
OpenFlow-Based Flow-Level Bandwidth
Provisioning for CICQ Switches

Hao Jin, Student Member, IEEE, Deng Pan, Member, IEEE,

Jason Liu, Member, IEEE Computer Society, and Niki Pissinou

Abstract—Flow-level bandwidth provisioning (FBP) achieves fine-grained bandwidth assurance for individual flows. It is especially

important for virtualization-based computing environments such as data centers. However, existing flow-level bandwidth provisioning

solutions suffer from a number of drawbacks, including high implementation complexity, poor performance guarantees, and

inefficiency to process variable length packets. In this paper, we study flow-level bandwidth provisioning for Combined Input Crosspoint

Queued (CICQ) switches in the OpenFlow context. First, we propose the Flow-level Bandwidth Provisioning algorithm for CICQ

switches, which reduces the switch scheduling problem to multiple instances of fair queuing problems, each utilizing a well-studied fair

queuing algorithm. We theoretically prove that FBP can closely emulate the ideal Generalized Processing Sharing model, and

accurately guarantee the provisioned bandwidth. Furthermore, we implement FBP in the OpenFlow software switch to obtain realistic

performance data by a prototype. Leveraging the capability of OpenFlow to define and manipulate flows, we experimentally

demonstrate a practical flow-level bandwidth provisioning solution. Finally, we conduct extensive simulations and experiments to

evaluate the design. The simulation data verify the correctness of the analytical results, and show that FBP achieves tight performance

guarantees. The experiment results demonstrate that our OpenFlow-based prototype can conveniently and accurately provision

bandwidth at the flow level.

Index Terms—OpenFlow, CICQ switches, bandwidth provisioning

Ç

1 INTRODUCTION

BANDWIDTH provisioning on switches offers bandwidth
assurance for designated traffic [1]. Based on the traffic

unit, bandwidth provisioning can be at different granular-
ity levels [2]. Port-level bandwidth provisioning assures
bandwidth for the traffic from an input port to an output
port, by which switches can support traffic isolation
between VLANs. Since a switch port may belong to a
single or multiple VLANs, bandwidth provisioning at the
port level guarantees the bandwidth of each VLAN and
makes one VLAN transparent to the other. On the other
hand, flow-level bandwidth provisioning guarantees band-
width for an individual flow, which may be a subset of the
traffic from the input port to the output port. A flow may
be the sequence of packets generated by a specific
application or departing from an IP address, and in general
can be flexibly defined by a combination of the 12 packet
header fields [3].

Bandwidth provisioning at the flow level is necessary,
as it differentiates traffic at sufficiently fine granularity [4].
It is particularly important for virtualization-based com-
puting environments, such as data centers or the GENI-
like [13] shared experimental infrastructure. In such an

environment, multiple virtual machines (VMs) reside in a
single physical server, and their traffic shares the same
physical network adapter and is correspondingly fed into
the same switch port. Flow-level bandwidth provisioning
is able to isolate traffic of different VMs and make the
shared underlying network infrastructure transparent to
the VMs. The recently proposed Virtual Ethernet Port
Aggregator (VEPA) protocol [5] off-loads all switching
activities from hypervisor-based virtual switches to actual
physical switches. As can be seen, VEPA requires flow-
level bandwidth provisioning on switches to support
traffic isolation between VMs.

Existing algorithms [1], [2], [6] achieve flow-level
bandwidth provisioning by emulating Push-In-First-Out
(PIFO) Output Queued (OQ) switches, but they suffer from
a number of drawbacks. First, they have high hardware
complexity and time complexity. Specifically, they require a
crossbar with speedup of at least two, i.e., the crossbar
having twice bandwidth as that of the input port or output
port, and they may need large expensive on-chip memories
for the crossbar. In addition, they run in a centralized mode
with up to N iterations for an N �N switch, or in other
words the scheduling time increases proportionally with
the switch size. Second, they cannot achieve constant
service guarantees. Constant service guarantees mean that
for any flow, the difference between its service amount in a
specific algorithm and in the ideal Generalized Processing
Sharing (GPS) [7] model is bounded by constants, i.e., the
equations in [8, Theorem 1]. The reason is that WF2Q
(including its variants) [8], the only known fair queuing
algorithm to achieve constant service guarantees, does not
use a PIFO queuing policy [9], and hence, the PIFO OQ
switch emulation approach does not work. Third, although
there have been switch designs [10] in the literature

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 9, SEPTEMBER 2013 1799

. H. Jin is with the Department of Electrical and Computer Engineering,
Florida International University, Miami, FL 33199.
E-mail: hjin001@fiu.edu.

. D. Pan, J. Liu, and N. Pissinou are with the School of Computing and
Information Sciences, Florida International University, Miami, FL 33199.
E-mail: {pand, liux, pissinou}@cis.fiu.edu.

Manuscript received 5 Dec. 2011; revised 18 June 2012; accepted 22 June
2012; published online 2 July 2012.
Recommended for acceptance by P. Bellavista.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2011-12-0935.
Digital Object Identifier no. 10.1109/TC.2012.167.

0018-9340/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

to directly handle variable length packets, the existing flow-
level bandwidth provisioning algorithms can only handle
fixed length cells. When variable length packets arrive, they
have to be first segmented into fixed length cells at input
ports. The cells are then transmitted to output ports, where
they are reassembled into original packets before sent to the
output links. This process is called segmentation and
reassembly (SAR) [11], which wastes bandwidth due to
padding bits [12].

In this paper, we study the flow-level bandwidth
provisioning problem in the OpenFlow context [3]. Our
objective is twofold: to design an efficient flow-level
bandwidth provisioning algorithm with constant service
guarantees, and to experimentally demonstrate a practical
flow-level bandwidth provisioning solution based on the
OpenFlow protocol. OpenFlow is an open protocol that
gives access to the forwarding plane of switches and
routers, so that users can control their traffic in the network.
It has been deployed in large-scale testbeds like GENI [13],
and considered in many recent data center designs [14],
[15]. OpenFlow provides a rich set of options to define
flows based on a combination of packet header fields, and
use a flow table to allow users to flexibly control their
traffic. Bandwidth provisioning has been recognized as an
essential component of OpenFlow, to isolate traffic of
different users or different types [16].

In our OpenFlow-based bandwidth provisioning solu-
tion, there will be a central controller and a number of
switches. On the one hand, the controller collects resource
and request information from the switches, allocates
bandwidth for flows, and updates the flow tables of
switches to enforce the provisioned bandwidth. On the
other hand, the switches receive flow definition and
bandwidth allocation information from the controller,
and run the proposed switch scheduling algorithm to
guarantee the allocated bandwidth. The focus of this paper
is for the switches to accurately guarantee the allocated
bandwidth of each flow by emulating the ideal GPS
model. In GPS, each flow has a virtual dedicated channel
with the allocated bandwidth, as shown in Fig. 1a. Thus,
there is no interference between different flows, and each
flow always receives the exact amount of its allocated
bandwidth. Our goal is to bound the difference between
the service amount of any flow in our algorithm and in
GPS by constants, or in other words to achieve constant
service guarantees. A more detailed problem formulation
will be presented in Section 3.1.

We first propose the Flow-level Bandwidth Provisioning
(FBP) algorithm for Combined Input Crosspoint Queued
(CICQ) switches. CICQ switches are special crossbar switches
with an on-chip buffer at each crosspoint, which is made
available by recent development in VLSI technology [17], [18],
and thus they are also called buffered crossbar switches. We
consider CICQ switches because the crosspoint buffers
decouple input ports and output ports, and greatly simplify
the scheduling process. Different from existing algorithms,
FBP reduces the switch scheduling problem to multiple
instances of fair queuing problems [19], each utilizing a well-
studied fair queuing algorithm. As a result, FBP can closely
emulate the ideal GPS model and accurately guarantee the
provisioned bandwidth. Furthermore, we implement the
FBP algorithm in the OpenFlow version 1.0 software switch
[20] to obtain realistic performance data through a prototype.
Besides FBP-enabled OpenFlow software switches, our
prototype includes a NOX version 0.8 controller, which
informs the switches on the flow path to provision the desired
bandwidth. Leveraging the capability of the OpenFlow
protocol to define and manipulate flows, we have thus
demonstrated a practical solution to accurately provision
bandwidth at the flow level.

Our main contributions in this paper are as follows: First,
we theoretically analyze the performance of FBP, and prove
that it achieves constant service guarantees and tight delay
guarantees. Second, FBP is economical to implement with
bounded crosspoint buffer sizes and no speedup require-
ment, and is fast with low time complexity and distributed
scheduling. Third, we implement FBP in the OpenFlow
software switch and integrate it with the NOX controller, to
experimentally demonstrate a practical flow-level band-
width provisioning solution. Fourth, we present extensive
simulation and experiment data to show the effectiveness of
our design.

The rest of the paper is organized as follows: In Section 2,
we discuss the background and related work. In Section 3,
we present the FBP algorithm. In Section 4, we theoretically
analyze the performance of FBP. In Section 5, we describe
the implementation of the OpenFlow-based prototype.
In Section 6, we show simulation and experiment data to
evaluate our design. Finally, in Section 7, we conclude
the paper.

2 BACKGROUND AND RELATED WORK

In this section, we provide an overview of existing
bandwidth provisioning algorithms for switches, analyze
their insufficiencies, and review the mechanisms currently
available in OpenFlow.

2.1 Existing Bandwidth Provisioning Algorithms for
Switches

The current main approach of bandwidth provisioning on
switches is to emulate PIFO OQ switches. In a PIFO OQ
switch, all packets are buffered at output ports, either on a
per input port or per flow basis. Each output port runs a fair
queuing algorithm [19] to emulate the ideal GPS model and
provide guaranteed bandwidth for each output queue. OQ
switches achieve the optimal performance but are not
practical because they need speedup of N [21].

1800 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 9, SEPTEMBER 2013

Fig. 1. GPS as Ideal Fairness Model (a) for switches, (b) for shared

output links.

The following solutions provide port-level bandwidth
provisioning. Magill et al. [22] show that a buffered crossbar
switch with speedup of two satisfying nonnegative slackness
insertion, lowest-time-to-live blocking, and lowest-time-to-
live fabric scheduling can exactly emulate a PIFO OQ switch.
Mhamdi and Hamdi [23] proposes the Modified Current

Arrival First—Lowest Time To Leave First scheduling algo-
rithm, for a one-cell buffered crossbar switch with speedup
of two to emulate a PIFO OQ switch without time stamps.
Chuang et al. [2] show that with speedup of two, a buffered
crossbar switch can mimic a PIFO OQ switch with the
restriction that the cells of an input-output pair depart in the
same order as they arrive. He et al. [25] propose the rate-
based Smooth Multiplexing algorithm for a CICQ switch with
a two-cell buffered crossbar, and shows that the algorithm
provides bandwidth and throughput guarantees. Turner
[12] presents the Packet Group by Virtual Output Queue

(GBVOQ) and Packet Least Occupied Output First scheduling
algorithms for buffered crossbar switches, and shows that
they can emulate PIFO OQ switches with speedup of two or
more. Stoica and Zhang [24] propose the Joined Preferred

Matching algorithm for CIOQ switches, and prove that the
algorithm can emulate a general class of OQ service
disciplines. Attiya et al. [26] propose frame-based schedulers
for Combined Input Output Queued (CIOQ) switches
handling variable length packets to mimic an ideal OQ
switch with bounded delay, and demonstrates a tradeoff
between the switch speedup and the relative queuing delay.
Wu et al. [27] consider high-speed packet switches with
optical fabrics, and propose scheduling algorithms to
provide performance guaranteed switching. Kanizo et al.
[28] introduce the Crosspoint Queued switch with large
crosspoint buffers and no input queues, and propose
scheduling algorithms for it to emulate an ideal OQ switch.

As mentioned earlier, existing flow-level bandwidth
provisioning solutions need high hardware and time com-
plexity. Chuang et al. [2] show that in order for a buffered
crossbar switch with speedup of two to provide flow-level
bandwidth provisioning, a separate crosspoint buffer must
be available for each flow. Alternatively, the switch structure
must first be modified with a more complicated buffering
scheme (similar to that of OQ switches) and then a total of
N3 crosspoint buffers must be provided. Unfortunately, both
schemes greatly increase the total number of crosspoint
buffers and are not scalable. Another option is to increase the
speedup of the crossbar to three, which will drop the
maximum throughput of the switch by one-third. The
additional speedup of one is used to eliminate the crosspoint
blocking. Chuang et al. [1] propose several algorithms for
CIOQ switches with speedup of two to emulate PIFO OQ
switches. The Critical Cell First (CCF) algorithm needs
N2 iterations and global information. The Delay Till Critical
(DTC) algorithm reduces the iteration number to N , but still
needs global information. On the other hand, the Group by
Virtual Output Queue (GBVOQ) algorithm does not need
global information, but its iteration number is unbounded.
Pan and Yang [6] present a scheme to achieve tradeoffs
between those in [2] and [1]. It conducts distributed
scheduling in the average case, but still needs speedup of
two and N iterations in the worst case.

2.2 Insufficiencies of PIFO OQ Switch Emulation
Approach

Although PIFO OQ switches cover a wide range of service
disciplines such as WFQ [19] and DDR [29], there are a
number of insufficiencies. Besides the high hardware and
time complexity, inability to achieve constant service
guarantees, and inefficiency to process variable length
packets as discussed in Section 1, the bandwidth allocation
policy of PIFO OQ switches, originated from fair queuing
algorithms for shared output links, is not suitable for
switches. Specifically, it fails to consider the bandwidth
constraints at input ports, while flows may oversubscribe
the input ports [30].

The objective of the emulation approach is to emulate a
fair queuing algorithm at each output port. A fair queuing
algorithm schedules packets from multiple flows of a
shared output link to ensure fair bandwidth allocation,
and it allocates bandwidth to the flows proportional to their
requested bandwidth [7]. Specifically, assume that the
available bandwidth of the shared output link is R, and �i
and Ri are the requested bandwidth and allocated
bandwidth of the ith flow, respectively. With proportional
bandwidth allocation, we have 8i; 8j; Ri=�i ¼ Rj=�j andP

i Ri � R. However, simple proportional bandwidth allo-
cation is not suitable for switches [31]. The reason is that
while flows of a shared output link are constrained only by
the output link bandwidth as in Fig. 1b, flows of a switch
are subject to two bandwidth constraints: the available
bandwidth at both the input port and output port of the
flow, as shown in Fig. 1a. Naive bandwidth allocation at the
output port may make the flows violate the bandwidth
constraints at their input ports, and vice versa.

In the following, we use an example to illustrate the
problem. Consider a 2� 2 switch. For easy representation,
denote the ith input port as Ini and the jth output port as
Outj. Assume that each input port or output port has
available bandwidth of one unit. Use �ij and Rij to
represent the requested bandwidth and allocated band-
width of Ini at Outj, respectively, and �ij is initialized as in
(1). Assume that each output port uses the proportional
bandwidth allocation policy, i.e., the policy used by fair
queuing algorithms for shared output links. First we look at
only Out1. Because �11 ¼ 0:9 and �21 ¼ 0:6, by the propor-
tional policy we have R11 ¼ 0:6 and R21 ¼ 0:4. The same
applies to Out2. The allocated bandwidth Rij is thus shown
in (1). However, this allocation is not feasible, because the
total bandwidth allocated at In1 is R11 þR12 ¼ 0:6 þ
0:6 ¼ 1:2, exceeding the available bandwidth of 1. For the
same reason, if bandwidth allocation is conducted inde-
pendently by each input port using the proportional policy,
the allocation will not be feasible either:

� ¼ 0:9 0:75
0:6 0:5

� �
) R ¼ 0:6 0:6

0:4 0:4

� �
: ð1Þ

In addition, to improve utilization, fair queuing algo-
rithms will reallocate the leftover bandwidth of empty flows
using the proportional policy. In other words, when a flow
temporarily becomes empty, the fair queuing algorithm will
reallocate its bandwidth to the remaining backlogged flows
in proportion to their requested bandwidth. However, this

JIN ET AL.: OPENFLOW-BASED FLOW-LEVEL BANDWIDTH PROVISIONING FOR CICQ SWITCHES 1801

strategy does not apply to switches either, and we use the
following example to explain. Consider the same 2� 2
switch, and assume that the initial allocated bandwidth
8i8j; Rij ¼ 0:5, as shown in (2). Now that In1 temporarily
has no traffic to Out1, i.e.,R11 ¼ 0:5 changing to R011 ¼ 0. The
proportional bandwidth allocation policy would allocate the
leftover bandwidth of R11 to R21, because now only In2 has
traffic to Out1. However, this is not possible, because it will
oversubscribe In2 by 0.5. As a matter of fact, the leftover
bandwidth of R11 cannot be reallocated at all in this case:

R ¼ 0:5 0:5
0:5 0:5

� �
) R0 ¼ 0 0:5

1 0:5

� �
: ð2Þ

From the above discussions, we can see that bandwidth
allocation of the PIFO OQ switch emulation approach is not
practical. In other words, the PIFO OQ switch emulation
approach works only under predetermined feasible band-
width allocation. As a result, we adopt a two-step approach,
similar to that in [25], by separately addressing the
bandwidth allocation and switch scheduling issues. In the
first step, the only task of the bandwidth allocation
algorithms is to assign a certain feasible amount of
bandwidth for each flow. In our design, since the OpenFlow
controller connects to every switch in an OpenFlow net-
work, it has all the bandwidth and flow information. The
controller can thus make optimal decisions for flow routing
and bandwidth allocation. In the second step, given the
allocated bandwidth of each flow, the task of the switch
scheduling algorithms is to guarantee that each flow
receives the exact amount of bandwidth. In our design,
the OpenFlow switches will receive bandwidth allocation
information from the controller, and run the FBP algorithm
to achieve constant service guarantees.

In the following discussions, our focus will be the switch
scheduling task, and we will not discuss the bandwidth
allocation task in detail for the following reasons. First, as
analyzed above, the proportional bandwidth allocation
policy used by fair queuing algorithms is not applicable
to switches. As a matter of fact, many existing PIFO OQ
emulation-based solutions, such as [1], [2], [6], [12], [22],
[23], and [24], have neither simulations nor experiments.
They are certainly of theoretical interests, but it is difficult if
not impossible to apply them in real networks. By
comparison, we show a prototype in Section 5 to demon-
strate that our solution is practical and readily available.
Second, for proper bandwidth provisioning, the allocated
bandwidth of a flow must consider all the switches and
routers on the routing path. Allocating or adjusting
bandwidth at a single hop is not likely to take effect. In
this sense, the bandwidth allocation issue should be solved
at the network level, and can be handled by the central
controller in an OpenFlow network, or by protocols like
RSVP [35]. Third, for bandwidth allocation on a single
switch, the challenge has been addressed by solutions in the
literature [25], [31], [33].

2.3 Bandwidth Provisioning in OpenFlow

Bandwidth provisioning is recognized as an essential
component for OpenFlow [16]. The current OpenFlow
implementation supports a Hierarchical Token Bucket
(HTB) [32]-based framework called slicing, which is

necessary but not sufficient to provide tight performance
guarantees [8]. As stated in [16], slicing is a minimum but
not complete QoS scheme. Slicing utilizes the HTB techni-
que, which is a combination of token bucket traffic shaping
and deficit round robin fair queuing [29]. HTB assures only
minimal bandwidth, and cannot accurately guarantee the
provisioned bandwidth. In addition, OpenFlow has a
special controller called FlowVisor [34], which creates slices
of network resources and provides traffic isolation between
different slides.

3 FLOW-LEVEL BANDWIDTH PROVISIONING FOR

CICQ SWITCHES

In this section, we formulate the flow-level bandwidth
provisioning problem, and present the FBP algorithm for
CICQ switches.

3.1 Problem Formulation

The considered CICQ switch structure is shown in Fig. 2.
The switch has N input ports and N output ports. Denote
the ith input port as Ini and the jth output port as Outj.
The input ports and output ports are connected by a
buffered crossbar without speedup. In other words, each
input port or output port has bandwidth of R, and so does
the crossbar. For flow-level bandwidth provisioning, it is
necessary for input ports to separate the traffic of different
flows, i.e., storing incoming packets on a per flow basis.
Denote the kth flow from Ini to Outj as Fijk, and the queue
at Ini to store its packets as Qijk. Besides a queue for each
flow, Ini has a virtual output buffer for each Outj, denoted
as Bij, to store the next packet departing from Ini to Outj.
Note that Bij is not a physical buffer, but a pointer pointing
to the head packet of one of the queues from Ini to Outj.
Each crosspoint of the crossbar has a small buffer. Denote
the crosspoint buffer connecting Ini and Outj as Xij. There
are no buffers at output ports.

Our objective is to accurately provision bandwidth for
each flow by emulating the ideal GPS model. GPS views
flows as fluids of continuous bits, and creates a virtual
dedicated channel for each flow based on its allocated
bandwidth, as shown in Fig. 1a. Because GPS is a fluid-based
system, a flow can smoothly stream from the input port to the
output port without buffering in the middle. We thus assume
that packets in GPS will skip the virtual output buffers and
crosspoint buffers. GPS is also the ideal packet scheduling
model of fair queuing algorithms for shared output links, as
shown in Fig. 1b.

1802 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 9, SEPTEMBER 2013

Fig. 2. Structure of CICQ switches.

Assume that a flow Fijk has been allocated a certain
amount of bandwidth Rijk. Use toOijkð0; tÞ and dtoOijkð0; tÞ to
represent the numbers of bits transmitted by Fijk to the
output port during interval ½0; t� in our algorithm and GPS,
respectively. Formally, the objective is to bound the
difference jtoOijkð0; tÞ �dtoOijkð0; tÞj by constants, indepen-
dent of Rijk and t. Note that for feasible bandwidth
allocation, no input or output should have oversubscrip-
tion, i.e., 8i;

P
j;k Rijk � R, and 8j;

P
i;k Rijk � R. The feasi-

bility requirement is only for bandwidth allocation.
Temporary overload is allowed for any input port and
output port, with overloading packets being temporarily
stored in input buffers.

3.2 Algorithm Description

The basic idea of the FBP algorithm is to reduce the switch
scheduling problem to three stages of fair queuing, which we
call flow scheduling, input scheduling, and output schedul-
ing, respectively. Flow scheduling selects a packet from one
of the flow queues Qijk from Ini to Outj, and sends it to the
virtual output buffer Bij. Input scheduling selects a packet
from one of theN virtual output buffersBij of Ini, and sends
it to the corresponding crosspoint buffer Xij. Output
scheduling selects a packet from one of the N crosspoint
buffers Xij of Outj, and sends it to the output port. The
detailed description of each scheduling stage is as follows:

3.2.1 Flow Scheduling

Flow scheduling utilizes the WF2Q [8] fair queuing
algorithm to multiplex different flows of the same input-
output pair as a single logical flow, to simplify input
scheduling. For easy description, denote the nth packet of
Fijk as Pn

ijk. Flow scheduling calculates two time stamps for
each packet p: virtual flow start time cFSðpÞ and finish timecFF ðpÞ. They are the departure time of the first bit and last
bit of p in GPS, and are calculated as cFSðPn

ijkÞ ¼
maxðAðPn

ijkÞ; cFF ðPn�1
ijk ÞÞ and cFF ðPn

ijkÞ ¼ cFSðPn
ijkÞ þ LðPn

ijkÞ=
Rijk, where AðpÞ is the arrival time of p, and LðpÞ is the
packet length.

The first step of flow scheduling identifies eligible
packets. A packet is eligible for flow scheduling if it has
started transmission in GPS. Specifically, a packet p is
eligible at time t if its virtual flow start time is less than or
equal to t, i.e., cFSðpÞ � t. The second step selects among
eligible packets the one p with the smallest virtual flow
finish time, i.e., 8p0; cFSðp0Þ � t! cFF ðp0Þ � cFF ðpÞ. The se-
lected packet will be sent to the corresponding virtual
output buffer Bij, to participate in input scheduling. If there
are no eligible packets, flow scheduling will wait until the
next earliest virtual flow start time. Additionally, we define
two time stamps for p: actual flow start time FSðpÞ and
finish time FF ðpÞ, to represent the actual departure time of
its first bit and last bit from Qijk in flow scheduling. Flow
scheduling multiplexes all flows from Ini to Outj as a
logical flow Fij, which has bandwidth Rij ¼

P
k Rijk. Thus,

the last bit of p will leave Qijk at FF ðpÞ ¼ FSðpÞ þ LðpÞ=Rij.
Note that flow scheduling is only a logical operation to

determine the sequence of packets to participate in input
scheduling. There is no actual packet transmission for flow
scheduling, because the packet is in the input buffer both
before and after flow scheduling.

3.2.2 Input Scheduling

Input scheduling uses WF2Q to multiplex the logical flows
Fij of the same input Ini to share the bandwidth to the
crosspoint buffers. Input scheduling also calculates two
time stamps for each packet p: virtual input start time cISðpÞ
and finish time cIF ðpÞ, which are equal to the actual flow
start and finish time, respectively, i.e., cISðpÞ ¼ FSðpÞ andcIF ðpÞ ¼ FF ðpÞ. Similar as flow scheduling, the first step of
input scheduling identifies eligible packets whose virtual
input start time is no later than the current scheduling time.
The second step finds among eligible packets the one with
the smallest virtual input finish time. The selected packet is
then sent from the virtual output buffer to the crosspoint
buffer. Additionally, we define the actual input start time
ISðpÞ and finish time IF ðpÞ to represent the time that the
first bit and last bit of p leave Bij in input scheduling,
respectively. We have IF ðpÞ ¼ ISðpÞ þ LðpÞ=R, since the
bandwidth of the crossbar is R.

3.2.3 Output Scheduling

Output scheduling utilizes the WFQ [7] fair queuing
algorithm to allow the crosspoint buffers of the same
output to share the bandwidth to the output link. We can
use WFQ instead of WF2Q for output scheduling because
input scheduling has restricted admission of packets into
the crosspoint buffers. Output scheduling uses only one
time stamp for a packet p: virtual output finish time cOF ðpÞ,
which can be calculated as cOF ðpÞ ¼ cIF ðpÞ þ Lm=Rþ Lm=
Rij, where Lm is the maximum packet length. Output
scheduling simply retrieves the packet with the smallest
virtual output finish time from the crosspoint buffers of an
output and send it to the output link. Additionally, define
the actual output start time OSðpÞ and finish time OF ðpÞ to
represent the actual departure time of the first bit and last
bit of p from Xij. Since the bandwidth of the crossbar is R,
we have OF ðpÞ ¼ OSðpÞ þ LðpÞ=R.

4 PERFORMANCE ANALYSIS

We now analyze the performance of FBP, and will show that
it achieves constant service guarantees, tight delay guaran-
tees, and bounded crosspoint buffer sizes. Since the three
scheduling stages of FBP use the well-studied WF2Q [8] and
WFQ [7] fair queuing algorithms, our analysis will leverage
the existing results for them. Both WF2Q and WFQ schedule
packets of multiple flows to emulate the ideal GPS model,
and share some features in common. As indicated by
[8, Theorem 1] and [7, Theorem 1], there is an important
property between the virtual departure time bFðpÞ of a
packet p in the virtual dedicated channel and the actual
departure time FðpÞ in the physical multiplexed channel
with bandwidth R: FðpÞ � bFðpÞ þ Lm=R.

Recall that flow scheduling uses WF2Q to multiplex all

the flows from Ini to Outj, which share bandwidth of Rij, as

a logical flow. By the above property, we have FF ðpÞ �cFF ðpÞ þ Lm=Rij. Input scheduling uses WF2Q to multiplex

the logical flows from Ini to different Outj as an aggregate

flow. For input scheduling, we can view the virtual input

finish time cIF ðpÞð¼ FF ðpÞÞ as the departure time of p in the

virtual dedicated channel. Since the physical multiplexed

JIN ET AL.: OPENFLOW-BASED FLOW-LEVEL BANDWIDTH PROVISIONING FOR CICQ SWITCHES 1803

channel for input scheduling, i.e., the channel from the

input buffer to the crossbar, has bandwidth of R, we can

obtain IF ðpÞ � cIF ðpÞ þ Lm=R.
Output scheduling uses WFQ to multiplex flows from

different crosspoint buffers, and we show below that cOF ðpÞ
is the departure time of p in the virtual dedicated channel
with bandwidth Rij for packets from Xij to Outj. For easy
representation, denote the nth packet from Ini to Outj as
Pn
ij, and define cOSðPn

ijÞ ¼ cOF ðPn
ijÞ � LðPn

ijÞ=Rij.

Lemma 1. By cOSðPn
ijÞ, Pn�1

ij has left Xij and Pn
ij has arrived at

Xij in the virtual dedicated channel.

Proof. First, it is easy to see that cOSðpÞ � cIF ðpÞ þ Lm=R �
IF ðpÞ, which means that p has arrived at the crosspoint
buffer by cOSðpÞ, and thus can start transmission in the
virtual dedicated channel. Second, by the definition

cOS�Pn
ij

�
¼ cIF�Pn

ij

�
þ Lm
R
þ Lm
Rij
�
L
�
Pn
ij

�
Rij

� cIF�Pn�1
ij

�
þ Lm
R
þ Lm
Rij
¼ cOF�Pn�1

ij

�
;

ð3Þ

we know that Pn�1
ij has left Xij in the virtual dedicated

channel by cOSðPn
ijÞ, and thus Pn

ij can start transmission
without conflict. tu
According to Lemma 1, we can safely view cOSðpÞ as the

departure time of the first bit of p in the virtual dedicated
channel, and thus cOF ðpÞ is the departure time of the last bit
of p in the virtual dedicated channel. Therefore, we have

OF ðpÞ � cOF ðpÞ þ Lm
R
: ð4Þ

4.1 Service Guarantees

We now show that FBP achieves accurately provisioned
bandwidth, in the sense that the difference between the
service amount of any flow in FBP and GPS at any time is
bounded by constants.

Define toOijkðt1; t2Þ, toXijkðt1; t2Þ, and toBijkðt1; t2Þ to

denote the numbers of bits transmitted by Fijk during

interval ½t1; t2� to Outj, Xij, and Bij in FBP, respectively.

Correspondingly, use dtoBijkðt1; t2Þ to represent the num-

ber of bits transmitted by Fijk to Bij during ½t1; t2� in GPS.

With the virtual dedicated channel of Fijk, dtoBijkðt1; t2Þ is

also the number of bits sent by Fijk to Outj during ½t1; t2�
in GPS.

Lemma 2. When a packet Pn
ijk starts transmission to the output

port in FBP, the number of bits transmitted to the output port by
its flowFijk in FBP is greater than or equal to that in GPS minus
4Lm, i.e., toOijkð0; OSðPn

ijkÞÞ � dtoBijkð0; OSðPn
ijkÞÞ � 4Lm.

Proof. By the definition of OSðPn
ijkÞ; Pn�1

ijk has finished
output scheduling at OSðPn

ijkÞ in FBP, i.e.,

toOijk

�
0; OS

�
Pn
ijk

��
¼
Xn�1

a¼1

L
�
Pa
ijk

�
: ð5Þ

On the other hand,

dtoBijk

�
0; OS

�
Pn
ijk

��
¼ dtoBijk 0; OF

�
Pn
ijk

�
�
L
�
Pn
ijk

�
R

 !

� dtoBijk 0; cOF�Pn
ijk

�
þ Lm
R
�
L
�
Pn
ijk

�
R

 !

¼ dtoBijk 0; cIF�Pn
ijk

�
þ 2Lm

R
þ Lm
Rij
�
L
�
Pn
ijkÞ
R

 !

� dtoBijk 0; cFF�Pn
ijk

�
þ 2Lm

R
þ 2Lm
Rij
�
L
�
Pn
ijk

�
R

 !

� dtoBijk

�
0; cFF�Pn

ijk

��
þRijk

2Lm
R
þ 2Lm
Rij
�
L
�
Pn
ijk

�
R

 !

¼
Xn
a¼1

L
�
Pa
ijk

�
þRijk

2Lm
R
þ 2Lm
Rij
�
L
�
Pn
ijk

�
R

 !
:

ð6Þ

By (5) and (6), we have

dtoBijk

�
0; OS

�
Pn
ijk

��
� toOijk

�
0; OS

�
Pn
ijk

��
� L

�
Pn
ijk

�
þ 2Lm

Rijk

R
þ 2Lm

Rijk

Rij
� L

�
Pn
ijk

�Rijk

R

¼ L
�
Pn
ijk

�
1�Rijk

R

� �
þ 2Lm

Rijk

R
þ 2Lm

Rijk

Rij

� Lm 1�Rijk

R

� �
þ 2Lm

Rijk

R
þ 2Lm

Rijk

Rij

� Lm 1þRijk

R

� �
þ 2Lm

Rijk

Rij

� 4Lm:

ut

The following theorem shows that FBP achieves constant

service guarantees.

Theorem 1. At any time, the difference between the numbers of

bits transmitted by a flow to the output port in FBP and GPS

is greater than or equal to �4Lm and less than or equal to Lm,

i.e., �4Lm � toOijkð0; tÞ �dtoBijkð0; tÞ � Lm.

Proof. Without loss of generality, assume that t 2 ½OF ðPn
ijkÞ;

OF ðPnþ1
ijk ÞÞ. First, we prove toOijkð0; tÞ �dtoOijkð0; tÞ �

�4Lm. If t 2 ½OF ðPn
ijkÞ; OSðPnþ1

ijk ÞÞ, by noting toOijkðt;
OSðPnþ1

ijk ÞÞ ¼ 0, we have

toOijkð0; tÞ �dtoBijkð0; tÞ
¼
�
toOijk

�
0; OS

�
Pnþ1
ijk

��
� toOijk

�
t; OS

�
Pnþ1
ijk

���
�
�dtoBijk

�
0; OS

�
Pnþ1
ijk

��
�dtoBijk

�
t; OS

�
Pnþ1
ijk

���
¼
�
toOijk

�
0; OS

�
Pnþ1
ij

��
�dtoBijk

�
0; OS

�
Pnþ1
ijk

���
þdtoBijk

�
t; OS

�
Pnþ1
ij

��
� �4Lm þdtoBijk

�
t; OS

�
Pnþ1
ijk

��
� �4Lm:

ð8Þ

1804 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 9, SEPTEMBER 2013

Otherwise, if t 2 ½OSðPnþ1
ij Þ; OF ðPnþ1

ij ÞÞ, by noting
toOijkðOSðPnþ1

ijk Þ; tÞ ¼ ðt�OSðPnþ1
ijk ÞÞR, we have

toOijkð0; tÞ �dtoBijkð0; tÞ
¼
�
toOijk

�
0; OS

�
Pnþ1
ijk

��
þ toOijk

�
OS
�
Pnþ1
ijk

�
; t
��

�
�dtoBijk

�
0; OS

�
Pnþ1
ijk

��
þdtoBijk

�
OS
�
Pnþ1
ijk

�
; t
��

� �4Lm þ
�
t�OS

�
Pnþ1
ijk

��
R�dtoBijk

�
OS
�
Pnþ1
ijk

�
; t
�

� �4Lm þ
�
t�OS

�
Pnþ1
ijk

��
ðR�RijkÞ

� �4Lm:

ð9Þ

Next, we prove toOijkð0; tÞ �dtoBijkð0; tÞ � Lm. Since

flow scheduling uses WF2Q, by [8, Theorem 1], we have

toBijkð0; tÞ � dtoBijkð0; tÞ þ Lm and thus toOijkð0; tÞ �
toBijkð0; tÞ � dtoBijkð0; tÞ þ Lm. tu

4.2 Delay Guarantees

FBP also achieves delay guarantees as stated by the
following theorem. Note that OF ðpÞ and cFF ðpÞ are the
departure time of a packet p in FBP and GPS, respectively.

Theorem 2. For any packet Pn
ijk, the difference between its

departure time in FBP and GPS is greater than or equal to

LðPn
ijkÞð2=R� 1=RijkÞ and less than or equal to 2Lmð1=Rþ 1=

RijÞ, i.e., LðPn
ijkÞð2=R� 1=RijkÞ � OF ðPn

ijkÞ � cFF ðPn
ijkÞ �

2Lmð1=R þ 1=RijÞ.
Proof. First, we prove OF ðPn

ijkÞ � cFF ðPn
ijkÞ � LðPn

ijkÞð2=
R� 1=RijkÞ. By the flow scheduling and input schedul-
ing policies, we have ISðpÞ � FSðpÞ � cFSðpÞ, or

IF
�
Pn
ijk

�
�
L
�
Pn
ijk

�
R

� cFF�Pn
ijk

�
�
L
�
Pn
ijk

�
Rijk

:

By the output scheduling policy, we know OSðpÞ �
IF ðpÞ, or

OF
�
Pn
ijk

�
�
�
Pn
ijk

�
R
� IF

�
Pn
ijk

�
:

Combining the two equations, we have proved
OF ðPn

ijkÞ � cFF ðPn
ijkÞ � LðPn

ijkÞð2=R� 1=RijkÞ.
Next, we prove OF ðPn

ijkÞ � cFF ðPn
ijkÞ � 2Lmð1=R þ

1=RijÞ. By (4), we know

OF ðPn
ijkÞ � cOF�Pn

ijk

�
þ Lm
R
¼ cIF�Pn

ijk

�
þ Lm
R
þ Lm
Rij
þ Lm
R

� cFF�Pn
ijk

�
þ 2Lm

R
þ 2Lm
Rij

:

ut

4.3 Crosspoint Buffers

A nice feature of FBP is that it has a size bound for the
crosspoint buffers, which are expensive on-chip memories.
Define toXijðt1; t2Þ and toOijðt1; t2Þ to be the numbers of bits
transmitted by Fij during interval ½t1; t2� to Xij and Outj
(i.e., out of Xij) in FBP, respectively.

Lemma 3. When a packet Pn
ij starts transmission to the output

in FBP, the number of buffered bits at its crosspoint buffer
Xij is bounded by 3Lm, i.e., toXijð0; OSðPn

ijÞÞ � toOijð0;
OSðPn

ijÞÞ � 3Lm.

Proof. By the definition of OSðPn
ijÞ, Px�1

ij has finished output

scheduling at OSðPn
ijÞ, i.e.,

toOij

�
0; OS

�
Pn
ij

��
¼
Xn�1

a¼1

L
�
Pa
ij

�
: ð11Þ

On the other hand,

toXij

�
0; OS

�
Pn
ij

��
¼ toXij 0; OF

�
Pn
ij

�
�
L
�
Pn
ij

�
R

 !

� toXij 0; cOF�Pn
ij

�
þ Lm
R
�
L
�
Pn
ij

�
R

 !

¼ toXij 0; cIF�Pn
ij

�
þ 2Lm

R
þ Lm
Rij
�
L
�
Pn
ij

�
R

 !
:

ð12Þ

Define dtoXijð0; tÞ to represent the number of bits sent by

the logical flow Fij in the virtual dedicated channel with

bandwidth Rij during interval ½0; t�. Recall that input

scheduling uses the WF2Q scheduling algorithm. Thus,

by [8, Theorem 1], we know toXijð0; tÞ � dtoXijð0; tÞ þ
Lmð1�Rij=RÞ, and

toXij

�
0; OS

�
Pn
ij

��
� dtoXij 0; cIF�Pn

ij

�
þ 2Lm

R
þ Lm
Rij
�
L
�
Pn
ij

�
R

 !

þ Lm 1�Rij

R

� �
� dtoXij

�
0; cIF�Pn

ij

��
þRij

2Lm
R
þ Lm
Rij
�
L
�
Pn
ij

�
R

 !

þ Lm 1�Rij

R

� �
¼
Xn
a¼1

L
�
Pa
ij

�
þRij

2Lm
R
þ Lm
Rij
�
L
�
Pn
ij

�
R

 !
þ Lm 1�Rij

R

� �
:

ð13Þ

By (11) and (13), we can obtain

toXij

�
0; OS

�
Pn
ij

��
� toOij

�
0; OS

�
Pn
ij

��
� L

�
Pn
ij

�
þ 2Lm

Rij

R
þ Lm � L

�
Pn
ij

�Rij

R
þ Lm 1�Rij

R

� �
� L

�
Pn
ij

�
1�Rij

R

� �
þ Lm

Rij

R
þ 2Lm

� Lm 1�Rij

R

� �
þ Lm

Rij

R
þ 2Lm

� 3Lm:

ut

The following theorem gives the bound of the crosspoint

buffer size.

Theorem 3. In FBP, the maximum number of bits buffered at

any crosspoint buffer at any time is bounded by 3Lm, i.e.,

toXijð0; tÞ � toOijð0; tÞ � 3Lm.

JIN ET AL.: OPENFLOW-BASED FLOW-LEVEL BANDWIDTH PROVISIONING FOR CICQ SWITCHES 1805

Proof. Without loss of generality, assume t 2 ½OF ðPn
ijÞ;

OF ðPnþ1
ij ÞÞ. If t 2 ½OF ðPn

ijÞ; OSðPnþ1
ij ÞÞ, we have

toXijð0; tÞ � toOijð0; tÞ
¼ toXij

�
0; OS

�
Pnþ1
ij

��
� toOij

�
0; OS

�
Pnþ1
ij

��
� toXij

�
t; OS

�
Pnþ1
ij

��
þ toOij

�
t; OS

�
Pnþ1
ij

��
� 3Lm � toXij

�
t; OS

�
Pnþ1
ij

��
� 3Lm:

ð15Þ

Otherwise, if t 2 ½OSðPnþ1
ij Þ; OF ðPnþ1

ij ÞÞ

toXijð0; tÞ � toOijð0; tÞ

¼ toXij

�
0; OS

�
Pnþ1
ij

��
� toOij

�
0; OS

�
Pnþ1
ij

��
þ toXij

�
OS
�
Pnþ1
ij

�
; t
�
� toOij

�
OS
�
Pnþ1
ij

�
; t
�

� 3Lm þ toXij

�
OS
�
Pnþ1
ij

�
; t
�
� toOij

�
OS
�
Pnþ1
ij

�
; t
�

� 3Lm þ toXij

�
OS
�
Pnþ1
ij

�
; t
�
�
�
t�OS

�
Pnþ1
ij

��
R

� 3Lm:

ut

4.4 Complexity Analysis

As can be seen, to transfer an incoming packet to the output
link, flow scheduling, input scheduling, and output
scheduling each is conducted once. The time complexity
of both WF2Q and WFQ has been shown to be OðlogMÞ
[19], [36] to schedule M flows. Assuming that an input-
output pair has at most M flows, then the time complexity
of flow scheduling is OðlogMÞ. The time complexity of
input scheduling and output scheduling is the same
OðlogNÞ, because each of the two scheduling stages handles
N flows. Regarding space complexity, a packet needs two
time stamps, for the virtual start time and finish time of a
scheduling stage.

4.5 Implementation Advantages

FBP is practical to implement with a number of advantages.
First, FBP can be implemented in a distributed manner,
because there is no centralized scheduler, and different
input ports or output ports need no information exchange.
The virtual output finish time of a packet can be calculated
based on its virtual input finish time by the input port and
carried by the packet to the crosspoint buffer for output
scheduling. Second, FBP can directly process variable
length packets without SAR. Because of distributed
scheduling, there is no synchronized operation between

different input ports and output ports, and thus each can
independently process packets of variable length one by
one. Note that packets in most real networks are of variable
length. Compared with fixed length cell scheduling,
variable length packet scheduling can achieve higher
throughput and shorter latency [12], [21]. Finally, FBP
requires no speedup and has a small bounded crosspoint
buffer size of 3Lm, reducing the hardware cost.

4.6 Comparison with Existing Solutions

We summarize the comparison of FBP and existing flow-level
bandwidth provisioning algorithms in [1] and [2] in Table 1.
First of all, we can notice that only FBP achieves Oð1Þ service
guarantees, and avoids SAR for variable length packets. Since
the other algorithms emulate PIFO OQ switches that run fair
queuing algorithms at output ports, their performance
guarantees are proportional to the number of flows at the
output port, i.e., OðMNÞ. Also, they can only schedule fixed
length cells. Next, comparing FBP with the algorithms in [1],
we can see that FBP needs less speedup and fewer crosspoint
buffers. Finally, comparing FBP with the algorithms in [2], we
can see that FBP achieves better time complexity and enables
distributed scheduling. The tradeoff is that FBP uses the
CICQ switch structure with N2 crosspoint buffers.

5 OPENFLOW-BASED IMPLEMENTATION

As stated in the introduction, Section 1, our second objective
is to build an experimental prototype based on FBP to
demonstrate a practical flow-level bandwidth provisioning
solution. The prototype includes two components: Open-
Flow switches running the FBP algorithm, and a NOX [37]
OpenFlow controller with a self-developed bandwidth
provisioning component. On the one hand, we implement
FBP in the OpenFlow version 1.0 software switch [20],
which converts a Linux PC with multiple NICs to an
OpenFlow switch. Implementing the FBP algorithm will
enable the software switch to accurately guarantee the
provisioned bandwidth at the flow level. On the other hand,
we develop a NOX component as the control console for
bandwidth provisioning, where the network administrator
can define a flow and specify its allocated bandwidth.
Leveraging the flow manipulation capability of the Open-
Flow protocol, our prototype can flexibly define flows,
allocate bandwidth, and ensure the allocated bandwidth. In
the following, we describe the implementation detail. The
realistic performance data obtained from the prototype will
be presented in Section 6.

1806 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 9, SEPTEMBER 2013

TABLE 1
Comparison with Existing Algorithms

5.1 FBP-Enabled OpenFlow Software Switches

We implement FBP in the OpenFlow version 1.0 software
switch, which is a user space program. In the earlier
versions of the OpenFlow software switch, the data path that
manages the flow table was implemented as a kernel
module. Starting from version 1.0, the entire program is
implemented in the user space. The advantages of such a
user space implementation include flexible development
environment and good portability, but the tradeoff is
performance degradation caused by frequent context
switches. Note that the main objective of the software
switch is to provide a reference OpenFlow design for test
and demonstration purposes, but not for use in production
networks. Therefore, the software switch considers more
about convenience of deployment and less about perfor-
mance. In our case, the user space software switch allows us
to develop the prototype faster and more economically than
hardware switches.

The original software switch acts as a shared-memory
OQ switch. When a packet arrives at the input NIC, the
program copies the packet from the input NIC buffer to the
main memory. It then searches the flow table for a matching
flow for the packet. If there is a matching flow, the program
will obtain the output NIC from the table entry, and
immediately transfer the packet from the main memory to
the output NIC buffer, from where the packet will be sent to
the output link. Otherwise, if there is no matching flow,
which means that the packet is the first one of a new flow,
the program will forward the packet to the controller, and
the controller will create a new entry in the flow table.

As can be seen, there is no concept of a crossbar in the
original OpenFlow software switch, and thus our first task
is to create a virtual buffered crossbar to emulate the
CICQ switch. We allocate space in the memory for the
VOQ buffers Bij, and create the flow queues Qijk on
demand, i.e., setting up a new flow queue when the
controller creates a new entry in the flow table. We
configure the bandwidth of the crossbar to be the same as
that of the NIC and emulate the transmission delay from
the VOQ buffer to the crosspoint buffer and from the
crosspoint buffer to the output port. In the FBP-enabled
OpenFlow software switch, after a packet arrives at the
input NIC, it is immediately retrieved to the flow queue in
the memory using the netdev_recv function. The packet is
then transmitted through the virtual crossbar, and finally
delivered to the output NIC using the netdev_send function.
netdev_recv and netdev_send are existing functions of the
netdev module that manages the NICs.

The next challenge is to maintain accurate time stamps.
For most Linux systems, the minimum time resolution is
1 �s [38]. Further, to avoid excessive overhead by signal
handling, the minimum time resolution provided by the
timeval module of the original software switch is 1 ms.
However, the effectiveness of FBP relies on accurate time
stamps, and the existing time resolution is not sufficiently
fine, especially for high-speed switches. For example,
assume that the minimum time resolution is 1 �s, and a
software switch equipped with Gigabit NICs has 1-Gbps
bandwidth. For simplicity, also assume that Fij1 is the only
flow of Ini and Outj, and thus Rij ¼ 1 Gbps. If a packet Pn

ij1

has length LðPn
ij1Þ of 400 bits, and its actual flow start

time FSðPn
ij1Þ is 5 �s, then its actual flow finish time will be

FF ðPn
ij1Þ ¼ FSðPn

ij1Þ þ LðPn
ij1Þ=Rij ¼ 5þ 0:4 ¼ 5:4 �s. How-

ever, since the minimum time resolution is 1 �s, there is no
way to differentiate 5 and 5.4 �s, and we have to round the
latter to the former, which means the departure of Pn

ij1 from
its flow queue takes no time. More importantly, the error
caused by the coarse time resolution will accumulate over
time. To address the challenge, we maintain accurate logical
time within the virtual crossbar, so as to calculate
correct time stamps for scheduling. Only the packet arrival
time is based on the original system time, and all other
operations of FBP are based on the accurate logical time.
Specifically, when a packet p is retrieved from the input NIC
buffer, we call the existing time_msec function in the timeval
module to obtain the packet arrival system time AðpÞ, which
is an integer with ms time resolution. We then convert the
integer system time value to the logical time as a double-
precision floating-point number, and represent all the
subsequent time stamps used by FBP as double-precision
floating-point numbers. When the packet is sent to the
output NIC, we obtain the logical time for the actual output
finish time OF ðpÞ, and use it to deduct the logical time AðpÞ
to derive the delay as a double-precision floating-point
number. In this way, all the scheduling decisions of FBP are
based on the more accurate double-precision logical time.

Finally, we extend the event driven mechanism of the
original software switch to control the operation of the
virtual crossbar, as illustrated in Fig. 3. The original
program uses an event driven mechanism, and monitors
two types of events: packet arrival and time out. The
program is normally blocked, and wakes up to process
the assigned job when an event happens. We add all the
possible types of events of the virtual crossbar to the event
list, each with the necessary information, including the
event time, event type, and associated packet. All the events
are linked in an increasing order of the event time. When a
timer triggers, the program retrieves the first event in the
event list and processes it. Note that processing an event
may insert new events to the list. Because of the coarse
resolution of the system time, multiple events may happen
when the program wakes up, in which case the program
will continue processing the event at the head of the event
list until the time of the next event is in the future.

5.2 Bandwidth Provisioning NOX Component

NOX is an open-source OpenFlow controller written in
C++ and Python. The C++ code provides fundamental low-
level APIs that are compliant with the OpenFlow protocol.
The Python code implements the high-level control

JIN ET AL.: OPENFLOW-BASED FLOW-LEVEL BANDWIDTH PROVISIONING FOR CICQ SWITCHES 1807

Fig. 3. Event-driven scheduling of FBP-enabled OpenFlow

Software Switch.

functionality, and interacts with the underlying C++ APIs.
NOX enables customization with new functionality by
adding new components written in Python.

We have developed a NOX component as the control
console for the new bandwidth provisioning functionality.
It accepts flow definition and bandwidth allocation as
inputs, and sends OpenFlow commands as outputs to
switches to set up flow table entries. For example, the
network administrator can use the new NOX component to
define the traffic from IP address 130.94.11.22 to 131.94.33.44
as a flow, and assign it 10-Mbps bandwidth. In our
implementation, we use a configuration file to store all the
flow definition and bandwidth allocation. The NOX
component periodically checks the configuration file, and
communicates the specified information to the OpenFlow
switches. Each line of the configuration file contains
13 entries. The first 12 entries are the packet header fields
to define a flow [39], and the last entry gives the allocated
bandwidth of this flow. We add a timer for the NOX
component to read the configuration file every five seconds,
and use an array to store all the flow definition and
bandwidth allocation information, with each array item
corresponding to a defined flow.

Every time when the NOX component reads the
configuration file, it compares the information read from
the file with that already in the array. In the first case, if it
detects a new flow defined in the configuration file, it adds
the information to the array. When the first packet of the
new flow arrives at a switch, the packet will be forwarded
to the NOX controller. Our NOX component has a
packet_in_callback function, which will be triggered by such
a packet arrival event. By checking the packet header fields,
the component recognizes that the packet belongs to the
new defined flow, and uses the standard Layer 2 self-
learning process to find a path for the flow. Next, the
component adds a new entry in the flow table of each
switch on the path, along with the provisioned bandwidth,
by sending a flow table modification message of type
OFPFC_ADD.

To send the provisioned bandwidth information from
the controller to the switch, we need to modify the
OpenFlow message format, the message sending function
of the controller, and the message receiving function of the
switch. First, we modify the flow modification message
structure ofp_flow_mod in the openflow.h header file by
adding a field named bw of type uint32_t. openflow.h defines
the OpenFlow protocol format, and is shared by the
controller and switch. To allow backward compatibility,
for a regular flow without provisioned bandwidth, its
bw field can be set to 0. Second, for the controller, we
enhance the Python function send_flow_command in the
core.py module and the C++ function Pycontext::send_flow_-
command in the pycontext.cc module, to add the bandwidth
information to the message sent to the switch. Third, for the
switch, when it receives the OFPFC_ADD message, it adds a
new flow table entry with the provisioned bandwidth. In
addition, to store the bandwidth information in the flow
table, we modify the structure sw_flow, which stores all the
information of a flow and is located in switch-flow.h header
file, by adding a new filed named bw of type uint32_t.
Future packets of the flow will match the newly added flow
table entry, and will be transmitted using the provisioned
bandwidth.

In the second case, if the component detects that an
already defined flow was removed from the configuration
file, it sends a flow table modification message of type
OFPFC_DELETE to the switches to delete the corresponding
flow table entry. Future packets of this flow will be
processed by default without reserved bandwidth.

In the third case, if the component detects that the
allocated bandwidth of a defined flow changed, it first
updates the bandwidth in the array. Although the Open-
Flow protocol defines a flow table modification message of
type OFPFC_MODIFY, it can only modify the associated
actions. Alternatively, our component sends a flow table
modification message of type OFPFC_DELETE to delete the
existing flow table entry of each switch. When the next
packet of this flow arrives at a switch, the switch will treat it
as if it was the first packet of a new flow and send it to the
controller. The controller will then set up a new flow table
entry for each switch, but with the updated bandwidth.
Future packets of the flow will then be transmitted with
changed bandwidth.

5.3 Scalability of OpenFlow-Based Implementation

A good bandwidth provisioning solution needs to be
scalable to support large numbers of flows and high traffic
rates. We analyze the scalability of the OpenFlow-based
implementation from the aspects of the switches and
controller, respectively. For the switches, we have shown
that our scheduling algorithms have low logarithmic time
complexity, and thus can scale to high traffic rates. Further,
it enhances scalability for switches of different roles to
define flows at different granularity levels. Edges switches
have only a small number of connected hosts, and thus can
define a flow as the traffic generated by a single VM or
application for flexible control. On the contrary, core
switches handle enormous traffic, and the flows already
shaped by edge switches can be combined as an aggregate
flow to reduce management overhead. For the controller, it
has been shown that an OpenFlow controller can handle all
the flows of an enterprise network with tens of thousands of
hosts [40]. In addition, OpenFlow has been considered in
many recent data center designs [14], [15], and the
experiments demonstrate the feasibility to use a central
controller to manage large scale data centers. Finally, there
are several recent proposals [41], [42] to scale the control of
OpenFlow-like flow networks, and they can be utilized to
enhance the scalability of the controller.

6 SIMULATION AND EXPERIMENT RESULTS

We have implemented the FBP algorithm in a simulator and
the OpenFlow software switch. In this section, we present
the numerical results from the simulations and experi-
ments, to evaluate our design and validate the analytical
results in Section 4.

6.1 Simulation Results

In the simulations, we consider a 16� 16 CICQ switch
without speedup. Each input port or output port has 1-Gbps
bandwidth. There are two flows from Ini to Outj with
Rij2 ¼ 2Rij1, and thus the total number of flows is
16� 16� 2 ¼ 512. The packet length is uniformly distributed
between 40 and 1,500 bytes, and packets arrive based on a
Markov modulated Poisson process [21]. We use two traffic

1808 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 9, SEPTEMBER 2013

patterns. For traffic pattern one, or uniform traffic, we set
Rij ¼ R=N , and change the effective load of the incoming
traffic from 0.1 to 1 by step 0.1. For traffic pattern two, or
nonuniform traffic, we fix the effective load to 1, and define
Rij by i; j and an unbalanced probability w as follows:

Rij ¼
R wþ 1� w

N

� �
; if i ¼ j;

R
1� w
N

; if i 6¼ j;

8><>: ð17Þ

where w is increased from 0 to 1 by step 0.1.

6.1.1 Service Guarantees

By Theorem 1, we know that the service difference of a flow
in FBP and GPS at any time has a lower bound of �4Lm and
upper bound of Lm. We first look at the simulation data on
service guarantees. Fig. 4a shows the maximum and
minimum service differences among all the flows during
the entire simulation run under uniform traffic. As can be
seen, the maximum service difference increases with the
traffic load, but does not exceed the theoretical upper
bound. The minimum service difference is comparatively
constant and always greater than the lower bound. The gap
between the minimum service difference and the lower
bound is caused by rounding the ratios of Rijk=Rij and
Rijk=R to integers in the proof of Lemma 2. In other words,
the minimum service difference is determined by the
bandwidth ratios but not the traffic load. Fig. 4b shows
the simulation data under nonuniform traffic. We can see
that the maximum service difference is almost coincident
with the upper bound. Note that the maximum service
difference drops when the unbalanced probability becomes
one. The reason is that in this case, all packets of Ini go to
Outi. Thus, there is no switching necessary, and packet
scheduling is only conducted between the two flows of the
same input-output pair. Therefore, the maximum service
difference is LmðRij2=RijÞ ¼ 1;000 bytes. On the other hand,
the minimum service difference is always greater than the
lower bound. It drops gradually when the unbalanced
probability increases, and rises when the unbalanced
probability becomes one, for the same reason as above.
The low bound looks tighter under nonuniform traffic,
because maxi;j;kfRijk=Rg now has a greater value. The
minimum service difference can keep getting closer to the
lower bound by increasing the bandwidth ratios Rijk=Rij

and Rijk=R.

6.1.2 Delay Difference

Recall that Theorem 2 gives the upper bound and lower
bound for the delay difference of a flow in FBP and GPS.

Because the lower bound value in the theorem depends on
the lengths of individual packets, it is not convenient to plot
the figure. To eliminate the dependency, we calculate the
lower bound for all packets as follows:

L
�
Pn
ijk

� 2

R
� 1

Rijk

� �
�

Lm
2

R
� 1

Rijk

� �
; if Rijk �

R

2
;

0; if Rijk >
R

2
:

8><>: ð18Þ

Fig. 5a shows the maximum, average, and minimum
delay differences of one representative flow F111 under
uniform traffic. As can be seen, the minimum delay
difference is almost coincident with the lower bound. The
maximum delay difference is always less than the upper
bound, and has a small value. This shows that under
uniform traffic, FBP can well emulate GPS and a packet will
not depart too late after its departure time in GPS. Note that
the average delay difference is less than zero for all effective
loads, which means that most packets leave earlier in FBP
than in GPS when the incoming traffic is uniformly
distributed. Fig. 5b plots the data under nonuniform traffic.
We can see that the simulation data fall perfectly within the
theoretical bounds. With the increase of the unbalanced
probability, the maximum delay difference increases, and
the minimum and average delay differences increase.

6.1.3 Crosspoint Buffer Occupancy

We now look at the crosspoint buffer occupancy data and
compare them with Theorem 3. Fig. 6a shows the maximum
and average crosspoint occupancies under uniform traffic.
As can be seen, the maximum crosspoint occupancy is less
than the theoretical bound 3Lm for all the effective loads. In
addition, the average crosspoint occupancy is always less
than 400 bytes, much lower than the maximum value.
Fig. 6b presents the data under nonuniform traffic. We can
see that the theoretical crosspoint buffer size bound is tight.
Specifically, the maximum crosspoint occupancy increase

JIN ET AL.: OPENFLOW-BASED FLOW-LEVEL BANDWIDTH PROVISIONING FOR CICQ SWITCHES 1809

Fig. 4. Service difference. (a) uniform traffic (b) nonuniform traffic
Fig. 5. Delay difference. (a) uniform traffic, (b) nonuniform traffic.

Fig. 6. Crosspoint buffer occupancy. (a) uniform traffic, (b) nonuniform

traffic.

constantly with the unbalanced probability, and drops to
3,000 bytes when the unbalanced probability becomes one.
The average crosspoint occupancy is close to 300 bytes and
drop to around 100 bytes when unbalanced probability
becomes one.

6.2 Experiment Results

We install the FBP enabled OpenFlow software switch on
Linux PCs for the following experiments. Each PC has an
Intel Core 2 Duo 2.2-GHz processor, 2-GB RAM, and
multiple 100-Mbps Ethernet NICs. The PC operating system
is Ubuntu 10.04LTS with Linux kernel version 2.6.33. NOX
version 0.8 [37] is deployed as the OpenFlow controller.

6.2.1 Single Flow and Single Switch

In the first experiment, we compare the provisioned
bandwidth of a flow with the measured bandwidth. We
use a switch to connect two hosts, and set up an IPerf [44]
TCP flow between the two hosts. By TCP congestion control,
the TCP flow can automatically probe the available
bandwidth in the link. We adjust the provisioned bandwidth
of the flow from 10 to 100 Mbps by step 10 Mbps. Note that
because the NIC has maximum bandwidth of 100 Mbps, its
ideal throughput is also 100 Mbps. As shown in Fig. 7, when
the provisioned bandwidth is less than 90 Mbps, the Iperf
measured bandwidth perfectly matches it. However, when
the provisioned bandwidth becomes 100 Mbps, the mea-
sured bandwidth is about 92.1 Mbps. The reasons might
include the implementation overhead and the possibility
that the NIC cannot reach its ideal throughput. As a
comparison, the original OpenFlow software switch without
FBP can achieve maximum bandwidth of about 94.5 Mbps.

6.2.2 Multiple Flows and Single Switch

In the second experiment, we compare FBP with a port-
level bandwidth provisioning algorithm, i.e., without the
flow scheduling phase. Similar as in the first experiment, a
switch connects two hosts. There are now two IPerf UDP
flows between the two hosts, which we call Flow A and
Flow B, and they share the same switch input port and
output port. We provision each flow with 1-Mbps band-
width. We fix the load of Flow A at 1 Mbps, and adjust the
load of Flow B from 1 to 10 Mbps by step 1 Mbps. As shown
in Fig. 8, with FBP, the average delay of Flow A remains
constant no matter what the load of Flow B is. The average
delay of Flow B rises quickly, because it injects traffic at a
high rate than its provisioned bandwidth. On the contrary,
with port level bandwidth provisioning, the average delay

of both flows grow steadily with the load of Flow B. The
results fully demonstrate that FBP is effective in achieving

traffic isolation among flows and providing flow-level

bandwidth provisioning.

6.2.3 Multiple Flows and Multiple Switches

In the third experiment, we set up an OpenFlow network
with one controller, three switches, and three hosts, with the

topology shown in Fig. 9. Switch 1 connects Host 1,
Switch 2, and Switch 3. Switch 2 connects Switch 1 and

Host 2. Switch 3 connects Switch 1 and Host 3. Each host
runs VirtualBox version 4.1.4 with two VMs. The VMs are

configured with bridged networking [43] so that they will
have public IP addresses. Denote the VMs on Host 1 as 1A

and 1B, which emulate two TCP servers. Denote the VMs on

Host 2 as 2A and 2B, and those on Host 3 as 3A and 3B, all
emulating TCP clients. We set up four IPerf TCP flows:

Flow A between VMs 1A and 2A, Flow B between VMs 1A
and 3A, Flow C between VMs 1B and 3B, and Flow D

between VMs 1B and 2B.
In the initial configuration, we set the provisioned

bandwidth of Flows A, B, C, and D to be 15, 12, 8, and

6 Mbps, respectively. To measure the actual bandwidth of
each flow, we install WireShark on Switch 1 to capture

packets of all the four flows. Fig. 10 shows the continuous
bandwidth measure of each flow by WireShark. Each pixel

on the curve shows the average bandwidth of the flow
during a 1-second interval. We can see that the measured

bandwidth of each flows perfectly matches the provisioning
amount, demonstrating that our solution is effective in a

multiswitch and multiflow environment.

1810 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 9, SEPTEMBER 2013

Fig. 7. Experiment with single flow and single switch. Fig. 8. Experiment with multiple flows and single switch.

Fig. 9. Topology of experiment OpenFlow network.

Before the 30th second, we modify the configuration to

increase the provisioned bandwidth of Flow A to 20 Mbps.

When the NOX component reads the configuration, it detects

the changed bandwidth allocation, and sends a command to

the switches to realize this change. As can be seen from the

figure, the measured bandwidth of Flow A quickly changes
from 15 to 20 Mbps, and the measured bandwidth of the

other flows remains the same. In a similar manner, before the

60th second, we modify the configuration to exchange the

provisioned bandwidth amounts of Flows B and C, and

before the 90th second, we reduce the provisioned band-

width of Flow D to 2 Mbps. We can see that the prototype

successfully handles all the bandwidth change requests,
with the bandwidth of designated flows smoothly changing

to the new values, and the bandwidth of the remaining flows

keeping stable.

7 CONCLUSIONS

Flow-level bandwidth provisioning ensures allocated band-
width for individual flows, and is especially important for

virtualization-based computing environments such as data

centers. However, existing solutions suffer from a number

of drawbacks, including high hardware and time complex-

ity, inability to achieve constant service guarantees, and

inefficiency to process variable length packets. In this paper,

we have studied flow-level bandwidth provisioning for
CICQ switches in the OpenFlow context. First, we propose

the FBP algorithm, which reduces the scheduling problem

on CICQ switches to multiple stages of fair queuing, with

each stage utilizing a well-studied fair queuing algorithm.

We show by theoretical analysis that FBP can closely

emulate the ideal GPS model, and achieve constant service

guarantees and tight delay guarantees. FBP is economical to
implement with bounded crosspoint buffer sizes and no

speedup requirement, and is fast with low time complexity

and distributed scheduling. In addition, we implement FBP

in the OpenFlow software switch to build an experimental

prototype. In conjunction with the existing capability of

OpenFlow to flexibly define and manipulate flows, we have

thus demonstrated a practical flow-level bandwidth provi-
sioning solution. Finally, we conduct extensive simulations

and experiments to evaluate our design. The simulation

data successfully validate the analytical results, and the

experiment results demonstrate that our prototype can

accurately provision bandwidth at the flow level.

ACKNOWLEDGMENTS

This work was partially supported by the US National

Science Foundation under Grant CNS-1117016.

REFERENCES

[1] S. Chuang, A. Goel, N. McKeown, and B. Prabhkar, “Matching
Output Queueing with a Combined Input Output Queued
Switch,” Proc. IEEE INFOCOM, Mar. 1999.

[2] S. Chuang, S. Iyer, and N. McKeown, “Practical Algorithms for
Performance Guarantees in Buffered Crossbars,” Proc. IEEE
INFOCOM, Mar. 2005.

[3] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus
Networks,” ACM SIGCOMM Computer Comm. Rev., vol. 38, no. 2,
pp. 69-74, Apr. 2008.

[4] N. Gude et al., “NOX: Towards an Operating System for
Networks,” ACM SIGCOMM Computer Comm. Rev., vol. 38,
no. 3, pp. 105-110, July 2008.

[5] Edge Virtual Bridge Proposal, http://ieee802.org/1/files/public/
docs2008/new-congdon-vepa-1108-v01.pdf, 2013.

[6] D. Pan and Y. Yang, “Providing Flow Based Performance
Guarantees for Buffered Crossbar Switches,” Proc. IEEE Int’l
Symp. Parallel Distributed Processing (IPDPS), 2008.

[7] A. Parekh and R. Gallager, “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The
Single Node Case,” IEEE/ACM Trans. Networking, vol. 1, no. 3,
pp. 344-357, June 1993.

[8] J. Bennett and H. Zhang, “WF2Q: Worst-Case Fair Weighted Fair
Queueing,” Proc. IEEE INFOCOM, Mar. 1996.

[9] S. Iyer and N. McKeown, “Analysis of the Parallel Packet Switch
Architecture,” IEEE/ACM Trans. Networking, vol. 11, no. 2, pp. 314-
324, Apr. 2003.

[10] D. Simos, I. Papaefstathiou, and M. Katevenis, “Building an FoC
Using Large, Buffered Crossbar Cores,” IEEE Design & Test of
Computers, vol. 25, no. 6, pp. 538-548, Nov. 2008.

[11] M. Katevenis and G. Passas, “Variable-Size Multipacket Segments
in Buffered Crossbar (CICQ) Architectures,” Proc. IEEE Int’l Conf.
Comm. (ICC), May 2005.

[12] J. Turner, “Strong Performance Guarantees for Asynchronous
Crossbar Schedulers,” IEEE/ACM Trans. Networking, vol. 17, no. 4,
pp. 1017-1028, Aug. 2009.

[13] GENI OpenFlow Backbone Deployment at Internet2, http://
groups.geni.net/geni/wiki/OFI2, 2013.

[14] R. Mysore et al., “Portland: A Scalable Fault-Tolerant Layer2 Data
Center Network Fabric,” Proc. ACM SIGCOMM Conf. Data Comm.,
Aug. 2009.

[15] M. Al-Fares et al., “Hedera: Dynamic Flow Scheduling for Data
Center Networks,” Proc. Seventh USENIX Conf. Networked Systems
Design and Implementation (NSDI), Apr. 2010.

[16] OpenFlow Slicing, http://www.openflowswitch.org/wk/
index.php/Slicing, 2013.

[17] G. Kornaros, “BCB: A Buffered Crossbar Switch Fabric Utilizing
Shared Memory,” Proc. Ninth EUROMICRO Conf. Digital System
Design: Architectures, Methods Tools, Aug. 2006.

[18] I. Papaefstathiou, G. Kornaros, and N. ChrysosUsing, “Buffered
Crossbars for Chip Interconnection,” Proc. Great Lakes Symp. VLSI,
Mar. 2007.

[19] A. Demers, S. Keshav, and S. Shenker, “Analysis and
Simulation of a Fair Queueing Algorithm,” Proc. ACM
SIGCOMM, 1989.

[20] OpenFlow 1.0 Release, http://www.openflowswitch.org/wk/
index.php/OpenFlow_v1.0, 2013.

[21] D. Pan and Y. Yang, “Localized Independent Packet Scheduling
for Buffered Crossbar Switches,” IEEE Trans. Computers, vol. 58,
no. 2, pp. 260-274, Feb. 2009.

[22] B. Magill, C. Rohrs, and R. Stevenson, “Output-Queued Switch
Emulation by Fabrics with Limited Memory,” IEEE J. Selected
Areas Comm., vol. 21, no. 4, pp. 606-615, May 2003.

[23] L. Mhamdi and M. Hamdi, “Output Queued Switch Emulation by
a One-Cell-Internally Buffered Crossbar Switch,” Proc. IEEE
GLOBECOM, Dec. 2003.

[24] I. Stoica and H. Zhang, “Exact Emulation of an Output Queueing
Switch by a Combined Input Output Queueing Switch,” Proc.
IEEE/IFIP Sixth Int’l Workshop Quality of Service (IWQoS ’98), May
1998.

JIN ET AL.: OPENFLOW-BASED FLOW-LEVEL BANDWIDTH PROVISIONING FOR CICQ SWITCHES 1811

Fig. 10. Experiment with multiple flows and multiple switches.

[25] S. He, S. Sun, H. Guan, Q. Zheng, Y. Zhao, and W. Gao, “On
Guaranteed Smooth Switching for Buffered Crossbar Switches,”
IEEE/ACM Trans. Networking, vol. 16, no. 3, pp. 718-731, June 2008.

[26] H. Attiya, D. Hay Member, and I. Keslassy, “Packet-Mode
Emulation of Output-Queued Switches,” IEEE Trans. Computers,
vol. 59, no. 10, pp. 1378-1391, Oct. 2010.

[27] B. Wu, K. Yeung, M. Hamdi, and X. Li, “Minimizing Internal
Speedup for Performance Guaranteed Switches with Optical
Fabrics,” IEEE/ACM Trans. Networking, vol. 17, no. 2, pp. 632-
645, Apr. 2009.

[28] Y. Kanizo, D. Hay, and I. Keslassy, “The Crosspoint-Queued
Switch,” Proc. IEEE INFOCOM, Apr. 2009.

[29] M. Shreedhar and G. Varghese, “Efficient Fair Queuing Using
Deficit Round Robin,” IEEE/ACM Trans. Networking, vol. 4, no. 3,
pp. 375-385, June 1996.

[30] X. Zhang, S. Mohanty, and L. Bhuyan, “Adaptive Max-Min Fair
Scheduling in Buffered Crossbar Switches without Speedup,”
Proc. IEEE INFOCOM, May 2007.

[31] D. Pan and Y. Yang, “Max-Min Fair Bandwidth Allocation
Algorithms for Packet Switches,” Proc. IEEE Int’l Symp. Parallel
Distributed Processing (IPDPS), Mar. 2007.

[32] Hierachical Token Bucket Theory, http://luxik.cdi.cz/devik/
qos/htb/manual/theory.htm, 2013.

[33] M. Hosaagrahara and H. Sethu, “Max-Min Fairness in Input-
Queued Switches,” IEEE Trans. Parallel and Distributed Systems,
vol. 19, no. 4, pp. 462-475, Apr. 2008.

[34] FlowVisor, http://www.openflowswitch.org/wk/index.php/
FlowVisor, 2013.

[35] Resource ReSerVation Protocol (RSVP) - Version 1 Functional
Specification, http://www.ietf.org/rfc/rfc2205.txt, 2013.

[36] P. Valente, “Exact GPS Simulation with Logarithmic Complexity,
and Its Application to an Optimally Fair Scheduler,” IEEE/ACM
Trans. Networking, vol. 15, no. 6, pp. 1454-1466, Dec. 2007.

[37] NOX: An OpenFlow Controller, http://www.noxrepo.org, 2013.
[38] Man Page for gettimeofday, http://www.kernel.org/doc/man-

pages/online/pages/man2/gettimeofday.2.html, 2013.
[39] OpenFlow Switch Specification Version 1.0.0, http://www.

openflow.org/documents/openflow-spec-v1.0.0.pdf, 2013.
[40] M. Casado et al., “Ethane: Taking Control of the Enterprise,” Proc.

ACM SIGCOMM, Aug. 2007.
[41] M. Yu, J. Rexford, M. Freedman, and J. Wang, “Scalable Flow-

Based Networking with DIFANE,” Proc. ACM SIGCOMM, Aug.
2010.

[42] A. Curtis et al., “DevoFlow: Scaling Flow Management for High-
Performance Networks,” Proc. ACM SIGCOMM, Aug. 2011.

[43] VirtualBox Virtual Networking, http://www.virtualbox.org/
manual/ch06.html, 2013.

[44] IPerf: The TCP/UDP Bandwidth Measurement Tool, http://
sourceforge.net/projects/iperf/, 2013.

Hao Jin received the BS degree in electrical
engineering from Nanjing University, China, in
2006, and is currently working toward the PhD
degree in the Department of Electrical and
Computer Engineering, Florida International
University. His research interests include high-
performance switch design and data center
networking. He is a student member of the IEEE.

Deng Pan received the BS and MS degrees in
computer science from Xi’an Jiaotong Univer-
sity, China, in 1999 and 2002, respectively, and
the PhD degree in computer science from the
State University of New York at Stony Brook, in
2007. He is currently an assistant professor in
the School of Computing and Information
Sciences, Florida International University. His
research interests include high-performance
switch architecture and high speed networking.
He is a member of the IEEE.

Jason Liu received the BA degree from Beijing
University of Technology in China in 1993, the
MS degree from College of William and Mary in
2000, and the PhD degree from Dartmouth
College in 2003. He is an associate professor
at the School of Computing and Information
Sciences, Florida International University. His
research focuses on parallel simulation and
high-performance modeling of computer sys-
tems and communication networks. He served

as a general chair for MASCOTS 2010, SIMUTools 2011 and PADS
2012, and also as a program chair for PADS 2008 and SIMUTools 2010.
He is an associate editor for Simulation Transactions of the Society for
Modeling and Simulation International, and a Steering Committee
member for PADS. He is a member of the IEEE Computer Society.

Niki Pissinou received the BS degree in
industrial and systems engineering from The
Ohio State University, the MSc degree
in computer science from the University of
California, Riverside, and the PhD degree from
the University of Southern California. She is
currently a professor in the School of Comput-
ing and Information Sciences, Florida Interna-
tional University. Her current research interests
include high-speed networking, insider attacks

detection and prevention in mobile ad hoc networks, and trust, privacy
and data cleaning mechanisms in trajectory sensor networks.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1812 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 9, SEPTEMBER 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

