
IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION 1

Flow Based Performance Guarantee Scheduling in
Buffered Crossbar Switches

Deng Pan and Yuanyuan Yang

Abstract—Buffered crossbar switches are a special type of
crossbar switches with a small buffer at each crosspoint of
the crossbar. Existing research results indicate that they can
provide port based performance guarantees with speedup of
two, but require significant hardware complexity to provide
flow based performance guarantees. In this paper, we present
scheduling algorithms for buffered crossbar switches to achieve
flow based performance guarantees with speedup of two and one
buffer per crosspoint. When there is no crosspoint blocking, only
simple and distributed input scheduling and output scheduling
are needed. Otherwise, a special urgent matching procedure is
necessary to guarantee on-time delivery of crosspoint blocked
cells. For urgent matching, we present both sequential and
parallel matching algorithms. The parallel version significantly
reduces the average number of iterations for convergence, which
is verified by simulation. With the proposed algorithms, buffered
crossbar switches can provide flow based performance guarantees
by emulating push-in-first-out output-queued switches, and we
use the counting method to prove the perfect emulation. Finally,
we discuss an alternative backup-buffer implementation design to
the bypass path, and compare our scheme with existing solutions.

Index Terms—Buffered crossbar switches, cell scheduling,
performance guarantees, stable marriage problem.

I. INTRODUCTION

TRADITIONALLY, in switch scheduling a flow is defined
as the sequence of packets from an input port to an

output port, and port based performance guarantees ensure
the desired bandwidth and packet delay of such a flow.
However, emerging protocols, such as OpenFlow [19], have
made it feasible for switches to process traffic at much finer
granularity. For example, an OpenFlow supported switch can
flexibly define a flow by any combination of the twelve packet
header fields [19]. A flow can thus be the packets generated
by a specific application or from a specific virtual machine
(VM) of a shared server. Since there may be multiple fine
granularity flows for a single input-output pair, port based
performance guarantees are no longer sufficient, and it is
necessary to provide performance guarantees at the individual
flow level. Flow based performance guarantees are particularly
important for virtualization based computing environments,
such as data centers or GENI-like [14] shared experimental
infrastructure. In such an environment, multiple VMs reside
in a single physical server, and their traffic shares the same

Paper approved by A. Pattavina, the Editor for Switching Architecture
Performance of the IEEE Communications Society. Manuscript received
November 3, 2010; revised February 26, 2012 and May 18, 2012.

D. Pan is with School of Computing and Information Sciences, Florida
International University, Miami, FL 33199, USA (e-mail: pand@cis.fiu.edu).

Y. Yang is with Dept. of Electrical and Computer Engineering, Stony Brook
University, Stony Brook, NY 11794, USA (e-mail: yang@ece.sunysb.edu).

Digital Object Identifier 10.1109/TCOMM.2012.09.100625

physical network adapter and is correspondingly fed into the
same switch port. Flow based performance guarantees are
able to isolate traffic of different VMs, and make the shared
underlying network infrastructure transparent to the VMs.

Buffered crossbar switches [1], [2], [3] are a special type
of crossbar switches, where each crosspoint of the crossbar
is equipped with small exclusive buffers. The crosspoint
buffers decouple input ports and output ports, and greatly
simplify the scheduling process [4], [5], [6]. Thus, buffered
crossbar switches are a promising candidate for next gener-
ation high speed interconnects. Buffered crossbar switches
can provide performance guarantees by emulating push-in-
first-output (PIFO) output-queued (OQ) switches [6], [10],
[13]. OQ switches have buffers at only output ports, and
therefore need speedup of N to achieve 100% throughput
[5], which make them not scalable. Specifically, for PIFO
OQ switches, the buffer at each output port is organized as a
PIFO queue, allowing a packet to be inserted at any position
in the queue but removed from only the head of the queue.
Many fair queueing algorithms, such as WFQ [15] and DRR
[16], can work for PIFO OQ switches to provide performance
guarantees. The emulation approach enables buffered crossbar
switches to provide the same performance guarantees as
OQ switches with reduced hardware complexity due to less
speedup.

Chuang, et al. analyzed the capability of buffered crossbar
switches to provide performance guarantees in [13]. They
showed that speedup of two is sufficient to achieve port
based performance guarantees. However, in order for buffered
crossbar switches with speedup of two to provide flow based
performance guarantees, either a separate crosspoint buffer
must be available for each flow, or the switch architecture
must first be modified with a more complex buffering scheme
(similar to that of OQ switches) and then a total of N 3

crosspoint buffers must be provided for an N × N switch.
Unfortunately, both schemes greatly increase the total number
of crosspoint buffers and are not scalable. Alternatively, the
speedup of the crossbar may be increased to three, which will
drop the maximum throughput of the switch by one third.
The additional speedup of one is used to eliminate crosspoint
blocking, which refers to the situation that a cell in the input
buffer with earlier departure time is blocked by another cell
already in the crosspoint buffer from a different flow and with
later departure time. Crosspoint blocking may occur when
a new cell arrives at the input buffer. In such a case, the
blocked cell and the blocking cell are exchanged using the
additional speedup. Because at most one cell may arrive at
each input port in one time slot, the additional speedup of

0090-6778/10$25.00 c© 2012 IEEE

2 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION

one is guaranteed to completely remove crosspoint blocking.
In this paper, we present scheduling algorithms to pro-

vide flow based performance guarantees for buffered crossbar
switches with speedup of two and with only one buffer at
each crosspoint. As in [13], we consider only fixed length
cell scheduling, and make the switch work in a time slot
mode. Our main contributions in this paper are summarized as
follows. First, we present a buffered crossbar switch structure
with a normal path and a bypass path at each crosspoint.
The additional bypass path enables the switch to combine
the advantages of both a buffered crossbar switch and a
combined-input-output-queued switch. Second, we describe
a hybrid scheduling algorithm that conducts low-complexity
distributed scheduling for normal cases and high-complexity
centralized scheduling only for crosspoint blocking cases.
Third, we propose a parallel urgent matching algorithm to
resolve crosspoint blocking, and show that its average number
of iterations for convergence grows logarithmically with the
switch size. Fourth, we use the counting method to prove that
our scheme can perfectly emulate any PIFO OQ switch, and
achieve flow based performance guarantees. Finally, we give
an alternative implementation design to remove the bypass
path, and compare our scheme with existing solutions.

The rest of the paper is organized as follows. In Section
II, we review existing cell scheduling algorithms for buffered
crossbar switches. In Section III, we present the switch
scheduling algorithms, and in Section IV, we describe the
urgent matching algorithms in detail. In Section V, we use the
counting method to prove the emulation of PIFO OQ switches.
In Section VI, we discuss how to remove the bypass path,
and compare our scheme with existing solutions. Finally, in
Section VII, we conclude the paper.

II. RELATED WORK

In this section, we give a brief overview of existing cell
scheduling algorithms for buffered crossbar switches, which
can be divided into two broad categories.

The first group of algorithms target high throughput. Among
them, [20], [21], [22] propose buffered crossbar based switch
architectures and corresponding scheduling algorithms, and
demonstrate high throughput by simulation. Further, [23],
[24] propose scheduling algorithms for buffered crossbar
switches, and prove that they achieve 100% throughput under
uniform traffic. Recently, [25] proposes the Stable QUeue
Input-output Scheduler with Hamiltonian walk (SQUISH) and
Stable QUeuing Implementable Design (SQUID) algorithms,
and theoretically proves that they achieve 100% throughput
with a finite crosspoint buffer and without crossbar speedup
for any admissible traffic. [26] further extends the design
with distributed implementation, and proposes the DIStributed
QUeue input-Output (DISQUO) algorithm, which also guaran-
tees 100% throughput for any admissible traffic. The schemes
in [27] and [28] schedule mixed multicast and unicast traffic,
and show that they achieve high throughput by simulation and
analysis, respectively. Compared with the above algorithms,
our proposed scheme can provide strong performance guaran-
tees, such as guaranteed bandwidth or packet delay, which are
important for applications with QoS requirements.

Crossbar Switching Fabric

Out1

OutN

In1 InN

Fig. 1. Structure of buffered crossbar switch.

(a) (b)

Fig. 2. Two possible transmission paths. (a) Normal path. (b) Bypass path.

The second group of algorithms intend to provide perfor-
mance guarantees. The algorithms in [11], [12] are proved to
emulate PIFO OQ switches at the port level. The smoothed
multiplexer (sMUX) algorithm in [4] uses a TDMA approach
to provide port based performance guarantees. Compared with
those designs, our proposed scheme provides performance
guarantees at finer granularity, for individual flows of the same
input-output pair. [13] further proposes algorithms to emulate
PIFO OQ switches at the flow level, at the cost of speedup of
three or N 3 crosspoint buffers. Compared with the algorithms
in [13], our scheme achieves the same flow based performance
guarantees with reduced hardware complexity, i.e., speedup of
two and N 2 crosspoint buffers.

III. SWITCH SCHEDULING

In this section, we present our scheduling algorithms to
emulate PIFO OQ switches at the flow level.

A. Switch Structure

The switch structure considered in this paper is illustrated
in Fig. 1. N input ports and N output ports are connected
by a crossbar switching fabric with speedup of two. Packets
are buffered at input ports, output ports, and crosspoints. To
provide performance guarantees for individual flows, input and
output buffers are organized on a per-flow basis, i.e., a logical
virtual queue to store packets of a single flow in their arrival
order. Each crosspoint has a small exclusive buffer, which can
store a single cell. Following the convention, assume that in
each time slot, at most one cell can enter an input buffer or
leave an output buffer. Since the crossbar has speedup of two,
it can retrieve two cells from each input buffer and deliver
two cells to each output buffer in a single time slot.

The crossbar has two possible paths to transmit a cell from
the input buffer to the output buffer, which we call the normal
path and bypass path, respectively. For the normal path, as
shown in Fig. 2(a), a cell is first sent from the input buffer
to the crosspoint buffer, from where it will be retrieved to the

PAN and YANG: FLOW BASED PERFORMANCE GUARANTEE SCHEDULING IN BUFFERED CROSSBAR SWITCHES 3

Arrival Phase

Departure Phase

Input Scheduling
Urgent Scheduling
Output Scheduling

1st Scheduling Phase
Input Scheduling
Urgent Scheduling
Output Scheduling

2nd Scheduling Phase

Fig. 3. Operation phases of buffered crossbar switch.

output buffer. For the bypass path, as illustrated in Fig. 2(b), a
cell is directly transmitted from the input buffer to the output
buffer without being stored at the crosspoint. In a single time
slot, only one of the two paths is available.

B. Emulation of PIFO OQ Switches

Our approach to achieving performance guarantees is to
emulate the scheduling algorithms of PIFO OQ switches. We
call an OQ switch that we intend to emulate the shadow
switch. A successful emulation means that, for any incoming
traffic, the departure time of each cell in our considered switch
is the same as that in the shadow switch. Define the output
priority of a cell to be its departure time in the shadow OQ
switch. For two cells to the same output port, the one with
higher output priority leaves the output buffer first. Define the
input priority of a cell by the Group by VOQ (GBVOQ) policy
[10], which we will describe in more detail in Section III-C1.
For two cells of the same input port whose crosspoint buffers
are both empty, the one with higher input priority leaves the
input buffer first.

We will use the counting method [7], [10], [11], [12], [13] to
analyze the scheduling algorithms, and thus need the following
notations. The output cushion of a cell is the number of cells
that are in its destination output buffer and have higher output
priority. The input thread of a cell is the number of cells that
are in the same input buffer and have higher input priority. If
the cell is in the crosspoint buffer, we define its input thread to
be zero. The slackness of a cell equals its output cushion minus
its input thread. Intuitively, slackness indicates the urgency
level to transmit a cell to its output buffer, and a cell with
non-negative slackness is guaranteed to depart from its output
buffer on time.

C. Scheduling Phases

For easy description, we divide the operation of a buffered
crossbar switch into four phases: arrival, first scheduling,
second scheduling, and departure. In particular, each of the
two scheduling phases consists of three sub-phases: input
scheduling, urgent matching, and output scheduling, in which
urgent matching is not necessary if there is no crosspoint
blocking. Fig. 3 illustrates the operation phases and sub-phases
in a time slot. Next, we describe each phase in detail.

1) Arrival Phase: In the arrival phase, a new cell may
arrive at each input buffer, and it will be put at the end of the
corresponding virtual queue. Its input priority is determined
by the GBVOQ policy as follows. If its virtual queue is empty,
it is inserted at the head of the input priority list. Otherwise, it
is inserted in the input priority list immediately after the last
cell of its virtual queue.

2) Scheduling Phase: In each of the two scheduling phases,
the crossbar makes a scheduling decision to retrieve up to one
packet from every input buffer and deliver up to one packet to
every output buffer. We only consider the head cell of a virtual
queue in the scheduling phase, because cells of the same flow
are in a single queue and the head cell always leaves first. For
a head cell, if its crosspoint is occupied by another cell with
lower output priority, we call it a blocked cell, and otherwise
a normal cell.

In the input scheduling sub-phase, each input port indepen-
dently selects the normal cell with an empty crosspoint buffer
and the highest input priority. Note that this is a distributed
operation. The cell selected is called a scheduled cell. It may
occur that there is no scheduled cell in an input buffer, because
all the crosspoint buffers have been occupied. If there are
no blocked cells, the switch can now proceed to the output
scheduling sub-phase, otherwise the urgent matching sub-
phase is necessary.

In the urgent matching sub-phase, the crossbar arranges the
transmission of blocked cells. Urgent matching considers a
special type of blocked cells called urgent cells. A blocked
cell is an urgent cell if: a) its slackness is −1 for the first
scheduling phase or 0 for the second scheduling phase, b) it
has the highest input priority among all such cells in the same
input buffer destined for the same output port, c) it has higher
input priority than the scheduled cell, and d) it has higher
output priority than all the crosspoint buffered packets to its
destination output port. Besides urgent cells, urgent matching
also involves the scheduled cells with zero input thread. We
define a matched cell to be a cell selected to transmit in urgent
matching. For easy reading, we defer the description of urgent
matching algorithms to Section IV.

Now we have obtained the input scheduling and urgent
matching results, and the cells in the input buffers are arranged
to leave as follows. If a matched cell is an urgent cell, which
we call a matched urgent cell, it will be directly transmitted
from its input buffer to the output buffer using the bypass
path. On the other hand, if a matched cell is a scheduled cell,
which we call a matched scheduled cell, it will be sent to the
crosspoint buffer. In the third case, if an input buffer has a
scheduled cell but no matched cell, the scheduled cell is also
sent to the crosspoint buffer. All the cells leave their input
buffers at the same time, with matched urgent cells taking
bypass paths and other cells taking normal paths.

Next, in the output scheduling sub-phase, each output port
independently retrieves the cell with the highest output priority
from one of its crosspoint buffers. If there was an urgent
matching sub-phase, some output ports may have received
matched urgent cells from the bypass paths, and they do not
need to retrieve packets from the crosspoint buffers anymore.

3) Departure Phase: In the departure phase, each output
port independently finds the cell in its output buffer that has
the highest output priority and removes it from the output
buffer for departure.

IV. URGENT MATCHING

In this section, we describe the algorithms used for the
urgent matching sub-phase, which schedules the transmission
of blocked cells. By the definition of urgent cells, we know

4 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION

that there is at most one urgent cell in each input buffer that
is destined for a specific output port. On the other hand, for a
scheduled cell with zero input thread, it must be the only cell
in its input buffer participating in urgent matching, because it
has the highest input priority and there could be no urgent cell
from the same input buffer. Thus, we can draw the conclusion
that there are at most N 2 cells in urgent matching.

We reduce the urgent matching problem to the stable
marriage problem, which can be described as follows. Given
N men and N women, where each person has ranked all
members of the opposite sex with a unique number between 1
and N in the order of preference, marry the men and women
off such that there are no two people of opposite sex who
would both rather have each other than their current partners.
If there are no such people, all the marriages are stable. The
reduction process is as follows. The input ports and output
ports are the sets of men and women, respectively, and the
input priority of the cells in the same input buffer represents
the preference of this input port over the set of output ports,
and the output priority of the cells to the same output port
represents the preference of this output port over the set of
input ports. By the reduction process, we have Property 1 and
further Lemma 1 for urgent matching.

Property 1: For any cell that participates in the urgent
matching sub-phase but is not matched, there must be a
matched cell either from the same input buffer with higher
input priority or to the same output buffer with higher output
priority.

Lemma 1: For any cell that participates in the urgent match-
ing sub-phase but is not matched, its slackness is increased by
at least one after the current scheduling phase.

Proof: We analyze each of the two cases of Property 1.
In the first case, since there is a matched cell from the same
input with higher input priority, regardless it is a matched
urgent cell or a matched scheduled cell, it will be removed
from the input buffer. Thus, the input thread of the cell that
is not matched decreases by one. Because the output cushion
of any cell will not decrease during the scheduling phase, its
slackness is guaranteed to increase by at least one.

In the second case, there is a matched cell to the same output
buffer with higher output priority. If the matched cell is a
matched urgent cell, it will be delivered to the output buffer by
the bypass path and it has higher output priority. Otherwise, if
the matched cell is a matched scheduled cell, it will be sent to
the crosspoint buffer. Note that there will be no matched urgent
cell to the same output port. Thus, the cell delivered to the
output buffer must come from one of the crosspoint buffers,
and according to the output scheduling policy, the delivered
cell must have higher output priority than or the same output
priority as that of the matched scheduled cell, and therefore
have higher output priority than that of the cell not matched.
As a result, regardless the matched cell to the same output
port is a matched urgent cell or a matched scheduled cell, the
output cushion of the cell that is not matched increases by
one. Similarly, considering that the input thread of any cell
will not increase during the scheduling phase, its slackness is
guaranteed to increase by at least one.

Due to the special property of the cells participating in
the urgent matching, the urgent matching problem can be

solved using only N instead of N 2 [17] iterations by a
strategy similar to Delay Till Critical (DTC) in [10]. Next, we
present sequential and parallel matching algorithms for urgent
matching. For the comparison in the following algorithms, ties
are broken randomly.

A. Sequential Urgent Matching Algorithm

The sequential urgent matching algorithm works as follows.
First, select the output port corresponding to the smallest
output cushion, compare the output priority of all the cells
to this output port and find the input port corresponding to
the highest output priority. It is clear that the cell of the
above input-output pair has the smallest output cushion and the
highest output priority among all the cells to the same output
port, and it also has the highest input priority based on the
following reasoning. If the cell is a scheduled cell with zero
input thread, there is no cell before it in the input priority list
and it must have the highest input priority. Otherwise, it is an
urgent cell, which means that there is no scheduled cell from
the same input buffer participating in the urgent matching.
Because all the urgent cells have the same slackness (−1 for
the first scheduling phase and 0 for the second scheduling
phase), the one with the smallest output cushion also has the
smallest input thread, which implies the high input priority. As
a result, such a cell must be included in the urgent matching
results. Then, we mark the above input-output pair as matched
and continue the next iteration of the algorithm. Since in each
iteration, there must be one output port marked as matched,
the algorithm is guaranteed to converge in N iterations.

B. Parallel Urgent Matching Algorithm

The above algorithm works in a sequential manner, and
completes in N iterations in both the best case (given N 2

participating cells) and the worst case. Next, we present a par-
allel matching algorithm similar to Parallel Iterative Matching
(PIM) [18], which requires fewer iterations to converge in the
average case. Each iteration of the parallel algorithm has the
following three steps:

Request step. Each input port sends a request to every output
port for which it has a cell in the urgent matching.

Grant step. Each output port selects the request with the
highest output priority to grant.

Accept step. Each input port accepts the grant if the corre-
sponding cell has the highest input priority among all the cells
in the input buffer whose output ports have not been matched.
The input-output pair is then marked as matched.

Although in the worst case, the parallel urgent matching
algorithm still needs N iterations to converge, it is very
likely that more than one matched input-output pairs can
be generated in a single iteration, and the total number of
iterations is greatly reduced.

C. Simulation Results

We now present simulation results to compare the sequential
and parallel urgent matching algorithms. In the simulations,
we considered the switch size N from 21 to 210. We assumed
that the number of cells participating in the urgent matching
is N2, and assigned random values as the input priority and
output priority of the participating cells. For each switch size,

PAN and YANG: FLOW BASED PERFORMANCE GUARANTEE SCHEDULING IN BUFFERED CROSSBAR SWITCHES 5

10
1

10
2

10
30

2

4

6

8

10

Switch Size

C
on

ve
rg

en
ce

 It
er

at
io

ns

Parallel Urgent Matching

Mean
Lower Bound of 95% CI
Upper Bound of 95% CI

Fig. 4. Number of iterations for parallel urgent matching to converge.

we conducted 20 simulation runs, and then calculated the
average number of iterations to converge and its lower and
upper bounds of 95% confidence interval. Fig. 4 plots the
simulation results. As can be seen, the number of iterations
for the parallel urgent matching algorithm to converge grows
logarithmically with the switch size. Even for a switch size
of 1024, it has 95% of possibility to converge with 7.4 to 7.9
iterations. Compared with the linear average convergence iter-
ations of the sequential algorithm, we can draw the conclusion
that the parallel algorithm is effective in reducing the running
time.

V. ACHIEVING FLOW BASED PERFORMANCE

GUARANTEES

In this section, we show that a buffered crossbar switch
running the proposed scheduling algorithms achieves flow
based performance guarantees, in the sense that it can perfectly
emulate any PIFO OQ switch. We first analyze each schedul-
ing phase and then present the main result. For easy represen-
tation, we use OC(c, t, ∗), IT (c, t, ∗), and L(c, t, ∗) to denote
the output cushion, input thread, and slackness, respectively,
of a cell c at time slot t after the ∗ phase, where ∗ may be
either A,F, S, or D representing the Arrival, First scheduling,
Second scheduling, or Departure phase accordingly.

We have the following lemma regarding the first scheduling
phase.

Lemma 2: For any cell c not in the output buffer, if its
slackness after the arrival phase is greater than or equal to
−1, then its slackness after the first scheduling phase is greater
than or equal to 0, i.e., L(c, t, A) ≥ −1 ⇒ L(c, t, F) ≥ 0.

Proof: We first assume that c is in the crosspoint buffer
after the arrival phase. After the first output scheduling sub-
phase, c is either in the output buffer or still in the crosspoint
buffer. If c is in the output buffer, it can depart at any time,
and we do not need to consider its slackness. Otherwise, if c
is still in the crosspoint buffer, then another cell d is delivered
to the output buffer, which might be a matched urgent cell or a
cell from another crosspoint buffer. In either case, d must have
higher output priority than c, and as a result, OC(c, t, F) =
OC(c, t, A)+1. Since IT (c, t, F) = IT (c, t, A) = 0, we have
that L(c, t, F) ≥ L(c, t, A) + 1 ≥ −1 + 1 = 0.

Next, we assume that c is in the input buffer after the arrival
phase. We have defined several different types of cells for the
scheduling phases. The relationship between these cell types
is illustrated in Fig. 5. We prove that the lemma holds for each
type of cells.

Matched Scheduled Cells

Scheduled Cells

Blocked Cells Normal Cells

Matched Urgent Cells

Urgent Cells

Fig. 5. Relationship of different types of cells.

Matched urgent cells. If c is a matched urgent cell, it has
been transmitted to the output buffer. As a result, it can depart
at anytime when necessary.

Urgent cells. If c is an urgent cell that is not matched
in the urgent matching, based on Lemma 1, we know that
L(c, t, F) ≥ L(c, t, A) + 1 ≥ −1 + 1 = 0.

Blocked cells. By definition, if c is a blocked cell but not
an urgent cell, there are four possible cases. In the following,
we analyze each of them.

1) The slackness of the blocked cell c is not equal to
−1. Since L(c, t, A) ≥ −1 and L(c, t, A) �= −1, we
have L(c, t, A) ≥ 0. Because after the first scheduling
phase IT (c, t, F) ≤ IT (c, t, A) and OC(c, t, F) ≥
OC(c, t, A), we have L(c, t, F) ≥ L(c, t, A) ≥ 0.

2) The slackness of the blocked cell c is −1, i.e.,
L(c, t, A) = −1, but there is another blocked cell
in its input buffer that has the same slackness and
higher input priority, such as an urgent cell d.
Since L(d, t, A) = L(c, t, A), and by the defini-
tion of urgent cells, IT (d, t, A) < IT (c, t, A), it
is easy to see that OC(d, t, A) < OC(c, t, A) as
well. In other words, d has both higher input prior-
ity and output priority than c. Thus, OC(c, t, F) −
OC(c, t, A) ≥ OC(d, t, F) − OC(d, t, A) and
IT (c, t, F) − IT (c, t, A) ≤ IT (d, t, F) − IT (d, t, A),
and we can obtain L(c, t, F)−L(c, t, A) ≥ L(d, t, F)−
L(d, t, A). Since we have proved in the above that for
urgent cells, L(d, t, F) ≥ L(d, t, A) + 1, it follows that
L(c, t, F) ≥ L(c, t, A) + 1 ≥ −1 + 1 = 0.

3) The blocked cell c has lower input priority than the
scheduled cell d of the input port, i.e., IT (d, t, A) <
IT (c, t, A). If d is removed from the input buffer, then
IT (c, t, F) = IT (c, t, A) − 1. Otherwise, a matched
urgent cell e instead of the scheduled cell d is removed
from the input buffer. Since e is an urgent cell, it has
higher input priority than the scheduled cell d, i.e.,
IT (e, t, A) < IT (d, t, A). As a result, we can obtain
IT (e, t, A) < IT (c, t, A), and therefore IT (c, t, F) =
IT (c, t, A) − 1 due to the removal of e. Thus, in
both cases, we have IT (c, t, F) = IT (c, t, A) − 1.
Again, since OC(c, t, F) ≥ OC(c, t, A), it follows that
L(c, t, F) ≥ L(c, t, A) + 1 ≥ −1 + 1 = 0.

4) The blocked cell c has lower output priority than a
crosspoint buffered cell d to the same output port.
If a cell e in the crosspoint buffer is delivered to
the output buffer, we know that e has higher output
priority than or the same output priority as that of d.
As a result, e has higher output priority than c, and

6 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION

OC(c, t, F) = OC(c, t, A) + 1 due to the delivery of
e. Otherwise, a matched urgent cell f is transmitted
to the output buffer. Since f is an urgent cell, it has
higher output priority than any crosspoint buffered cell,
including d. As a result, f has higher output priority than
c, and OC(c, t, F) = OC(c, t, A)+1 due to the delivery
of f . Thus, in both cases, OC(c, t, F) = OC(c, t, A)+1.
Similarly, considering that IT (c, t, F) ≤ IT (c, t, A), we
have L(c, t, F) ≥ L(c, t, A) + 1 ≥ −1 + 1 = 0.

To sum up, in the first case, nothing needs to be done to ensure
L(c, t, F) ≥ 1, and in other three cases, the slackness of the
cell increases by one by the end of the first scheduling phase.

Matched scheduled cells. If a scheduled cell c is matched
in the urgent matching process, it will be sent from the input
buffer to the crosspoint buffer, resulting in zero input thread
after the input scheduling sub-phase. Since there is only one
matched cell to each output port, there will be no matched
urgent cell to the same output port. As a result, the cell deliv-
ered to the output buffer must be from one of the crosspoint
buffers. If the delivered cell is c, we no longer need to consider
its slackness. Otherwise, if a cell d from another crosspoint
buffer is delivered, d must have higher output priority due
to the output scheduling policy, and therefore OC(c, t, F) =
OC(c, t, A) + 1. Considering IT (c, t, F) = IT (c, t, A) = 0,
we have L(c, t, F) ≥ L(c, t, A) + 1 ≥ −1 + 1 = 0.

Scheduled cells. If a scheduled cell c does not leave the
input buffer during the input scheduling due to a matched
urgent cell e, because e is an urgent cell and has higher
input priority, i.e., IT (e, t, A) < IT (c, t, A), we can have
IT (c, t, F) = IT (c, t, A) − 1 due to the removal of e.
Since OC(c, t, F) ≥ OC(c, t, A), it follows that L(c, t, F) ≥
L(c, t, A) + 1 ≥ −1+ 1 = 0. Otherwise, If a scheduled cell c
is not a matched scheduled cell and is sent to the crosspoint
buffer, there are two possible cases.

1) The input thread of cell c after the arrival phase
is non-zero, i.e., IT (c, t, A) ≥ 1, and thus did not
participate in the urgent matching. After c is sent to
the crosspoint buffer, it has zero input thread, i.e.,
IT (c, t, F) = 0. Since OC(c, t, F) ≥ OC(c, t, A),
L(c, t, F) ≥ L(c, t, A) + 1 ≥ −1 + 1 = 0.

2) The input thread of cell c is zero, and thus participated
in the urgent matching but it is not matched. By Lemma
1, L(c, t, F) ≥ L(c, t, A) + 1 ≥ −1 + 1 = 0.

Normal cells. We consider three possible situations depend-
ing on whether there is a cell removed from the input buffer
and whether a scheduled or a matched cell is removed.

1) No cell leaves the input buffer, which means that there
is no scheduled cell as well. According to the input
scheduling policy, the crosspoint buffer of each normal
cell c is occupied by another cell d with higher output
priority. For cell e delivered to the output buffer of c
in the first scheduling phase, which may be a matched
urgent cell or a cell from one of the crosspoint buffers,
e must have higher output priority than or the same
output priority as that of d. Thus, e has higher output
priority than c, and OC(c, t, F) = OC(c, t, A)+1. Since
IT (c, t, F) ≤ IT (c, t, A), L(c, t, F) ≥ L(c, t, A) + 1 ≥
−1 + 1 = 0.

2) A scheduled cell, including a matched scheduled cell, is
removed from the input buffer. For a normal cell c with
higher input priority than the scheduled cell, it must have
a crosspoint buffered cell d with higher output priority.
Based on the analysis for the first case, we know that
L(c, t, F) ≥ L(c, t, A) + 1 ≥ −1 + 1 = 0. On the other
hand, for a normal cell c with lower input priority than
the scheduled cell, IT (c, t, F) = IT (c, t, A)− 1 due to
the removal of the scheduled cell. Since OC(c, t, F) ≥
OC(c, t, A), it follows that L(c, t, F) ≥ L(c, t, A)+1 ≥
−1 + 1 = 0.

3) A matched urgent cell leaves the input buffer. Recall
that an urgent cell has higher input priority than the
scheduled cell. By a similar analysis to that for the
second case, we can obtain that L(c, t, F) ≥ L(c, t, A)+
1 ≥ −1 + 1 = 0.

To sum up, in all the three possible cases, the slackness of the
cell increases by one after the first scheduling phase.

We can have a similar lemma for the second scheduling
phase.

Lemma 3: For any cell c not in the output buffer, if its
slackness after the first scheduling phase is greater than or
equal to 0, its slackness after the second scheduling phase is
greater than or equal to 1, i.e., L(c, t, F) ≥ 0 ⇒ L(c, t, S) ≥
1.

The proof is similar to that of Lemma 2 and thus omitted.
The following lemma gives the slackness of a cell after the
arrival phase.

Lemma 4: For a cell c not in the output buffer, its slackness
after the arrival phase is always greater than or equal to −1,
i.e., L(c, t, A) ≥ −1.

Proof: We prove the lemma by induction on the number
of time slots.

Base case. After the arrival phase of the first time slot, i.e.,
slot 1, there is at most one cell arrived at each input buffer. For
such a cell c, IT (c, 1, A) = 0 and OC(c, 1, A) = 0, resulting
in L(c, 1, A) = 0 ≥ −1.

Inductive case. Suppose that after the arrival phase of time
slot t−1, for any cell c in the input buffer or crosspoint buffer,
L(c, t− 1, A) ≥ −1. We will prove that the slackness of the
cell c after the arrival phase of time slot t is still larger than
or equal to zero, i.e., L(c, t, A) ≥ −1.

Given L(c, t − 1, A) ≥ −1, we know from Lemma 2 that
L(c, t−1, F) ≥ 0. Furthermore, from Lemma 3, we can obtain
L(c, t− 1, S) ≥ 1. In the departure phase of time slot t− 1, a
cell is removed from each output buffer. The output cushion
of any cell destined for the output port is decreased by one,
in particular, OC(c, t − 1, D) = OC(c, t − 1, S) − 1. Since
IT (c, t − 1, D) = IT (c, t− 1, S), we have L(c, t − 1, D) =
L(c, t− 1, S)− 1 ≥ 1− 1 = 0.

During the arrival phase of time slot t, there may be a new
cell arriving at each input buffer. Next we consider three types
of cells that are not in the output buffer after the arrival phase
of slot t.

1) c is the newly arrived cell, and its virtual queue is
empty. According to the GBVOQ policy, c is inserted
at the head of the input priority list, and therefore
IT (c, t, A) = 0. Since OC(c, t, A) ≥ 0, we have
L(c, t, A) ≥ 0 ≥ −1.

PAN and YANG: FLOW BASED PERFORMANCE GUARANTEE SCHEDULING IN BUFFERED CROSSBAR SWITCHES 7

2) c is the newly arrived cell, and its virtual queue is non-
empty. c is inserted in the input priority list immediately
after the last cell d of its virtual queue. Since d is
already in the input buffer before the arrival phase of
time slot t, based on the above analysis we can obtain
that L(d, t−1, D) ≥ 0. In addition, since IT (d, t, A) =
IT (d, t− 1, D) and OC(d, t, A) = OC(d, t − 1, D), it
follows that L(d, t, A) ≥ 0. For the new cell c, we know
that IT (c, t, A) = IT (d, t, A) + 1 and OC(c, t, A) ≥
OC(d, t, A), and therefore L(c, t, A) ≥ L(d, t, A)−1 ≥
0− 1 = −1.

3) c is an existing cell in the input buffer or crosspoint
buffer. In this case, we know that L(c, t − 1, D) ≥
0. Since IT (c, t, A) ≤ IT (c, t − 1, D) + 1 and
OC(c, t, A) = OC(c, t − 1, D), we have L(c, t, A) ≥
L(c, t− 1, D)− 1 ≥ 0− 1 = −1.

Thus, in all the three cases, a cell c not in the output buffer
after the arrival phase of time slot t has L(c, t, A) ≥ −1.

The following lemma describes the slackness of a cell
before the departure phase.

Lemma 5: For a cell c not in the output buffer, its slackness
after the second scheduling phase is always greater than or
equal to 1, i.e., L(c, t, S) ≥ 1.

Proof: Combine Lemma 4, Lemma 2, and Lemma 3.
We are now ready to present the main result.
Theorem 1: A buffered crossbar switch with speedup of

two can exactly emulate a PIFO OQ switch to provide flow
based performance guarantees.

Proof: Assume that the buffered crossbar switch has
successfully emulated the shadow PIFO OQ switch up to time
slot t − 1, and that a cell c departs from an output buffer in
the shadow switch at time slot t. We analyze the slackness
of c before the departure phase at time slot t in the buffered
crossbar switch. Since c departs in the current time slot, there
is no cell in the output buffer with higher output priority than
c. Thus, OC(c, t, S) = 0 and therefore L(c, t, S) ≤ 0. From
Lemma 5, we know that for any cell d in the input buffer
or the crosspoint buffer, L(d, t, S) ≥ 1. This indicates that c
must be in the output buffer, and therefore will not be blocked
for leaving in the departure phase. In this way, the buffered
crossbar switch successfully emulates the shadow switch for
time slot t, and the emulation process can continue. As a result,
each cell has the same departure time in both switches, and
the buffered crossbar switch successfully emulates the shadow
PIFO OQ switch.

Recall that PIFO OQ switches with different fair schedul-
ing algorithms can provide different flow based performance
guarantees. Thus, buffered crossbar switches can provide the
desired flow based performance guarantees by emulating the
corresponding PIFO OQ switches.

VI. DISCUSSIONS AND COMPARISONS

In this section, we discuss how to remove the bypass path
by adding one more buffer to each crosspoint, and compare
our algorithms with existing ones in the literature.

A. Removing the Bypass Path

To apply our algorithms to a wider range of switches, we
present an alternative implementation to remove the bypass

Backup Buffer

Primary Buffer

Fig. 6. Removing bypass path by adding a backup buffer to each crosspoint.

path by adding one more buffer at each crosspoint. Although
the bypass path in our switch structure is unique, many
existing buffered crossbar switch designs contain more than
one buffer at each crosspoint, and they may run the proposed
algorithms with the alternative implementation. The structure
of a crosspoint after removing the bypass path and adding
the additional buffer is shown in Fig. 6. We call the existing
crosspoint buffer the primary buffer and the additional one the
backup buffer. The backup buffer is only used to temporarily
store the matched urgent cell.

For such a switch, there are also two scheduling phases.
However, a blocked cell is now defined as a cell whose primary
crosspoint buffer is occupied by another cell with lower output
priority. In a similar way, the input scheduling sub-phase is
conducted for the normal cells independently by each input
port, and the urgent matching sub-phase is conducted for the
urgent cells and the scheduled cells with zero input thread.
Then the matched urgent cells are sent to the backup buffers,
and simultaneously the scheduled cells, including the matched
scheduled cells, are sent to the primary buffers.

In the output scheduling sub-phase, each matched urgent
cell in the backup crosspoint buffer is directly sent to its output
buffer, and each of the remaining output ports independently
retrieves the cell with the highest output priority from one of
the primary crosspoint buffers. In this way, a matched urgent
cell is guaranteed to be delivered to the output buffer in the
same scheduling phase, and the backup buffer must be empty
at the end of each scheduling phase.

B. Comparisons with Other Algorithms

We compare our scheme with existing scheduling algo-
rithms for buffered crossbar switches, and summarize the
results in Table 1, where M is the maximum number of flows
for an input-output pair.

First, we look at SQUISH [25], SQUID [25], and DISQUO
[26]. All the three algorithms have low hardware complexity
and time complexity. However, since they are designed to
achieve high throughput, they cannot provide strong per-
formance guarantees. Note that since our scheme and all
emulation based algorithms can emulate arbitrary PIFO OQ
switches, they may also achieve 100% throughput by emulat-
ing a specific PIFO OQ switch with 100% throughput.

Next, compared with the designs in [13] with additional
speedup or crosspoint buffers, the advantage of our scheme
is the reduced hardware complexity with only speedup of two
and one buffer per crosspoint. The trade-off is that, when there
is crosspoint blocking, our scheme needs to run the urgent
matching algorithm with high time complexity. Fortunately,
the parallel urgent matching algorithm reduces the average
number of iterations for convergence to O(logN).

8 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION

TABLE 1
COMPARISON WITH EXISTING ALGORITHMS.

SQUISH [25] SQUID [25] DISQUO [26] Additional hardware [13] Stable marriage [10] Our scheme
Throughput 100% 100% 100% 100% 100% 100%

Flow based perf. guarantees No No No Yes Yes Yes
Crossbar speedup 1 1 1 3/2 2 2

of crosspoint buffers N2 N2 N2 N2/N3 0 N2

Time complexity O(logN) O(logN) O(1) O(logM + logN) O(logM + N logN) O(logM + N logN)
Distributed scheduling No No Yes Yes No Hybrid

Avg. convergence # N/A N/A N/A N/A O(N) O(logN)

Finally, compared with the stable marriage based algorithm
in [10], our scheme has two advantages. First, when there is no
crosspoint blocking, our scheme runs simple and distributed
scheduling with low time complexity. Second, when there is
crosspoint blocking, our parallel urgent matching algorithm
ensures fast convergence. On the other hand, the advantages
of the algorithm in [10] include small speedup of two and no
need of crosspoint buffers. The algorithm in [10] is designed
for combined-input-output-queued switches, which have no
integrated buffers at the crosspoints of the crossbar.

VII. CONCLUSIONS

In this paper, we have studied how to achieve flow based
performance guarantees for buffered crossbar switches with
speedup of two and one buffer per crosspoint. We have
added simple bypass paths to buffered crossbar switches, and
presented scheduling algorithms for the switches to emulate
PIFO OQ switches. When there is no crosspoint blocking,
only distributed scheduling is necessary; otherwise the ur-
gent matching sub-phase is introduced to transmit crosspoint
blocked cells. We have also presented the sequential and
parallel urgent matching algorithms. The latter needs much
fewer iterations to converge in the average case, and its
effectiveness is verified by simulations. We have used the
counting method to formally prove the flow based performance
guarantees achieved by the proposed scheme. Finally, we have
designed an alternative implementation for the bypass path by
adding one additional buffer at each crosspoint, and compared
our scheme with existing algorithms in the literature.

ACKNOWLEDGMENTS

This work was partially supported by the US National
Science Foundation under grant numbers CNS-1117016 and
CCF-0915823.

REFERENCES

[1] G. Kornaros, “BCB: a buffered crossbar switch fabric utilizing shared
memory,” EUROMICRO 2006, Aug. 2006.

[2] L. Mhamdi, C. Kachris and S. Vassiliadis, “A reconfigurable hard-
ware based embedded scheduler for buffered crossbar switches,” 14th
ACM/SIGDA International Symp. Field Programmable Gate Arrays, pp.
143-149, Monterey, CA, Feb. 2006.

[3] I. Papaefstathiou, G. Kornaros and N. ChrysosUsing, “Buffered cross-
bars for chip interconnection,” 17th Great Lakes Symp. VLSI, pp. 90-95,
Stresa-Lago Maggiore, Italy, Mar. 2007.

[4] S. He, et al., “On guaranteed smooth switching for buffered crossbar
switches,” IEEE/ACM Trans. Netw., vol. 16, no. 3, pp. 718-731, June
2008.

[5] D. Pan and Y. Yang, “Localized independent packet scheduling for
buffered crossbar switches,” IEEE Trans. Comput., vol. 58, no. 2, pp.
260-274, Feb. 2009.

[6] J. Turner, “Strong performance guarantees for asynchronous crossbar
schedulers,” IEEE/ACM Trans. Netw., vol. 17, no. 4, pp. 1017-1028,
Aug. 2009.

[7] I. Stoica and H. Zhang, “Exact emulation of an output queueing switch
by a combined input output queueing switch,” IEEE IWQoS’98, pp.
218-224, Napa, CA, 1998.

[8] D. Pan and Y. Yang, “FIFO-based multicast scheduling algorithm for
virtual output queued packet switches,” IEEE Trans. Comput., vol. 54,
no. 10, Oct. 2005.

[9] D. Pan and Y. Yang, “Credit based fair scheduling for packet switched
networks,” IEEE INFOCOM 2005, vol. 2, pp. 843-854, Mar. 2005.

[10] S. Chuang, A. Goel, N. McKeown and B. Prabhkar, “Matching output
queueing with a combined input output queued switch,” IEEE INFO-
COM 1999, pp. 1169-1178, NY, 1999.

[11] L. Mhamdi and M. Hamdi, “Output queued switch emulation by a one-
cell-internally buffered crossbar switch,” IEEE Globecom 2003, vol. 7,
pp. 3688-3693, San Francisco, CA, Dec. 2003.

[12] B. Magill, C. Rohrs and R. Stevenson, “Output-queued switch emulation
by fabrics with limited memory,” IEEE J. Sel. Areas Commun., vol. 21,
no. 4, pp. 606-615, May 2003.

[13] S. Chuang, S. Iyer and N. McKeown, “Practical algorithms for per-
formance guarantees in buffered crossbars,” in Proc. IEEE INFOCOM
2005, Miami, FL, Mar. 2005.

[14] Global Environment for Network Innovations, [Online]. Available: http:
//www.geni.net

[15] A. Demers, S. Keshav and S. Shenker, “Analysis and simulation of a fair
queueing algorithm,” ACM SIGCOMM 1989, vol. 19, no. 4, pp. 3-12,
Austin, TX, Sept. 1989.

[16] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit
round robin,” IEEE/ACM Trans. Netw., vol. 4, no. 3, pp. 375-385, June
1996.

[17] D. Gale, and L.S. Shapley, “College admissions and the stability of
marriage,” American Mathematical Monthly, vol. 69, pp. 9-15, 1962.

[18] T. Anderson, S. Owicki. J. Saxe and C. Thacker, “High-speed switch
scheduling for local-area networks,” ACM Trans. Comput. Syst., vol. 11,
no. 4, pp. 319-352, Nov. 1993.

[19] N. McKeown, et al., “OpenFlow: enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp.
69-74, Apr. 2008.

[20] Rojas-Cessa, E. Oki, Z. Jing and H. J. Chao, “CIXB-1: Combined
input-once-cell-crosspoint buffered switch,” IEEE Workshop High Per-
formance Switching Routing, Dallas, TX, July 2001.

[21] Rojas-Cessa, E. Oki and H. J. Chao, “CIXOB-k: Combined input-
crosspoint-output buffered packet switch,” IEEE Globecom 2001, San
Antonio, TX, Nov. 2001.

[22] L. Mhamdi and M. Hamdi, “MCBF: A high-performance scheduling
algorithm for buffered crossbar switches,” IEEE HPSR, Torino, Italy,
June 2003.

[23] M. Berger, “Delivering 100% throughput in a buffered crossbar with
round robin scheduling,” IEEE HPSR, Poznan, Poland, June 2006.

[24] T. Javidi, R. Magill and T. Hrabik, “A high-throughput scheduling
algorithm for a buffered crossbar switch fabric,” IEEE ICC Helsinki,
Finland, June 2001.

[25] Y. Shen, S. Panwar and H.J. Chao, “SQUID: A Practical 100% Through-
put Scheduler for Crosspoint Buffered Switches,” IEEE/ACM Trans.
Netw., vol. 18, no. 4, pp. 1119-1131, Aug. 2010.

[26] S. Ye, Y. Shen and S. Panwar, “DISQUO: A distributed 100% throughput
algorithm for a buffered crossbar switch,” IEEE HPSR, Richardson, TX,
June 2010.

[27] L. Mhamdi, “On the integration of unicast and multicast cell scheduling
in buffered crossbar switches,” IEEE Transactions on Parallel and
Distributed Systems, vol. 20, no. 6, pp. 818-830, June 2009.

[28] C. Chang, Y. Hsu, J. Cheng and D. Lee, “A dynamic frame sizing
algorithm for CICQ switches with 100% throughput,” IEEE INFOCOM
2009, Rio de Janeiro, Brazil, Apr. 2009.

PAN and YANG: FLOW BASED PERFORMANCE GUARANTEE SCHEDULING IN BUFFERED CROSSBAR SWITCHES 9

Deng Pan received the BS and MS degrees in
computer science from Xi’an Jiaotong University,
China, in 1999 and 2002, respectively, and the
PhD degree in computer science from the State
University of New York at Stony Brook, in 2007.
He is currently an assistant professor in the School
of Computing and Information Sciences, Florida In-
ternational University. His research interests include
high performance switch architecture and high speed
networking. He is a member of the IEEE.

Yuanyuan Yang is a Professor of Electrical & Com-
puter Engineering and Computer Science at Stony
Brook University (SUNY at Stony Brook), and the
Director of Communications and Devices Division
at New York State Center of Excellence in Wireless
and Information Technology (CEWIT). She received
her PhD degree in computer science from Johns
Hopkins University, Baltimore, Maryland, in 1992.
Dr. Yang’s research interests include interconnection
networks, date center networks, wireless/mobile net-
works, optical networks, and high-speed networks.

She has authored or coauthored more than 250 research articles in leading
refereed journals and conferences on these topics. She is also an inventor/co-
inventor of seven U.S. patents in the area of interconnection networks. She
is a Fellow of the IEEE.

