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Abstract—Modern data center networks (DCNs) often use
multi-rooted topologies, which offer multipath capability, for
increased bandwidth and fault tolerance. However, traditional
routing algorithms for the Internet have no or limited support for
multipath routing, and cannot fully utilize available bandwidth
in such DCNs. In this paper, we study the multipath routing
problem for DCNs. We first formulate the problem as an integer
linear program, but it is not suitable for fast on-the-fly route
calculation. For a practical solution, we propose the Depth-First
Worst-Fit Search based multipath routing algorithm. The main
idea is to use depth-first search to find a sequence of worst-fit
links to connect the source and destination of a flow. Since DCN
topologies are usually hierarchical, our algorithm uses depth-
first search to quickly traverse between hierarchical layers to
find a path. When there are multiple links to a neighboring
layer, the worst-fit link selection criterion enables the algorithm
to make the selection decision with constant time complexity by
leveraging the max-heap data structure, and use a small number
of selections to find all the links of a path. Further, worst-fit
also achieves load balancing, and thus generates low queueing
delay, which is a major component of the end-to-end delay. We
have evaluated the proposed algorithm by extensive simulations,
and compared its average number of link selections and average
end-to-end delay with competing solutions. The simulation results
fully demonstrate the superiority of our algorithm and validate
the effectiveness of our designs.

I. INTRODUCTION

Data centers contain large numbers of servers to achieve

economies of scale [17], and the number is increasing expo-

nentially fast [11]. For example, it is estimated that Microsoft’s

Chicago data center has about 300,000 servers [1]. The huge

number of servers have created a challenge for the data center

network (DCN) to offer proportionally large bandwidth to

interconnect the servers [27]. As a result, modern DCNs

usually adopt multi-rooted topologies, such as the fat tree [2],

VL2 [9], DCell [11], and BCube [10], which offer multipath

capability for large bisection bandwidth.

However, traditional link state and distance vector based

[15] routing algorithms for the Internet cannot readily utilize

the multipath capability of multi-rooted topologies. In the first

place, traditional routing algorithms calculate routes based on

only packet destinations, and thus all packets to the same

destination share the same route. Although equal cost multi-

path (ECMP) [7] support multipath routing, it performs static

load splitting based on packet headers without accounting for

bandwidth, allows only paths of the same minimum cost, and

supports an insufficiently small number of paths [12]. Further,

traditional routing algorithms usually give preference to the

shortest path to reduce the propagation delay. Due to small

geographical distances, DCNs are less concerned about the

propagation delay, but give priority to bandwidth utilization.

To fully explore bandwidth, DCNs with multi-rooted topolo-

gies need practical and efficient multipath routing algorithms,

which should satisfy the following design objectives. First,

the algorithm should maximize bandwidth utilization, or in

other words achieve a high routing success ratio, so that the

same network hardware can accommodate as much traffic as

possible. Further, the algorithm must have low time complexity

to make fast routing decisions, because a DCN handles a large

volume of traffic. Finally, after an algorithm satisfies the above

requirements, it is preferred that the packets can have low end-

to-end delay, in particular queueing delay.

To optimize bandwidth utilization in DCNs, it is neces-

sary to have a global view of the available resources and

requests in the network [4], and allocate bandwidth at fine

granularity [26]. For these purposes, our design sets up a

central controller, which communicates with switches in the

DCN by the OpenFlow protocol [24]. Each OpenFlow enabled

switch has a flow table to control flows, where a flow can be

flexibly defined by any combination of the ten packet headers

at arbitrary granularity [16]. The controller can control the

flows by querying, inserting, or modifying entries in the flow

tables. In this way, the central controller can collect bandwidth

and flow information of the entire network from the switches,

make optimal routing decisions, and send the results back to

the switches to enforce the planned routing. Multiple choices

of OpenFlow devices are already available on the market

[19]–[23], and OpenFlow has been adopted in many recent

data center designs [3], [4], [12], [18]. The availability of

OpenFlow switches makes it practical to quickly experiment

with and deploy the proposed solution.

In the paper, we first formulate the multipath routing

problem as an integer linear program, but it is not suitable

for fast on-the-fly route calculation. Next, built on top of

the OpenFlow control framework, we propose the Depth-First

Worst-Fit Search based multipath routing algorithm for DCNs.

The main idea is to use depth-first search to find a sequence of

worst-fit links to connect the source and destination of a flow.

Because DCN topologies are usually hierarchical, the depth-

first search can quickly traverse between the hierarchical layers

of switches to find a path. When there are multiple links to

the neighboring layer, the worst-fit criterion always selects the

one with the largest amount of remaining bandwidth. By using



the max-heap data structure, worst-fit can make the selection

decision with constant time complexity. Further, worst-fit

achieves load balancing, and therefore avoids unnecessary

backtracking in the depth-first search and reduces packet

queueing delay. We have evaluated the proposed algorithm

by extensive simulations, and the results demonstrate that the

algorithm fulfills the design objectives.

The rest of the paper is organized as follows. Section II

briefly reviews the related work. Section III formulates the

problem, proposes our solution, and discusses the implementa-

tion issues. Section IV presents the simulation results. Finally,

Section V concludes the paper.

II. RELATED WORK

Typical DCNs offer multiple routing paths for increased

bandwidth and fault tolerance. Multipath routing can reduce

congestion by taking advantage of the path diversity in DCNs.

Typical layer-two forwarding uses a spanning tree, where there

is only one path between source and destination nodes. A

recent work, SPAIN [17], provides multipath forwarding by

computing a set of paths that exploits the redundancy in a

given network, and merges these paths into a set of trees,

each mapped as a separate VLAN. At layer three, equal

cost multipath (ECMP) [7] provides multipath forwarding by

performing static load splitting among flows. ECMP-enabled

switches are configured with several possible forwarding paths

for a given subnet. When a packet arrives at a switch with

multiple candidate paths, the switch forwards it onto the one

that corresponds to a hash of selected fields of the packet

header, thus splitting load to each subnet across multiple paths.

However, ECMP does not account for flow bandwidth in

making allocation decisions, which may lead to oversubscrip-

tion even for simple communication patterns. Further, current

ECMP implementations limit the multiplicity of paths to 8-16,

which is fewer than what would be required to deliver high

bisection bandwidth for larger data centers [12].

There exist several multipath solutions for DCNs. [3] pro-

pose two multipath algorithms: Global First-Fit and Simu-

lated Annealing. The former simply selects among all the

possible paths the first one that can accommodate a flow,

but needs to maintain all paths between a pair of nodes. The

latter performs a probabilistic search of the optimal path, but

converges slowly. [12] proposes the ElasticTree DCN power

manager with two multipath algorithms: Greedy Bin-Packing

and Topology-Aware Heuristic. The former evaluates possible

paths and chooses the leftmost one with sufficient capacity.

The latter is a fast heuristic based on the topological feature

of fat trees, but with the impractical assumption to split a flow

among multiple paths. [4] presents the MicroTE framework

that supports multipath routing, coordinated scheduling of

traffic, and short term traffic predictability. Different from the

existing solutions, our multipath routing algorithm uses depth-

first search to quickly find a path between hierarchical layers,

and uses worst-fit to select links with low time-complexity and

avoid creating hot spots in the network.

III. DEPTH-FIRST WORST-FIT SEARCH BASED

MULTIPATH ROUTING

In this section, we formulate the multipath routing problem,

propose the Depth-First Worst-Fit Search based algorithm, and

discuss its implementation.

A. Problem Formulation

We formulate the multipath routing problem as a linear

program. Model a DCN as a directed graph G = (H ∪ S,L),
in which a node h ∈ H is a host, a node s ∈ S is a switch,

and an edge (ni, nj) ∈ L is a link connecting a switch with

another switch or a host. Each edge (ni, nj) has a nonnegative

capacity c(ni, nj) ≥ 0 indicating the available bandwidth of

the corresponding link. There are n flows F1, . . . , Fn in the

DCN. Fk is defined as a triple Fk = (ak, bk, dk), where

ak ∈ H is the source host, bk ∈ H is the destination host,

and dk is the demanded bandwidth. Use fk(ni, nj) to indicate

whether flow Fk is routed via link (ni, nj).
By translating the low latency design objective to load

balancing, the objective function is thus to minimize the

maximum load among all the links, i.e.

minimize maxload

subject to the following constraints:

∀(ni, nj) ∈ L,
∑

k

fk(ni, nj)dk
c(ni, nj)

≤ maxload ≤ 1 (1)

∀k, ∀ni ∈ H ∪ S \ {ak, bk},∑

nj∈H∪S

fk(ni, nj) =
∑

nj∈H∪S

fk(nj , ni) (2)

∀k,
∑

ni∈H∪S

fk(ak, ni) =
∑

ni∈H∪S

fk(ni, bk) = 1 (3)

Equation (1) defines maxload, and states the link capacity

constraint, i.e. the total demanded bandwidth on a link not

exceeding its available bandwidth. Equation (2) states the

flow conservation constraint, i.e. the amount of any flow not

changing at intermediate nodes. Equation (3) states the demand

satisfaction constraint, i.e. for any flow, the outgoing traffic at

the source or the incoming traffic at the destination equal to

the demand of the flow.

Since integer linear programing is NP-complete, the above

optimal flow assignment is not suitable for fast on-the-fly route

calculation.

B. Algorithm Design Philosophy

To make multipath routing practical for DCNs, we propose

the Depth-First Worst-Fit Search based multipath routing

algorithm. The basic idea is to use depth-first search to

find a sequence of worst-fit links to connect the source and

destination hosts of a flow.

Depth-first search utilizes the hierarchical feature of DCN

topologies to quickly find a path connecting the hierarchical

layers. DCNs are typically organized in a hierarchical structure

with multiple layers of switches and one layer of hosts [9]–

[11]. For example, a fat tree [18] DCN has one layer of
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hosts, edge switches, aggregation switches, and core switches,

respectively, as shown in Figure 1. Since a path usually

consists of links connecting hosts and switches at different

layers, depth-first search can quickly traverse these layers.

For example, a path connecting two servers of the same edge

switch in a fat tree will traverse from the host layer to the

edge switch layer and then back to the host layer, as shown

in Figure 1. If the search has exhausted all the links in a layer

and cannot proceed further, it is necessary to backtrack to the

previous layer [6] and try the next candidate.

When there are multiple links to the neighboring layer, the

worst-fit criterion selects the one with the largest amount of

remaining bandwidth. On the other hand, the first-fit criterion

in [3], [12] selects the first (or leftmost) link with sufficient

remaining bandwidth, and best-fit selects the link with the least

but sufficient remaining bandwidth.

Compared with first-fit or best-fit, worst-fit has the following

advantages. First of all, worst-fit has time complexity of O(1)
by trying only the link with the largest amount of available

bandwidth. Since the controller needs to search a path on the

fly for each flow, constant time complexity helps accelerate

the routing process. In contrast, first-fit has time complexity

O(logN) to select from N candidates, where N grows with

the DCN size, using the special winner tree data structure

[13]. Similarly, best-fit has time complexity of O(logN) by

conducting binary search on a pre-sorted list. Further, worst-

fit achieves load balancing by evenly distribute traffic among

all links, and therefore it needs fewer link selections on the

average to find a path. This characteristic also helps worst-

fit find a path faster than first-fit and best-fit by avoiding

excessive backtracking. As a comparison, first-fit and best-fit

tend to consolidate traffic to certain links and eventually block

them. If all the neighboring links of a switch are blocked, the

path searching has to backtrack to the previous layer, and thus

needs more link selection decisions. Finally, because worst-fit

achieves load balancing, it is less likely to create hot spots

in the network, avoiding long packet queuing delay. On the

other hand, first-fit and best-fit keep increasing the load of a

link until saturate it. In this case, heavily loaded links suffer

from extra latency, while some other links are still idle.

C. Algorithm Description

In detail, the depth-first worst-fit multipath routing algo-

rithm works as follows. The first stage is to determine the

necessary layer to connect the source and destination hosts.

Note that hosts in DCNs usually have IP addresses corre-

sponding to their topological locations [5]. For example, in

a fat tree based DCN, hosts in the same pod usually share

the same subnet address [18]. Thus, it is easy to determine by

which layer the source and destination hosts can be connected.

Since the network topology and IP address assignment are

known in advance, it is appropriate to do the calculation

for all IP addresses in advance and store the results, so that

they are handily available during path searching. Determining

the connecting layer avoids wasting bandwidth of switches at

higher layers, which will be available for future flows.
The second stage of the algorithm uses depth first search

to select switches at each layer. Starting with the source

edge switch, the search first goes upstream, and heads back

downstream after reaching the necessary connecting layer. For

certain topologies, such as the fat tree, the downstream path is

determined after reaching the connecting layer. After arriving

at each switch, the algorithm first checks if it is the destination

edge switch. If yes, the search ends with a path. If no, the

search continues with the worst-fit link to the next layer. In

case that there is no viable link to the next layer, the search

needs to backtrack to the previous layer and continue with

the worst-fit link of the remaining untried links. For easy

understanding, Table I gives the pseudo code description of

the algorithm.

D. Implementation
As explained in Section I, the algorithm will be running

in the OpenFlow controller that has a global view of the

entire network. Besides the network topology, the controller

maintains two max-heaps [6] for each switch, one for upstream

links and the other for downstream links. When the path

search arrives at a switch, depending on the search direction,

the algorithm compares the flow demand with the available

bandwidth of the corresponding heap root. If the root has

sufficient bandwidth, the search proceeds to the next layer;

otherwise, the search backtracks to the previous layer. Since

the algorithm is based on depth-first search, the time complex-

ity is O(|H ∪ S| + |L|) [6]. After the algorithm successfully

finds a path, it will deduct the flow demand from the available

bandwidth of the links in the path and update the heaps.

Fortunately, paths in DCNs usually have a small number of

hops, and the heap update has time complexity of O(logN)
for a size N heap [6], so that the process can finish quickly.



TABLE I
PSEUDO CODE ALGORITHM DESCRIPTION

DFS(G, a, b, d) { // G: network, a: source, b: destination, d: demand
1 H = necessary-layer-to-connect(G, a, b);
2 path = {};
3 u = a; // temp variable indicating current location
4 next = 1; // search direction flag, 1: upstream, -1: downstream
5 return SEARCH(u, path, next);
}

SEARCH(u, path, next) {
1 path = path+ u;
2 if (u = b) return true;
3 if ( layer-of(u) = H) next = −1;

// reverse search direction after reaching connecting layer
4 if (next = −1 && layer-of(u) = 1) return false;

// failure at bottom layer
5 neighbors = {v| layer-of(v) = layer-of(u) + next,

and available bandwidth of link (u, v) ≥ d};
6 found = false;
7 while (neighbors �= ∅ && found = false) {
8 v = worst-fit(neighbors); neighbors = neighbors \ {v};
9 found = SEARCH(v, path, next);
10 };
11 return found;
}

Also note that for the topologies in which a host has

only one attached link, such as the fat tree, our algorithm

is transparent to the hosts. Because the host has only one

outgoing link, it can only send its packets to the connected

switch. If the switch cannot find a matching entry in its flow

table for a packet, the switch knows that the packet belongs

to a new flow. The switch will then report the new flow to

the controller, which will calculate a route for the flow. In this

way, data center customers can choose to run their software

on commodity operating systems, for enhanced security and

compatibility.

We can see that the proposed algorithm fulfills the design

objectives. First, it achieves high bandwidth utilization by

exhaustive search with backtracking, and guarantees to find

a path if there exists one. Second, the worst-fit link selection

has constant time complexity; the depth-first search has linear

time complexity; the average running time is much shorter

with the load balancing achieved by worst-fit, as will be seen

in Section IV. Third, load balancing by worst-fit reduces the

queueing delay by avoiding hot spots.

IV. SIMULATION RESULTS

In this section, we present simulation results to demonstrate

the effectiveness of our designs. We compare the worst-

fit criterion with first-fit and best-fit, in which first-fit was

used in existing multipath routing algorithms [3], [12]. In the

following, we describe our simulation settings, and look at

the average number of link selections and average end-to-end

delay of the three solutions.

The average number of link selections is important, because

a smaller value means faster routing decisions. The routing

process of each of the simulated algorithms consists of a
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Fig. 2. Average number of link selections of different multipath routing
algorithms.

series of link selections, and each link selection increases the

routing decision time. Thus, if a routing process has a large

number of failed link selections due to backtracking, it leads

to long routing delay. On the other hand, average end-to-end

delay is an interesting evaluation criterion, because short delay

indicates good load balancing. Finally, we also observed in

the simulations that all the three algorithms achieve routing

success ratios of greater than 99% for admissible traffic, which

demonstrate high bandwidth utilization. The high routing suc-

cess ratios are not surprising due to exhaustive path searching

with backtracking.

A. Average Number of Link Selections

Since the fat tree is the most popular DCN topology [2],

[12], [18], we consider a k = 16 fat tree with 1024 hosts, 128

edge switches, 128 aggregation switches, and 64 core switches.

Each link has bandwidth of 1 Gbps. Each flow has a demand

uniformly distributed between 10 Kbps to 1 Mbps. We run the



simulations under both uniform and nonuniform traffic. With

uniform traffic, the flow destinations of a host are uniformly

distributed among all the remaining hosts. With nonuniform

traffic, 70% of the traffic generated by a host is destined for

hosts in the same pod [18], which consists of all the hosts and

switches connected by the same aggregation switch, and 30%

traffic is destined for hosts out of the pod.
Figure 2(a) shows the average numbers of link selections of

the worst-fit, first-fit, and best-fit criteria under uniform traffic.

We can see that the average link selection number of worst-

fit is consistently less than the other two. Specifically, it is

not sensitive to the traffic load, and stabilizes at around 6.

This can be explained by the fact that a path under uniform

traffic needs 6 hops on average, i.e. starting from the source

host, and traversing the edge switch, aggregation switch, core

switch, aggregation switch, edge switch, and destination host.

Although a server has only one link to its edge switch in

the fat tree, and thus the hop from or to the host needs no

selection decision, we still count it as one link selection,

because the algorithm needs to check whether the link has

sufficient bandwidth. On the other hand, for first-fit and best-

fit, their average numbers of link selections grow steadily with

the traffic load, up to 12 or twice as that of worst-fit. Compared

with worst-fit, we can see that up to half of their link selections

failed due to backtracking. The reason is that first-fit and best-

fit tend to consolidate the flows to a small number of links,

resulting in congestion and therefore more backtracking for

the depth-first search. Note that the average number of link

selections is not an indicator of route lengths but of processing

time. It is also interesting to note that although first-fit and

best-fit choose different links, they need a similar average

number of link selections.
Figure 2(b) shows the simulation results under nonuniform

traffic. Similarly, the data of worst-fit stabilize are not sensitive

to the load change, and keep at around 4. Because under

nonuniform traffic, 70% of the flows are in the same pod,

the path for such a flow needs only 4 hops, i.e. staring from

the source hosts, and traversing the edge switch, aggregation

switch, edge switch, and destination host. Due to the big

portion of in-pod traffic, first-fit and best-fit need smaller

numbers of link selections as well, and the numbers increase

with the traffic load, up to 9. They two still use a similar

number of link selections.
B. Average Delay

We now present the average end-to-end delay of the three

criteria. We assume that the processing delay at each switch

is zero, and the per hop delay consists of queueing delay,

transmission delay, and propagation delay. Each output port of

the switch has a buffer of 1 Mbytes. Every link is bidirectional

with 1 Gbps for each direction. Each link has a propagation de-

lay of 1 μs. The packet length is uniformly distributed between

40 and 1,500 bytes [8], and packet arrival of flows follows

the Markov modulated Poisson process [25]. For first-fit and

best-fit to avoid extreme queueing delay of saturated links,

we always leave 5% of the bandwidth of a link unallocated

when calculate the routes, i.e. available bandwidth = 95% of
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Fig. 3. Average end-to-end delay of different multipath routing algorithms.

physical bandwidth. (Since worst-fit achieves load balancing,

it is not likely to saturate a link when the overall traffic load

is small.) Each simulation run lasts for 10 seconds.

Figure 3(a) shows the average end-to-end packet delay

under uniform traffic. We can see that worst fit has much

shorter average delay than the other two. Since worst-fit

achieves load balancing, its average delay is not sensitive to

the load, and increases only when the load becomes close

to one. On the other hand, the average delay of first-fit and

worst-fit grows proportionally with the load, up to six times

of that of worst-fit. Because best-fit consolidates flows to a

higher degree, its link is more congested and thus it has longer

average delay than first-fit.

Figure 3(b) shows the data under nonuniform traffic. Con-

sistently, worst-fit has much shorter average delay than the

other two. The average delay of all three criteria decreases,

because under the nonuniform traffic, most flows are in the

same pod, and therefore need fewer hops.



V. CONCLUSIONS

Data center networks (DCNs) often rely on multipath ca-

pability for increased bandwidth and fault tolerance. In this

paper, we have studied multipath routing algorithms to fully

utilize available bandwidth in DCNs. We first formulate the

problem as a linear program, but it is not suitable for fast on-

the-fly route calculation. For practical deployment, we propose

the Depth-First Worst-Fit Search based multipath routing

algorithm. By observing that most DCNs have hierarchical

topologies, our proposed algorithm uses depth-first search to

quickly traverse between hierarchical layers to find a path. On

the other hand, the worst-fit link selection criterion enables the

algorithm to achieve constant time complexity link selection

and use fewer overall selections for a path. Further, worst-

fit also reduces packet queueing delay by load-balancing

the traffic. We have implemented the proposed algorithm in

simulators, and conducted simulations to evaluate the average

link selection number and end-to-end delay. The simulation

results fully demonstrate the superiority of our algorithm over

competing solutions, and validate the effectiveness of our

designs.
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