
Efficient VM Placement with Multiple Deterministic
and Stochastic Resources in Data Centers

Hao Jin, Deng Pan, Jing Xu, and Niki Pissinou
Florida International University

Miami, FL

Abstract—Virtual machines (VMs) may significantly improve
the efficiency of data center infrastructure by sharing resources of
physical servers. This benefit relies on an efficient VM placement
scheme to minimize the number of required servers. Existing
VM placement algorithms usually assume that VMs’ demands
for resources are deterministic and stable. However, for certain
resources, such as network bandwidth, VMs’ demands are bursty
and time varying, and demonstrate stochastic nature. In this
paper, we study efficient VM placement in data centers with
multiple deterministic and stochastic resources. First, we for-
mulate the Multidimensional Stochastic VM Placement (MSVP)
problem, with the objective to minimize the number of required
servers and at the same time satisfy a predefined resource
availability guarantee. Then, we show that the problem is NP-
hard, and propose a polynomial time algorithm called Max-Min
Multidimensional Stochastic Bin Packing (M3SBP). The basic
idea is to maximize the minimum utilization ratio of all the
resources of a server, while satisfying the demands of VMs for
both deterministic and stochastic resources. Next, we conduct
simulations to evaluate the performance of M3SBP. The results
demonstrate that M3SBP guarantees the availability requirement
for stochastic resources, and M3SBP needs the smallest number
of servers to provide the guarantee among the benchmark
algorithms.

I. INTRODUCTION

Virtual machines (VMs) are attractive to modern data cen-

ters because they may significantly promote the efficiency and

flexibility [4], [10], [20]. However, such an incentive highly

relies on a well-designed VM placement scheme [16], [17].

This is because an inefficient placement scheme may result

in lower resource utilization and thus needs more physical

servers, which will further lead to not only higher capital

investments on equipment and facilities, but also increased

operational expenditures on energy and labor.

VM placement needs to consider VMs’ demands for various

resources. CPU and memory are traditionally the two major

considerations. More recently, due to the increasing concerns

on data center energy [1] [9] and emerging bandwidth inten-

sive applications [3] [11], VMs’ power consumption [12] [14]

and bandwidth requirement are also taken into account when

computing the placement. It has started attracting attention

in the research community to find optimal VM placement

for VMs with multiple resource demands. Several models

and heuristics are proposed in recent literature. Xu et al.

[19] model VM placement as a multi-objective optimization

problem. A fuzzy multi-objective evaluation aided genetic

algorithm is proposed to search large solution space for large

scale data centers. While [19] considers CPU, memory, power

consumption and thermal dissipation as its placement criteria,

Meng et al. [15] focus their attention on network bandwidth.

Their goal is to find an optimized VM placement scheme

to improve the network scalability for traffic-intensive data

centers. An approximation algorithm aiming to reduce the

average traffic latency is proposed. The algorithm takes a two-

tier approach that first divides VMs and servers into clusters

respectively, and then matches VMs and servers at the cluster

and server levels consequently.

One common assumption of the aforementioned schemes is

that, all resources are deterministic resources for which the

demands are stable over time. The placement computing for

this type of resource can be simply done by comparing the

VM’s resource demand with the server’s available capacity. We

refer VM placement algorithms handling only deterministic

resources as deterministic algorithms.

However, recent studies [3], [5], [11], [13] indicate that

VMs’ demands for certain resources are highly bursty, and

can be modeled as stochastic processes. In other words, the

real demands of these stochastic resources are fluctuating, and

it is difficult to obtain an accurate fixed-value measure. One

such example is network bandwidth, and it is shown [11],

[18] that bandwidth demands of VMs in data centers can be

approximated by the normal distribution. As a result, besides

supplying fixed-value deterministic resources requested by

VMs, servers provide an availability guarantee for stochastic

resources in the form of a violation probability threshold,

specified in the service level agreements (SLAs). The threshold

gives the worst-case likelihood that a server cannot satisfy the

dynamical demands of a VM for stochastic resources.

It may seem straightforward for deterministic algorithms to

handle stochastic resources by estimating an equivalent fixed-

value demand. However, it has been shown in [18] that this

estimation is not accurate, since the equivalent demand for

a stochastic resource of individual VMs vary under different

placement schemes. Such a naive approach may result in either

waste of server resources or violation of servers’ availability

guarantee in the SLA. To tackle this challenge, Wang et al. [18]

propose a method that first calculates a total equivalent demand

for all VMs hosted by the same server, and then compares it

with the server’s capacity to determine whether a placement

is valid.

In this paper, we study VM placement in data centers

with multiple deterministic and stochastic resources. First,

we model the studied issue as a Multidimensional Stochas-

tic VM Placement (MSVP) problem, with the objective to

minimize the number of required servers while satisfy the

SLA availability guarantee. Then, we show that this problem

is NP-hard, and propose a polynomial time algorithm named

Max-Min Multidimensional Stochastic Bin Packing (M3SBP).

The basic idea is to maximize the minimum utilization ratio

of all the resources of a server, while satisfying the VMs’

demands for both deterministic and stochastic resources. Next,

we conduct simulations to evaluate M3SBP’s performance. In

the simulations, each VM has three deterministic resources

including CPU, Memory and Power Consumption, and one

stochastic resource Bandwidth that follows the normal distri-

bution. The results show that M3SBP guarantees the availabil-

ity requirement for the stochastic resource while employing

fewer servers than other benchmark algorithms. Moreover, the

results demonstrate that, compared to modified deterministic

algorithms that simply do over-provisioning for stochastic

resources, M3SBP obtains more efficient placement schemes.

II. PROBLEM FORMULATION

In this section, we describe the Multidimensional Stochastic

VM Placement (MSVP) problem and present the problem

formulation.

We consider a scenario in which there are n VMs with

m kinds of resources to be placed into a number of servers.

Among the m resources, there are both deterministic and

stochastic resources. Taking into account the homogeneous

architectures of modern data centers [2], [8], the servers

are assumed to have identical capacities. In order to host

VM vi, server s needs to meet all of its resource demands.

For the deterministic resource, this can be simply done by

assigning the same amount of resource as requested. However,

the demand of stochastic resource is time-varying, and it

is challenging to calculate an accurate resource allocation.

Thus, for each stochastic resource, a violation probability

threshold is defined to specify the maximum probability that

the server’s capacity of this resource is exceeded. In our

scenario, we assume all stochastic resources share the same

violation probability threshold α as in the SLA. Therefore,

considering the multidimensional and stochastic characteristics

of VM’s demands, a placement scheme is considered valid

only if it satisfies the following two conditions:

Condition 1) The capacities of the server’s deterministic

resources should not be exceeded by the total amount of

demands of all hosted VMs;

Condition 2) The probability that the capacities of the

server’s stochastic resources are exceeded is no larger than

the given violation probability threshold.

The objective of the MSVP problem is thus to find a VM

placement scheme, such that the above two conditions are

satisfied and the number of required servers is minimized.

Denote the demand of a deterministic resource p of VM

vi as Dp(vi) and server s’s corresponding capacity as Cp(s).
Condition 1 can be represented as follows,

∀p ∈ P,
∑
i∈U

Dp(vi) ≤ Cp(s) (1)

where P is the set of all deterministic resources and U is the

set of VMs hosted by s.

Assume the demand of stochastic resource q of VM vi inde-

pendently follows a normal distribution N(μq(vi), σ
2
q (vi)). An

equivalent total demand of all VMs within the same server for

each stochastic resource can be calculated based on each VM’s

distribution and the server’s violation probability threshold α
as follows,

∀q ∈ Q,
∑
i∈U

μq(vi) + Φ−1(1− α)

√∑
i∈U

σ2
q (vi) (2)

where Q is the set of stochastic resources of vi, U is the set

of VMs already placed in the current server, and Φ−1(1− α)
is the quantile of N(0, 1) at probability α. Thus, Condition 2
can be quantified by the equivalent total demand as follows,

Quantified Condition 2: The capacities of each server’s

stochastic resources should not be exceeded by the equivalent

total demand of all hosting VMs.

Denote server s’s capacity of stochastic resource q as Cq(s).
Then, Condition 2 can be formulated as follows,

∀q ∈ Q,
∑
i∈U

μq(vi) + Φ−1(1− α)

√∑
i∈U

σ2
q (vi) ≤ Cq(s) (3)

We define the TCR ratio for each resource of a server to be

the ratio between the total demand of all VMs within the

same server and the server’s capacity for this resource. Denote

Rp(s) and Rq(s) as the TCRs of deterministic resource p and

stochastic resource q, respectively. Then we have,

∀p ∈ P,Rp(s) =

∑
i∈U Dp(vi)

Cp(s)
(4)

∀q ∈ Q,Rq(s) =

∑
i∈U μq(vi) + β

√∑
i∈U σ2

q (vi)

Cq(s)
(5)

where β = Φ−1(1− α).
Therefore, by combining (1), (3), (4) and (5) , the MSVP

problem can be formulated as follows,

minimize |S|
s.t. ∀p ∈ P, ∀s ∈ S,Rp(s) ≤ 1

∀q ∈ Q, ∀s ∈ S,Rq(s) ≤ 1 (6)

where S is the set of servers to host the VMs and |S| is the

size of S.

We can see that the classic NP-hard multidimensional bin

packing problem is a special case of the MSVP problem,

with the standard deviation of the demand of each stochastic

resource set to 0. Thus, MSVP is also an NP-hard problem.

III. MAX-MIN MULTIDIMENSIONAL STOCHASTIC BIN

PACKING (M3SBP) ALGORITHM

In this section, we present the Max-Min Multidimensional

Stochastic Bin Packing (M3SBP) algorithm that finds an

approximation result for the MSVP problem. This algorithm

is inspired by First Fit Decreasing (FFD) [6], and Dominant

Resource First (DRF) [7]. FFD solves the classical bin packing

problem, by first sorting the items in the decreasing order of

their sizes and then packing larger items with higher priorities.

DRF tackles the fair resource allocation problem, where bins

with multiple resources are shared by different users. The

user’s dominant share is defined as the maximum share that

the user has been allocated of any resource. DRF seeks to

maximize the minimum dominant share across all users. Both

FFD and DRF yield higher server utilizations and thus fewer

servers than other naı̈ve bin packing algorithms do.

The basic idea of M3SBP is as follows. For each newly

powered-on server (new server in short), M3SBP finds a set

of VMs which can maximize its minimum TCR, so that the

minimum resource utilization of each server is maximized

and hence the total number of servers needed to power on

is minimized. M3SBP runs in iterative rounds, and in each

round one VM is selected and placed into the new server. If

there still exist VMs without placement when the new server

is full, another server will be powered on. The iteration repeats

until all VMs find their placement.

A. Algorithm Description

Initially, all VMs are marked as unplaced and added into

the unplaced-VM set V . M3SBP employs the set V and the

resource capacities of server s as inputs. The algorithm runs in

iterations, and in each iteration, one VM will be placed into s
and removed from V . M3SBP ends when V is empty and then

outputs the mapping between VMs and servers as the result.

Specifically, each iteration of M3SBP can be further divided

into two steps: Candidate Finding and Placement. Pseudo-

codes are shown in Algorithm 1.

Step 1 Candidate Finding: The goal of Step 1 is to find

a set of candidate VMs that can be placed in the new server

s. For each VM vi in V , M3SBP calculates the TCRs of all

resources of s as if vi was placed in s. By (4) and (5), the TCRs

of deterministic and stochastic resources can be computed as

follows,

∀p ∈ P,Rp(vi, s) =
Dp(vi) +

∑
j∈U Dp(vj)

Cp(s)
(7)

∀q ∈ Q,Rq(vi, s) =

(μq(vi) +
∑

j∈U μq(vj)) + β
√

σ2
q (vi) +

∑
j∈U σ2

q (vj)

Cq(s)
(8)

The minimum and the maximum TCRs, Rmin(vi, s) and

Rmax(vi, s), are then derived. If Rmax(vi, s) is no greater

than 1, it indicates that vi can be placed in s. Then, the

algorithm records Rmin(vi, s) and adds vi into set V ′ that

stores the candidate VMs. If V ′ is empty after all VMs are

tested, M3SBP powers on another new server s and repeat

Step 1. Otherwise, the algorithm continues with Step 2.

Step 2 Placement: In this step, M3SBP compares the

minimum TCR values of all candidate VMs in V ′ and chooses

the VM vF , which has the maximum value, as the selected

VM. Then, M3SBP places vF into server s and adds it into

set U . Finally, M3SBP removes vF from V .

B. Illustration Example

In this subsection, we give a simple example to illustrate the

algorithm. Assume that each server has identical capacities

Algorithm 1 Max-Min Multidimensional Stochastic Bin Pack-

ing (M3SBP)

1: procedure M3SBP(V , s)

2: while V �= Ø do
// Step 1: Candidate Finding

3: for all vi ∈ V do
4: CalculateTCR(vi, s);

5: if Rmax(vi, s) ≤ 1 then
6: Record Rmin(vi, s);
7: Add vi into V ′;
8: end if
9: end for

10: if V ′ = Ø then
11: Power on a new server s;

12: Repeat Step 1;

13: end if

// Step 2: Placement
14: R(vF , s) ← max{∀vi ∈ V ′, Rmin(vi, s)}
15: Add vF into U ;

16: Remove vF from V ;

17: end while
18: end procedure

19: procedure CALCULATETCR(vi, s)

// Deterministic Resources
20: ∀p ∈ P,Rp(vi, s) ←

Dp(vi)+
∑

j∈U
Dp(vj)

Cp(s)
;

// Stochastic Resource
21: ∀q ∈ Q,Rq(vi, s) ←

22:

(μq(vi)+
∑

j∈U
μq(vj))+β

√
σ2
q(vi)+

∑
j∈U

σ2
q(vj)

Cq(s)
;

// Derive Max and Min TCRs
23: Rmin(vi, s) ← min{∀r ∈ {P,Q}, Rr(vi, s)};

24: Rmax(vi, s) ← max{∀r ∈ {P,Q}, Rr(vi, s)};

25: end procedure

Dm(vi) Dc(vi) N (μb, σ2
b) Dp(vi)

v1 5.0 GB 1.0 GHz (200, 22) Mbps 225 W

v2 2.0 GB 1.5 GHz (500, 52) Mbps 300 W

v3 1.0 GB 2.5 GHz (300, 32) Mbps 150 W

Table I
SUMMARY OF RESOURCE DEMANDS OF 3 VMS

of memory, CPU, power and network bandwidth, denoted

by Cm, Cc, Cp and Cb, respectively. In this example, their

values are set to be 8 GB, 4 GHz, 1000 W and 1 Gbps. We

assume that there are 3 VMs, v1, v2 and v3, to be placed into

the servers. Each VM has deterministic demands on memory,

CPU and power consumption resources, denoted by Dm(vi),
Dc(vi) and Dp(vi), respectively, and has a stochastic demand

on the network bandwidth resource, which follows a normal

distribution N(μb(vi), σ
2
b (vi)). Table I summaries all demands

of the 3 VMs. The violation threshold α is set as 0.01%.

Initially, all VMs are added to unplaced-VM set V and

the first server s1 is powered on. In the first step, Candidate
Finding, M3SBP calculates the TCR for each of the 3 VMs

as if the VM was already placed in the server. By (7) and (8),

we have Rm(v1, s) = 0.625, Rc(v1, s) = 0.25, Rp(v1, s) =
0.225, Rb(v1, s) = 0.208. Then the maximum and minimum

TCR of v1 can be derived as Rmax(v1, s) = 0.625 and

Rmin(v1, s) = 0.208. Since Rmax(v1, s) ≤ 1, the server has

enough resource for v1. Thus v1 is added to the candidate set

V ′ and Rmin(v1, s) is recorded. Repeat the same calculation

for v2 and v3, we have Rmax(v2, s) = 0.519, Rmin(v2, s) =
0.25 and Rmax(v3, s) = 0.625, Rmin(v3, s) = 0.125. Thus

both v2 and v3 are added to V ′ and their Rmin are recorded.

Then, in the second step Placement, M3SBP compares the

Rmin(vi, s) of VMs in V ′ and finds v2 with the maximum

value. As a result, M3SBP places v2 into s1 by adding v2 into

s1’s set of hosting VMs, U . Repeat the above two steps for

v1 and v3. The final result is that, v1 and v2 are placed in s1,

while v3 is placed in s2.

C. Complexity Analysis
The complexity of the M3SBP algorithm can be calculated

in two phases. First, we count the number of execution times

of while loop. Denote the size of V during while loop’s kth

execution as lk. Initially, V contains all VMs. Thus l0 = n,

where n is the total amount of VMs. During each iteration

of the while loop, exact one VM finds its placement and the

size of V decreases by one. Thus, after n times of execution,

V will be empty, i.e. ln = 0. Therefore, the execution time

of the while loop is the same as the number of VMs, n. In

addition, lk can be calculated by using the following equation,

lk = n− k.

Second, we calculate the complexity inside the while loop.

In Candidate Finding phase, it takes O(logm) time to find the

minimum and maximum TCRs for each VM in V , where m
is the total number of resources. Since there are lk unplaced

VMs in the kth iteration, it needs a total of O(lk×logm) time

to finish the candidate searching. In the Placement phase, it

takes O(log l′k) time to find the maximum of the minimum

TCRs, where l′k denotes the size of candidate VM set V ′ of

the kth while loop iteration. In the worst-case scenario, l′k can

be as large as lk. Then the time complexity of the Placement
phase becomes O(log lk). Thus, the time complexity inside

the while loop is

O(lk × logm) +O(log lk) (9)

It is showed that l = n− k, and thus (9) becomes

O((n− k)× logm) +O(log(n− k)) (10)

Since O(n−k) > O(log(n−k)) and typically n >> m, (10)

can be simplified to O(n− k). By combining the complexity

of inside and outside of the while loop together, the total time

complexity of M3SBP is O(n(n− k)) = O(n2).

IV. PERFORMANCE EVALUATION

In this section, we present the performance evaluation

results of the M3SBP algorithm. We have conducted multiple

simulations to evaluate different aspects of the performance,

including the number of used servers, the guarantee of vio-

lation probability threshold and the algorithm effectiveness.

Simulation configurations are described in Section IV-A. Re-

sults and analysis are shown in Section IV-B, IV-C and IV-D.

A. Simulation Configuration
In the simulations, each VM is assumed to have four

types of resource demands: CPU, memory, power consumption

and bandwidth. The first three are deterministic, while the

bandwidth demand is stochastic and follows the normal dis-

tribution. We employ the resource-Demand to server-Capacity

Ratio (DCR) to identify the demand intensity of each resource.

For each VM, we define the resource, which has the largest

DCR value among all resources, as the intensive resource, and

define others as the non-intensive resources. A data center

may have VMs with different resource intensities, such as

memory-intensive and CPU-intensive VMs. This kind of data

centers demands the most resources from the multidimensional

placement algorithm. It is because that if all VMs have

the same intensive resource, the placement problem is then

reduced to the classical one-dimensional VM placement prob-

lem. To simulate the mixed-intensity situation, we configure

4 groups of VMs each with a different intensive resource,

and each group contains 1/4 of all VMs. For each VM, the

intensive resource randomly selects its DCR value from a

higher range between 30% to 40%, and other non-intensive

resources randomly select their DCR values from a lower

range between 5% to 10%. For the stochastic bandwidth

demand, the selected DCR value represents the ratio between

the mean of the bandwidth demand and the server capacity.

The bandwidth’s standard deviation is set to be 0.5% of the

mean demand by default. This percentage may change later in

different simulations. Servers are assumed to have the same

capacity of, 24 GHz (8 cores × 3.0 GHz/core) of CPU, 48 GB

of memory, 2000 W of power supply and 1 Gbps of bandwidth.

Then we can calculate the demands by multiplying the DCRs

with the server’s capacities. The total number of VMs is set to

be 2000 and the SLA violation probability is set to be 0.01%.

The following example illustrates how resource demands

of a Memory-intensive VM are configured. The memory

resource’s DCR is randomly selected between 30% to 40%,

assuming 34%. CPU’s and power consumption’s DCR are

randomly selected between 5% to 10%, assuming 6% and

7.5%, respectively. The DCR of bandwidth mean is also

randomly selected from the lower range, assuming 5.5%. The

standard deviation is set be 0.5% of the mean demand which

in this case is 5.5%× 0.5% = 0.0275% of server’s bandwidth

capacity. Then, from server’s capacities, we can derive VM’s

demands as 48 GB × 34% = 16.32 GB of memory, 24 GHz

× 6% = 1.44 GHz of CPU, 2000 W × 7.5% = 150 W of

power and 1 Gps × 5.5% = 55 Mbps mean with 0.275 Mbps

standard deviation of bandwidth.

B. Number of Servers
In this subsection, we present the simulation results on

the number of used servers. We compare M3SBP with

other bin packing algorithms, including both deterministic

����

����

����

����

����

����

����

����

����

����

	���

�� ��� ����
��
��� ��
�� ����� ������

�
�

�
�

�
��

	

�

�
�
��

�
�

�

����������������������	�����
���� ��������������������������
����

�� !�

Figure 1. Number of servers used by different placement algorithms

and stochastic algorithms. Deterministic algorithms, which

compute placement only with fixed value demands, includes

Next-Fit (NF) [6], First-Fit (FF) [6], FFD and Max-Min. NF

places the VM into the current server if the demands of

all resources are satisfied, or otherwise starts a new server.

FF looks at all existing bins and places the VM into the

lowest numbered server if it fits, or otherwise powers on

a new server. FFD employs the same packing strategy as

that of FF, except that, before the placement, FFD sums the

DCRs of all resources of each VM and sorts the VMs in

the decreasing order of their DCR summations. Max-Min has

identical procedures as those of M3SBP except that it treats the

bandwidth as a deterministic resource and employ the mean

bandwidth demand in the placement computing. Same as Max-

Min, all other deterministic algorithms view bandwidth as a

deterministic resource, and also employ the mean bandwidth

demand when computing the placement.

Comparison stochastic algorithms include stochastic NF

(S-NF), stochastic FF (S-FF) and stochastic FFD (S-FFD).

These algorithms are modified based on the classic NF, FF

and FFD algorithms, respectively. The modified algorithms

calculate the equivalent TCR for stochastic resources by using

the same equation (8) as in M3SBP. We have conducted two

sets of simulations. Both of them follow the same default

configurations described in Section IV-A, except that each

simulation uses a different standard deviation to mean ratio.

The standard deviation represents the burst level of the VM’s

traffic. In the first set, the standard deviation is 0.5% of the

mean, while in the second set the ratio is 1%.

Figure 1 illustrates the results. The solid and strip columns

show results when the standard deviation is equal to 0.5%
and 1% of the mean, respectively. Comparing the number

of servers used by M3SBP with that of all other stochastic

algorithms, we can see that M3SBP uses the fewest servers

in both simulations. Then if we compare M3SBP with the

deterministic algorithms, we can find that M3SBP still uses

almost the least number of servers when VM’s traffic burst

level is low. When VM’s traffic is more bursty, the number

of servers used by all stochastic algorithms increase. This

is reasonable since stochastic algorithms take the increasing

burst into consideration, and allocate more server resources for

VMs to prevent their network traffic from exceeding server’s

capacity. On the other hand, however, deterministic algorithms

"��

���

#"��

#���

�"��

����

�"��

����

�"��

�� ��� ����
��
��� ��
�� ����� �������
�
��
�
�
��
�
�
��
��

�
�
��
�
��

��
��
	

�

��
��

�
�

�
��

��������������������"�������
���� ��������������������#�����
����

�� !�

Figure 2. Percentage of servers that violate the target violation probability
threshold

cannot detect the change of VM’s burst level. This brings

negative influence on server availability guarantees which is

discussed in detail in Section IV-C.

C. Server Availability Guarantee
In this subsection, we evaluate how well the M3SBP algo-

rithm guarantees the availability requirement.

Stochastic algorithms compute placement based on the

target violation probability threshold. After the VM placement,

we verify whether the availability requirement is guaranteed by

generating network traffic and comparing it with the server’s

bandwidth capacity. In each simulated second, we carry out

the following procedures. First, we generate traffic for all VMs

according to their stochastic parameters. Then, we calculate

the total traffic amount for each server by adding up the

traffic of all its hosted VMs. Lastly, we compare the total

traffic amount with server’s bandwidth capacity. If the former

is larger, we say that in this second the bandwidth capacity is

exceeded and the server’s availability requirement is violated,

and count the second as a violated second. At the end of the

simulation, the real violation ratio is calculated by dividing

the total number of simulated seconds by the total number of

violated seconds. Then, if the real violation ratio is higher

than the target violation probability threshold, we say that

this server failed to guarantee the availability requirement. The

target violation probability threshold is set to 0.01% and the

simulation emulates 7 days of network traffic.

Following these procedures, we evaluate the placement

results of the previous simulations. Figure 2 shows the per-

centage of servers which have violated the target violation

probability threshold. We can see that all deterministic algo-

rithms have violated servers. Moreover, when the traffic is

more bursty, the number of violated servers of deterministic

algorithms rises up dramatically. Both FF, FFD and Max-Min

have more than 30% of servers violates the target violation

probability threshold when standard deviation is equal to 1%
of the mean. In contrast, none of the stochastic algorithms,

including M3SBP, has violated servers. This demonstrates that

M3SBP can guarantee the server’s availability well.

D. Effectiveness
In this subsection, we evaluate the effectiveness of M3SBP

algorithm. Effectiveness of a placement algorithm is defined

as follows: 1) if two algorithms consume the same number of

�$�

��$�

��$�

��$�

��$�

��$�

%�$�

����

����

����

�%��

�&��

����

����

����

�%��

�&��

����

�� ����� ���&� ����� ���%� ���� ����� ���&�

�
��
��
�
��
��
�	

��
	
��
	
��

��

�
�
�
	
��
�
��
�
	
��
	
��

�

������	�	��������

	
���
����'�
(�
'�
'���

����������

$���������������
(�
����

�������

��� ���

�����	��	����

���������	
��	��	���

��������

�����	��	����

� !���������	
��	��	���

Figure 3. Number of servers and percentage of violated servers of Max-Min
when gradually increasing the enlargement ratio from 1.00 to 1.30.

servers, the more effective one possesses less percentage of

server violations; or 2) if two algorithms all have zero server

violation (i.e. all guarantee the violation probability threshold),

the more effective one uses a smaller number of servers.

By applying these definitions to the results in Figure 1 and 2,

we find that M3SBP is more effective than all other stochastic

algorithms. This is because it is compliant with the second part

of the effectiveness definition that M3SBP requires the fewest

number of servers while obtaining zero server violation.

However, it is not straightforward to compare the effec-

tiveness between M3SBP and deterministic algorithms, which

possess a higher violation ratio but need fewer servers. One

solution is to gradually enlarge the demand of stochastic re-

sources used by deterministic algorithms in placement comput-

ing, so that the deterministic algorithms will use more servers

and generate fewer violations. In our simulation, we gradually

increase the demand of bandwidth resource in the deterministic

Max-Min algorithm from the original value to 1.30 times of

it. From Figure 3, we can see that, as expected, when the

bandwidth demand increases, the number of used servers of

Max-Min also increases and the percentage of violated server

decreases. When the bandwidth demand is enlarged to 1.24
times of the original value, Max-Min uses more servers than

M3SBP does. However, there are still 0.26% of servers in

Max-Min violates the target violation probability threshold.

Thus, M3SBP finds better placement in shorter amount of time

than Max-Min. In other words, M3SBP is more effective than

Max-Min. Due to space limitations, the results of comparisons

between M3SBP and other deterministic algorithms are omit-

ted. All comparisons lead to the same conclusion. Therefore,

we can say that M3SBP is more effective than all benchmark

algorithms.

V. CONCLUSIONS

In this paper, we have studied VM placement in data

centers when the VMs have multiple demands for various

resources and some of them are stochastic resources. We

formulate the Multidimensional Stochastic VM Placement

(MSVP) problem. Because MSVP is NP-hard, we propose a

fast algorithm named Max-Min Multidimensional Stochastic

Bin Packing (M3SBP), to calculate the VM placement for

large scale data centers. Numerical simulations are conducted

to evaluate M3SBP’s performance. In the simulations, each

VM requests four types of resources, CPU, memory, power

consumption and bandwidth. Among those resources, the first

three are deterministic while bandwidth is stochastic, and

we employ the normal distribution to model the bandwidth

demand. The results show that M3SBP uses fewer servers than

other benchmark bin packing algorithms, while guaranteeing

the server’s availability requirement. In addition, the results

also demonstrate that M3SBP is more effective in finding the

desired placement result than other benchmark algorithms.

REFERENCES

[1] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, “Energy
proportional datacenter,” ACM ISCA, Saint-Malo, France, Jun. 2010.

[2] M. Al-Fares, A. Loukissas and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM, Seattle, WA, Aug. 2008.

[3] T. Benson, A. Akella and D. A. Maltz, “Network traffic characteristics of
data centers in the wild,” ACM IMC, Melbourne, Australia, Nov. 2010.

[4] N. Bobroff, A. Kochut and K. Beaty, “Dynamic placement of virtual
machines for managing SLA violations,” IFIP/IEEE Integrated Network
Management, Munich, Germany, May 2007.

[5] M. Chen, H. Zhang, Y. Y. Su, X. Wang, G. Jiang and K. Yoshihira
“Effective VM sizing in virtualized data centers,” IFIP/IEEE Integrated
Network Management (IM), Dublin, Ireland, May 2011.

[6] E. G. Coffman, Jr., G. Galambos, S. Martello and D. Vigo “Bin packing
approximation algorithm: combinatiorial analysis,” Handbook of Combi-
natorial Optimization, D.-Z. Du and P. Pardalos, Eds. Kluwer Academic
Publishers, 1998.

[7] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, I. Stoica,
“Dominant resource fairness: fair allocation of multiple resource types,”
USENIX NSDI, Boston, MA, Mar. 2011.

[8] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, P. Lahiri, D. A.
Maltz, P. Patel and S. Sengupta, “VL2: a scalable and flexible data center
network,” ACM SIGCOMM, Barcelona, Spain, Aug. 2009.

[9] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S.
Banerjee, and N. Mckeown, “Elastictree: saving energy in data centernet-
works,” USENIX NSDI, San Jose, CA, Apr. 2010.

[10] C. Hyser, B. McKee, R. Gardner and B. J. Watson “Autonomic virtual
machine placement in the data center,” HP Technical Report HPL-2007-
189, Feb. 2008.

[11] S. Kandula, S. Sengupta, A. Greenberg, P. Patel and R. Chaiken, “The
nature of datacenter traffic: measurements and analysis,” ACM IMC,
Chicago, IL, Nov. 2009.

[12] A. Kansal, F. Zhao, J. Liu and N. Kothari, “Virtual machine power
metering and provisioning,” ACM symposium on Cloud computing, Indi-
anapolis, IN, Jun. 2010.

[13] J. Kleinberg, Y. Rabani and E. Tardos “Allocating bandwidth for bursty
connections,” SIAM Journal on Computing, vol. 30, no. 1, pp. 191-217,
2000.

[14] B. Krishnan, H. Amur, A. Gavrilovska and K. Schwan, “VM power
metering: feasibility and challenges,” ACM SIGMETRICS Performance
Evaluation Review, vol. 38, no. 3, pp. 56-60, 2011.

[15] X. Meng, V. Pappas and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” IEEE
Infocom, San Diego, CA, Mar. 2010.

[16] B. Sotomayor, R.S. Montero, I.M. Llorente and I. Foster, “Virtual
infrastructure management in private and hybrid clouds,” IEEE Internet
Computing, vol. 13, no. 5, pp. 14-22, 2009.

[17] H.Van and F. Tran, “Autonomic virtual resource management for service
hosting platforms,” IEEE CLOUD, Vancouver, Canada, May 2009.

[18] M. Wang, X. Meng and L. Zhang, “Consolidating virtual machines with
dynamic bandwidth demand in data centers,” IEEE Infocom, Shanghai,
China, Apr. 2011.

[19] J. Xu and J.A.B. Fortes, “Multi-objective virtual machine placement
in virtualized data center environments,” IEEE GreenCom, Hangzhou,
China, Dec. 2010.

[20] J. Xu and J.A.B. Fortes, “A multi-objective approach to virtual machine
management in datacenters,” ACM ICAC, Karlsruhe, Germany, Jun. 2011.

