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Abstract—Data center networks are designed for satisfying the
data transmission demand of densely interconnected hosts in
the data center. The network topology and routing mechanism
can affect the performance and latency significantly. Nowadays,
the fat-tree network is one of the most widely used topologies
for data center networks. Network engineers also adopt load
balancing methods in the design of routing algorithms. However,
the requirement of load balancing routing in fat-tree networks
cannot be fully satisfied by traditional approaches. The main
reason is the lack of efficient ways to obtain network traffic
statistics from each network device. As a solution, the OpenFlow
protocol enables monitoring traffic statistics by a centralized
controller.

To achieve high performance and low latency, we present a
load balancer for OpenFlow based data center networks. We
implement a dynamic routing algorithm in the load balancer. The
task of the algorithm is to distribute traffic of upcoming network
flows and make each alternative path receive equal amounts of
traffic load. It can apply to large scale networks and schedule
data flows dynamically. Our implementation uses the OpenFlow
controller Beacon and network emulator Mininet. The evaluation
results demonstrate that our dynamic load balancing routing
algorithm is superior over not only the none load balancing
routing algorithm but also the static load balancing algorithm.

I. INTRODUCTION

We have witnessed the growing needs for the capability

of the network data processing. For the newly emerging

data center networks, maximizing system throughput and

minimizing network latency are two important objectives [1].

In order to accomplish them, there exist both hardware and

software approaches.

The hardware approach makes network infrastructures ac-

commodate to novel network topologies. Recently, several

topologies have been proposed, including the fat-tree [2] and

Portland [8]. They build up networks in certain manners with

hierarchical and scalable multi-layer structures. These types of

structures usually contain dense interconnections among dif-

ferent layers of switches or routers. The data flows transmitting

between hosts can go through multiple paths. These multiple

paths provide more available bandwidth than a single path.

Further, the whole infrastructure becomes more fault tolerant.

Although this approach can achieve high throughput and low

latency in networks, it may not be viable in some cases because

the cost of modifying network topologies can be expensive.

On the other hand, the software approach applies load

balancing methods for higher bandwidth utilization in ex-

isting networks. It requires improving current approaches

of network traffic flow scheduling. Load balancing methods

can be divided into two categories: static load balancing

and dynamic load balancing [11]. By applying static load

balancing, flows among hosts are allocated with calculated

routes before data transmission. The routes cannot be changed

during the transmission. As we will show in the evaluation

section, however, static load balancing has limits to schedule

large numbers of randomly generated flows in data center

networks. By comparison, dynamic load balancing routing can

schedule network traffic according to updated traffic statistics

on each network device. Existing load balancing routing

techniques include equal-cost multipath routing (ECMP) [4]

and valiant load balancing (VLB) [5]. In ECMP, next-hop

packet forwarding to a destination can occur over multiple

paths with the same minimum performance metric. VLB,

also known as randomized load balancing, is a scheme of

routing through a randomly picked intermediate node. It helps

eliminate congestion in the network. ECMP is used mainly on

the flow level while VLB can be applied on both the packet

and flow levels.

Although dynamic load balancing is flexible and adaptive

to real-time network statistics, it brings extra overheads for

monitoring network statistics and scheduling flows. Moreover,

common commodity network devices such as switches and

routers maintain their own forwarding or routing tables. In

order to dynamically schedule flows, one way is to deploy a

centralized controller to gather information from each network

device. However, the communication among these devices

requires time and bandwidth with the increasing scale of

networks [8].

OpenFlow [7] is an innovative networking technology that

offers high interoperability and economical ways of user con-

trol in data center networks. It has been used for load balancing

in various systems [13]–[15]. A typical OpenFlow network

consists of three components: the OpenFlow controller, Open-

Flow switches, and hosts. Each of the switches maintains a

flow table that contains forwarding information. The controller

and switches communicate via OpenFlow messages. There are

a series of actions that the OpenFlow controller can perform by

sending messages to switches, such as updating flow tables or

probing switch statistics. By analysing replying messages from

switches, the OpenFlow controller can schedule data flows

efficiently.

As a popular data center network topology, the fat-tree

topology [2] contains multiple paths among hosts so it can

provide higher available bandwidth than a single-path tree with



Fig. 1. A k=4 3-layer fat-tree network

the same number of nodes. It is typically a 3-layer hierarchical

tree that consists of switches on the core, aggregation and

top-of-rack(ToR) layers. The hosts connect to the switches

on the ToR layer. The multipath feature of fat-tree networks

enables chances to distribute data traffic on different network

components. It is a practical task to achieve load balancing to

help schedule traffic in fat-tree networks.

In this paper, we present a load balancer for the fat-tree

network with multipath support. We implement a dynamic

load balancing routing algorithm in the load balancer. This

algorithm is adaptive to network traffic, and schedules flows

by examining current available bandwidth on all alternative

links. The load balancer works as a module of the OpenFlow

controlling program called Beacon [9], which runs on the

controller host. The dynamic flow scheduling algorithm in the

load balancer module determines the path for each flow.

In the evaluation, we test our load balancer using the

Mininet network emulator [10]. We compare the results of

three flow scheduling algorithms: none load balancing (NLB)

algorithm, static load balancing (SLB) algorithm and our

dynamic load balancing (DLB) algorithm. The results show

that our DLB algorithm works effectively for fat-tree networks.

It provides network flows more bandwidth and shorter packet

delay on average than the other two algorithms under same

circumstances.

The remainder of the paper is organized as follows. Section

II presents our network architecture, DLB algorithm, and its

implementation. Section III explains the evaluation setup and

provides the results. Finally, Section IV concludes the paper.

II. ALGORITHM DESIGN

In this section, we propose our DLB algorithm. We also

introduce the design of our OpenFlow based load balancer

with two of its main functionalities.

A. Architecture
Figure 1 shows a 4-ary fat-tree. A typical k-ary fat-tree

network [1] has three layers and consists of (k/2)2 core layer

switches and k pods that contain same number of aggregation

and Top-of-Rack(ToR) layer switches. Each pod has k num-

ber of k-port switches. The switches in each pod have two

types: top-of-rack (ToR) switches on the bottom, aggregation

switches on the medium. In one pod, each ToR switch is

connected to every aggregation switch and (k/2) hosts. Each

aggregation switch connects to (k/2)2 switches on the core

layer. In the fat-tree, there are more interconnections among

different layers than many traditional tree networks. Those

redundant links provide alternative paths for data transmission.

In our design, the fat-tree network has one OpenFlow

controller host. The controller program running on the host

includes the load balancer as one of its modules. The load bal-

ancer is responsible for scheduling flows over the OpenFlow

switches by applying its load balancing routing algorithm.

B. Algorithm Description

In general, our DLB algorithm performs on flow level and

follows a depth-first scheme. All traffic in the network from

their source hosts will transmit upward until reaching highest

layers that they need access, then go downward to destination

hosts. For a new network flow, DLB firstly determines its

source and destination hosts, then decides which layer the

flow needs to access. Specifically, the flow between hosts

connected to the same ToR switch needs access the ToR layer;

the flow between hosts located in the same pod but connected

to different ToR switches needs access the aggregation layer;

the flow between hosts in different pods needs access the core

layer.

One characteristic of routing in fat-tree network is: once a

flow reaches the highest layer that it accesses, the path from

that switch to the destination host is deterministic. In another

word, only the upward traffic will be handled by our DLB

algorithm. The downward traffic will be automatically deter-

mined corresponding to highest layer switch and destination.

Algorithm 1 DLB routing algorithm

Require: flow, fatTree

1: srcHost = locateSrc(flow);

2: dstHost = locateDst(flow);

3: layer = setTopLayer();

4: curSw = locateCurrentSwitch();

5: direction = 1; //search upward

6: path = null; //list of switches

7: return search();

The DLB algorithm schedules flows based on current

network statistics. Algorithm 1 shows the pseudo code of

our DLB algorithm. This algorithm works as follows. When

the OpenFlow controller receives a packet from a switch, it

switches the control to the load balancer. Line 1 to 6 introduces

the initialization for necessary variables. The load balancer

firstly analyses the packet’s match information including the

input port on the switch that receives the packet as well as the

packet’s source address and destination address. Then it looks

up those addresses using its knowledge about the network

topology. Once the source and destination hosts are located,

the load balancer calculates the top layer that the flow needs

to access. We use the search direction flag. The flag has two

values: 1 for upward and 0 for downward. It is initialized to

1. A path is created for saving a route grouped by a list of

switches later. Line 7 calls search() that performs the search

for paths recursively.

Algorithm 2 describes the method search(). It firstly adds

current switch into path. It returns the path if current search

reaches the bottom layer. It reverses the search direction if

current search reaches the top layer. Then it calls a method



Algorithm 2 Recursive search for paths

1: search() {
2: path.add(curSw);

3: if isBottomLayer(curSw) then
4: return path;

5: end if
6: if curSw.getLayer()==layer then
7: direction = 0; //reverse

8: end if
9: links = findLinks(curSw, direction);

10: link = findWorstFitLink(links);

11: curSw = findNextSwitch(link);

12: return search();

13: }

that returns all links on current switch that are towards current

search direction. Only one link is chosen by picking up the

worst-fit link with maximum available bandwidth. And then

the current switch object is updated. The method search() is

called recursively layer by layer from the source to destination.

At last the path will be return to the load balancer. The path

information will be used for updating flow tables of those

switches in the path.

C. OpenFlow based Load Balancer Implementation

As a module of the OpenFlow controller program, the load

balancer has two important functionalities: monitoring ports

statistics and scheduling new flows. It maintains updated port

statistics and schedules flows using our DLB algorithm. Next

we illustrate them one by one.

1) Ports Statistics Monitoring: As shown above, the worst-

fit link selection is based on finding the link with maximum

available bandwidth. But the important question is how to

measure the available bandwidth on each link. It is difficult to

measure them in direct ways from the controller or switches.

In our design, the controller queries the transmitted bytes

on each port from switches periodically, calculates their in-

crements and uses the increments as the selecting criteria.

It works as follows. We initially define a monitoring cycle

as time T . At the beginning of each monitor cycle T , the

controller will send out a STATS REQUEST message as-

signed “PORT” as its statistic type to every switch in the

network. This message requires replies from the switches.

Meanwhile, the controller maintains a set of ports S and the

number of bytes they have transmitted in the last monitor

cycle as Tx. Each tuple of S consists of three elements as

{switchID, portnumber, Tx}. Once a switch replies to the

controller with a STATS REPLY message, the controller will

update Tx for all of its ports in S according to corresponding

{switchID, portnumber}. The load balancer can find the

worst-fit link by comparing Tx of all links.

The overhead of monitoring port statistics is minimal. The

sizes of messages for requesting and replying port statistics

on each port are 8 bytes and 104 bytes respectively [12].

2) Flow Scheduling: The Flow scheduling functional-

ity works as follows. Each OpenFlow switch maintains

its own flow table. Whenever any packet comes in, the

switch checks the packet’s match information with the

entries in its flow table. The packet’s match informa-

tion includes ingressPort, etherType, srcMac, dstMac,
vlanID, srcIP , dstIP , IPprotocol, TCP/UDPsrcPort,
TCP/UDPdstPort [12]. If it finds a match, it will send

out the packet to the corresponding port. Otherwise it will

encapsulate the packet in a PACKET IN message and send

the message to the controller. As a module of the OpenFlow

controller, the load balancer will handle the PACKET IN

message. It finds a proper path by executing a search with

the DLB algorithm described in Algorithm 1. The path is a

list of switches from source to destination of the packet. Then

the load balancer creates one FLOW MOD message for each

switch in the path and send it to the switch. This message will

have the packet’s match information as well as a output port

number on that switch. The output port number is directly

calculated by the path and network topology. If one switch

receives a FLOW MOD message, it will use it to update its

flow table accordingly. Those packets buffered on ports of that

switch may find their matches in the updated flow table and

be sent out. Otherwise the switch will repeat this process.

III. EVALUATION

In this section, we describe the evaluation environment, traf-

fic design and measurement approaches. We conduct tests with

Mininet on Linux host with the Beacon OpenFlow controller.

Then we measure the network throughput and latency under

different types of traffic patterns.

A. Environment
1) Network Emulator: We use Mininet [10] to model data

center network behaviour. To evaluate our DLB algorithm’s

scalability, we build up a k=8 fat-tree network with 80 switches

and 128 hosts.

2) Monitoring Cycle Length: In Ports Statistics Monitoring

of Section 3, we defined the monitoring cycle length as T . In

our implementation, we set T as 5 seconds.

B. Traffic Design and Measurement
1) Traffic Design: One main challenge of the network

performance evaluation is how to generate real network traffic

since most current data centers are confidential for commercial

uses. Research papers [3], [6] showed that by creating artifi-

cial traffic flows by programs, we can build up the testing

environment similar to real ones. We use two types of traffic

patterns. They are derived from the designs in [1]:

1) Random: A host sends packets to any other host in the

network with uniform probability;

2) Probability Stride(i, j, k) (Pt, Pa, Pc): A host of index

m sends packets to another host of index (m+i), (m+j)
or (m+ k) with probabilities Pt, Pa or Pc respectively,

while Pc = 1− Pa − Pt.



Fig. 2. Static load balancing(SLB) in a fat-tree network

2) Measurement: We use Iperf to generate UDP traffic in

the network. The Iperf clients transmit data flows to Iperf

servers. The traffic rate of each flow is in the range 8% to

12% of the overall link bandwidth. We simulate the traffic in

real fat-tree data center networks according to the two traffic

patterns above. Then we measure the results using two criteria:

1) Average ratio of flows’ actual bandwidth / designed

bandwidth: the real bandwidth that one flow can achieve

will be less than or equal to the bandwidth it has been

designed on Iperf client host. The higher this ratio is,

the better throughput the network can get. This ratio can

be obtained by Iperf server’s report.

2) Average UDP packet transfer delay: the time consumed

from packet sent out of the Iperf client to received by the

Iperf server. It is measured by the server. The smaller the

delay is, the less chances of network congestion exist.

Iperf natively does not support measuring average delay

and we installed a patch for measuring it.

The traffic load is defined as the ratio of average occupied

bandwidth on links to hosts divided by the link capacity. It

ranges from 0 to 1. We tested 9 groups with the load from 0.1

to 0.9.

C. Benchmark Algorithms
To test the performance of our dynamic load balancing

(DLB) algorithm, we have used two other algorithms as com-

parisons. They are similar to DLB as described in Algorithm 1

except for strategies of selecting the link. Notice that both

of them only affect link selections with packet going upward

rather than downward just like DLB.

The first is the none load balancing(NLB) algorithm. NLB

is not aware of traffic load information on links. Instead of

choosing the worst-fit link, it randomly selects one link by

calling a hash function.

The second is the static load balancing(SLB) algorithm. It

selects links exclusively based on the location of the Iperf

client. For each of the aggregation and ToR layer switch, we

add indexes on its ports firstly from upside to downside, then

from left to right on each side. Then a packet received by a

downside port with index i will transmit via the output port

with index (i − k/2). One example is shown in Figure 2. In

this tree, one ToR/aggregation switch has 4 ports with indexes

from 1 to 4. And flow 1, 2 and 3 from source host A, B and

C will take different routes to their destination hosts.

D. Results
We take the following parameters for the probability stride

traffic test: Probability Stride(1, 4, 64) (50%, 30%, 20%).
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Fig. 3. Average bandwidth ratio in random traffic

Figure 3 shows the average ratio of flow’s actual band-

width versus designed bandwidth in random traffic. When

the traffic load is 0.1, all three algorithms can schedule

flows in a way that provides the maximum bandwidth they

need. Then the ratios with all three algorithms decrease while

the network traffic load increases. DLB keeps the highest

average bandwidth ratio under each type of traffic load. The

performance of SLB is between DLB and NLB. NLB has the

most performance degradation with the increase of the traffic

load. As we demonstrated above, NLB does not load balance

the traffic. This can easily cause congestion when the load

on one link exceeds its capacity. On the contrary, DLB and

SLB take multi-paths and load balancing into consideration in

scheduling and can achieve more available bandwidth than

NLB under same level of traffic load. On the other hand,

DLB outperforms SLB since it can make adaptive changes for

scheduling paths based on real-time network traffic statistics.

DLB makes more accurate decisions than SLB.
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Fig. 4. Average packet delay in random traffic

Figure 4 shows the average UDP packet delay in random

traffic. In general the delay moves higher with the traffic load

increases. DLB and SLB have generally less than a half of the

average UDP packet delay of NLB. DLB has a little advantage

than SLB. When the load reaches 0.9, the average delays of

all algorithms are over 170 milliseconds. This fact implies

that when hosts in the network send flows with close to their



maximum capability, the traffic load becomes so high that the

latency increases significantly. We also find that the increase

of delay changes more rapidly than the decrease of bandwidth

ratio.
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Fig. 5. Average bandwidth ratio in probability stride traffic

Figure 5 shows the average ratio of flow’s actual bandwidth

versus designed bandwidth in probability stride traffic. The

results are similar to Figure 3 with random traffic. DLB can

provide the largest amount of available bandwidth for flows on

average under each level of traffic load. The performance of

DLB and SLB under these two traffic patterns is close. On the

other hand, although NLB still has the worst performance, the

ratio curve of NLB shows improvement in probability stride

traffic than in random traffic. This is because there are a lot

of flows transmitted inside pods locally in probability stride

traffic pattern as the probability of stride 1 and 4 traffic is 80%

in total. The local traffic within one pod needs less number of

links to transmit and has less chance of being scheduled on

the same link. This reduces the chance of congestion.
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Fig. 6. Average packet delay in probability stride traffic

Figure 6 shows the average UDP packet delay in probability

stride traffic. As we can see DLB maintains the average packet

delay within milliseconds even under the load 0.5. The delays

with all three algorithms increase more rapidly after the load

exceeds 0.5. DLB leads this test again while NLB finishes

the worst. Comparing to tests under the same load in random

traffic, all three algorithms achieve lower delay in probability

stride traffic. This improvement is also one consequence of the

frequently generated local flows within pods by the probability

stride traffic pattern.

IV. CONCLUSION

In this paper, we present a dynamic load balancing al-

gorithm to efficiently schedule flows for fat-tree networks,

which provide multiple alternative paths among a single pair of

hosts. The algorithm utilizes the hierarchical feature of fat-tree

networks to recursively search for a path, and makes decisions

based on real-time traffic statistics obtained via the OpenFlow

protocol. We have implemented the algorithm as a module

of the Beacon OpenFlow controller program, with two main

functions: monitoring traffic statistics and scheduling flows. In

conjunction with the Beacon controller, we use the Mininet

network emulator to evaluate the dynamic load balancing

algorithm, by comparing it with the none load balancing and

static load balancing algorithms. The results show that our

algorithm is superior over the other two in maintaining high

rate data transmission and avoiding network latency under

various types of network traffic.

In our future work, we plan to extend the dynamic load

balancing algorithm to traditional networks with only regular

switches, or hybrid networks with both OpenFlow and regular

switches.
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