ensuring fairness and uniform quality dissemination.
In case of resource shortage, an ideal P2P-VoD system
should be able to gracefully distribute the quality drop
among all the participants. Figure 4 shows the distri-
bution of playback continuity with the user population
of 1024. We can observe that all the peers achieve a

playback continuity in the range of 0.9 ∼ 1.0 with an
average of 0.9728 which is highly desirable for TDHTM-
PA. For TDHTM, the continuity index values span in
the range of 0.8 ∼ 1.0 and still poorer for VMesh, which
confirms the effectiveness of popularity-aware approach
by providing high playback continuity to all the peers
in the system.
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Fig. 4: Distribution of playback continuity (N = 1024).

D. Messaging Overhead

For messaging overhead, we account for only con-
trol messages that are required for query/reply with
respect to content access and we do not consider ini-
tialization/transmission related messages since they are
common for both VMesh and TDHTM. Figure 5 plots
the messaging overhead in terms of messages/second
for different user populations which shows that TDHTM
requires lower messaging overhead than VMesh. For
example, in a system with 4096 peers, the average mes-
saging cost of VMesh is 148.1 messages/second whereas
TDHTM requires 101.5 messages/second, an improve-
ment of 31.5%. Comparing TDHTM with TDHTM-PA,
it can be clearly viewed that popularity-based approach
provide benefits of lower messaging overhead to a cer-
tain extent. The reason is due to the fact that the MIN-
SEARCH is involved with minimizing the query cost for
a certain constant threshold of update operations thereby
reducing overall messaging overhead since search is
more expensive than updates.

E. Seek Latency

We define seek latency as the time spent acquiring the
next segment for playback. Figure 6 plots the average
seek latency against various user populations. Our re-
sults of VMesh are consistent with those in [26]. The
huge difference between the seek latency of TDHTM
and VMesh is mainly due to the averaging: in VMesh
seeking is needed for almost every segment while in
TDHTM it is not needed once a peer joins the multicast
overlay tree. Note, the seek latency does not directly

246



 0

 100

 200

 300

 400

 500

 600

 256  512  1024  2048  4096

av
g 

m
sg

 o
ve

rh
ea

d 
 (

m
sg

s/
se

c)

user population

VMesh
TDHTM

TDHTM-PA(alpha=0.4)
TDHTM-PA(alpha=2.0)

Fig. 5: Messaging overhead against various user popu-
lations.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 256  512  1024  2048  4096

se
ek

 la
te

nc
y 

(m
s)

user population

VMesh
TDHTM

TDHTM-PA(alpha=0.4)
TDHTM-PA(alpha=2.0)

Fig. 6: Seek latency against various user populations.

translate to user experience since the seeking of the next
segment is started a little earlier before the end of the
current segment. However, a large seek latency may
nevertheless increase the chance of missing deadline
which impacts the performance of playback continuity
as presented earlier. Popularity-awareness fails to induce
any effect on the seek latency since the experimental
results of the TDHTM and TDHTM-PA are within a very
narrow performance range and does not indicate any
meaningful deductions.

V. RelatedWork
In this section, we review related work from two as-

pects: popularity aware applications and P2P-VoD/DHT
based systems.

A. Popularity-aware Applications
Most of the previous work involving popularity-

awareness in designing systems have been from the
replication point of context. A typical problem in this
domain mainly involves in the placement strategies of
replicas or cached objects to reduce the search cost for

more popular content. Web-caching systems are benefit-
ted from these techniques since the web-based objects
follow a Zipf like popularity distribution. CFS [9] is a
cooperative file system over Chord [23] which caches
the popular objects along the lookup path toward the
home nodes where popular objects are originally stored.
PAST [20] is a storage system over Pastry [21] where
the search for some object is redirected to the nearest
replicas of the targeted object. Based on the replication
level l, Beehive [17] replicates the object copies to all
nodes that have at least l common prefixes matching
with the object hash ID. [6] proposed to optimize
search efficiency by replication, where the number of
replicas of an object is proportional to the square root
of the object popularity. [7] presented a square root
topology for unstructured P2P networks where the de-
gree of a peer is proportional to the square root of the
node popularity. PCache, PRing [18] presented a novel
replica placement strategy for web caching systems with
data objects having skewed popularities in both deter-
ministic and randomized structured P2P networks. It
gave detailed analytical results with closed form optical
solutions for different resource optimization objectives.
VMesh [26] proposed an interesting angle of incorporat-
ing popularity-awareness property in static-cache based
DHT overlays in the context of P2P VoD streaming. The
distributed static cache is continuously refreshed with
different video segments and this segment selection pro-
cess is based on a probability that has been derived from
the segment popularities. Our approach of applying
popularity-awareness for optimizing the search-update
cost in the context of a Temporal-DHT for a P2P VoD
system is unique and different from the above proposals.

B. DHT/P2P-VoD based Systems

In DSL [25], a dynamic skip-list based overlay is
proposed where all peers are connected in the base layer
according to their playback position in the stream and
also randomly attach to a few neighbors in higher layers
of the skip-list. oStream [8] utilizes dynamic caching by
developing a temporal dependency model among peers
and a media distribution tree is computed by the central
server to minimize the overall transmission cost. A ring-
assisted overlay is deployed in [4] where each peers
maintains neighbor based on their similarity of cached
content proportional to the radii of the different concen-
tric rings. InstantLeap [16] constructs a hierarchical mesh
overlay by dividing all the peers into groups according
to playing position. Peers in one group maintain limited
membership information of all the other groups through
random messaging which helps to support efficient
lookup for any random seek operation. PROP [11] uses
a distributed storage scheme but relies on proxy servers
and global information for cache replacement which are
difficult to implement in large scale systems. P2VoD [10]
organizes nodes into multi-level clusters according to
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their joining times. SplitStream [2] is a high bandwidth
content dissemination mesh that is built on top of Pas-
try [21] and Scribe [3] for multimedia applications. Split-
Stream constructs multiple Scribe trees based on the in-
ternal node disjoint principle and then disseminates each
multiple-desription coded (MDC) stream through a sep-
arate tree thereby achieving improved robustness against
churn. BulletMedia [24] constructs a high-bandwidth
overlay mesh by self-organizing the participating peers
in a decentralized fashion and also exploys a caching
technique by strategically distributing data at different
points such that any data object is equally likely to
appear at any node. As already discussed, VMesh[26]
is a P2P-VoD system with a closely related approach
where it performs popularity awareness by replacing
the video segments stored in the static cache of each
peer proportional to the popularity index and thereby
wasting large bandwidth resource.

VI. Conclusion
We incorporated the notion of popularity awareness

in the Temporal-DHT framework which will help to
adapt the query resolution mechanism by addressing the
skewness of content popularity typically found in real
multimedia user access patterns. The essential objective
of popularity awareness mechanism was to increase the
overall performance of Temporal-DHT by optimizing
the search cost among the entire content set within the
system. The basic mechanism involves the adaptation of
update operations for minimizing the search cost of pop-
ular video segments i.e., the more popular segments in-
crease the updation rate by reducing the value of T (up-
date interval) to lower the search cost since a Temporal-
DHT query cost is dependent on the update interval. We
formulated the problem and provided practical solutions
with extensive simulation results that demonstrate the
effectiveness of popularity-aware Temporal-DHT.
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