
Traffic-Aware Placement of NFV Middleboxes
Wenrui Ma, Carlos Medina, and Deng Pan
School of Computing and Information Sciences

Florida International University, Miami, FL
wma006@fiu.edu, cmedi045@fiu.edu, pand@fiu.edu

Abstract—Network Function Virtualization (NFV) enables flex-
ible deployment of middleboxes as Virtual Machines (VMs)
running on general hardware. Different types of middleboxes
have the potential to either increase or decrease the volume
of processed traffic. In this paper, we investigate the traffic
changing effects of middleboxes, and study efficient deployment
of NFV middleboxes in Software-Defined Networks (SDNs). To
begin with, we formulate the Traffic-Aware Middlebox Placement
(TAMP) problem as a graph optimization problem, and show that
it is NP-hard when there are multiple flows to consider. Next, by
observing that in reality flows arrive one at a time, we leverage
the SDN central control mechanism, and propose an optimal
solution for the TAMP problem with a single flow. We develop
the solution in two steps. First, when the flow path has been
determined, we present the Least-First-Greatest-Last (LFGL)
rule to place middleboxes. Second, we integrate the LFGL rule
with widest-path routing to propose the LFGL based MinMax
routing algorithm. Further, we have implemented the proposed
algorithm as a module running on top of the Floodlight SDN
controller, and conducted experiments in the Mininet emulation
system. The experiment results fully demonstrate the superiority
of our algorithm over other benchmark solutions.

Index Terms—Network Function Virtualization, Software-
Defined Networking, Traffic-Aware Routing

I. INTRODUCTION

Middleboxes are widely deployed in modern networks. Tra-
ditional middleboxes are hardware-based network appliances
that implement specialized functions such as firewalls, VPN
proxies, and WAN optimizers. Such hardware middleboxes
suffer from a number of drawbacks [1], including high cost,
function inflexibility, and difficulty to scale up. With the
development of virtualization technology, Network Function
Virtualization (NFV) emerges as a promising architecture
to evolve middlebox implementations by running network
function software on virtualized general hardware. The NFV
platform is usually an off-the-shelf server that hosts multiple
Virtual Machines (VMs), each VM implementing a middlebox
function with special software programs. When packets arrive,
they are sorted based on predefined traffic processing rules and
sent to different software middleboxes.

Different from interconnection network devices such as
switches and routers, middleboxes focus on inspecting and
manipulating traffic, and thus have the potential to change
the volume of processed traffic and may do it in different
ways. For example, a WAN optimizer compresses flows before
sending them to the next hop. On the other hand, a VPN
proxy increases traffic rates due to IPSec header overhead.
Finally, a firewall will keep the traffic rates of allowed flows

unchanged and reduce the rates of denied flows to zero. For
easy description, if a middlebox increases traffic rates, we
call it an expanding middlebox, and otherwise a shrinking
middlebox.

The following toy example illustrates the traffic changing
effects of middleboxes. Consider a network consisting of two
switches S1 and S2, each with an attached NFV server N1 and
N2, respectively. Host H1 and H2 are connected to S1 and S2,
respectively, and there is a flow f between them, whose traffic
rate is 1. Two middleboxes m1 and m2 need to be applied to
f . m1 will double the traffic rate, while m2 will cut the traffic
rate in half. Assume that each of the two NFV servers has
space to host only one middlebox. If install m1 on N1 and
m2 on N2, the load of link (S1, S2) will be 1 ∗ 2 = 2, as
shown in Fig. 1(a). However, if install m1 on N2 and m1 on
N2, the link load will be 1 ∗ 0.5 = 0.5, as shown in Fig. 1(b).

2 1

1 2
𝐻1 𝐻2

𝑚1 𝑚2

𝑆1

𝑆2

1

1 2
1

(a) m1 on S1, m2 on S2

0.5 1 0.5

1 0.5
𝐻1 𝐻2

𝑚2 𝑚1

𝑆1

𝑆2

1

1

(b) m2 on S1, m1 on S2

Fig. 1: Traffic changing effects of middleboxes.

Previous research on middleboxes has focused on middle-
box virtualization on commodity servers [2]–[4], vitualized
software middlebox platform [1], placement and chaining
of middleboxes in SDN networks [5]–[7]. To the best of
our knowledge, the traffic changing effects have not been
investigated. In this paper, we study the Traffic-Aware Mid-
dlebox Placement problem. We consider an enterprise network
with NFV servers to host software middleboxes. Given a set
of flows that need be processed by different middleboxes,
our objective is to efficiently route the flows and place the
middleboxes to achieve optimal network performance.

Our solution leverages the emerging SDN technology [8],
and runs as a module on top of the SDN controller. Unlike
traditional network architecture, SDN decouples the control

plane and data plane. The control plane makes decisions
on where the traffic should be sent, and the data plane
forwards the traffic based on the decisions. Consequently, an
SDN network consists of a central controller, i.e., the control
plane, and a group of switches, i.e., the forwarding plane. By
the OpenFlow protocol, the controller and the switches can
communicate with each other. When a flow of packets arrive,
the controller will set up forwarding rules in switch flow tables,
by which the switches will forward the packets to either the
next hop or the middleboxes running on attached NFV servers.

Our main contributions in this paper can be summarized
as follows. First, we formulate the Traffic-Aware Middlebox
Placement (TAMP) problem, and show that it is NP-hard when
there are multiple flows. Second, we consider the practical
scenario where flows arrive one at a time, and develop an
optimal solution in two steps. In the first step, we assume that
the flow path has been determined, and propose the Least-
First-Greatest-Last (LFGL) rule, which sorts all middleboxes
based on their traffic changing ratios, and places shrinking
middleboxes from the head of the flow path and expanding
middleboxes from the tail. In the second step, we propose the
LFGL based MinMax routing algorithm, which integrates the
LFGL rule with the widest-path routing algorithm, to find the
optimal path that minimizes the maximum link load on the
flow path. Finally, we implement the proposed algorithm in
the open-source Floodlight SDN controller, and build a pro-
totype with the Mininet emulation system. Experiment results
under different topologies are presented to demonstrate the
superiority of our algorithm over other benchmark solutions.

The remainder of the paper is organized as follows. Section
II formulates the problem. Section III develops the proposed
algorithm in two steps. Section IV presents the experiment
results. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION

In this section, we formulate the Traffic-Aware Middlebox
Placement (TAMP) problem.

Consider a network represented by a directed graph G =
(H∪V,E), where H , V , and E are the set of hosts, switches,
and links, respectively. A switch u ∈ V may have an attached
NFV server, and its space capacity is denoted as sc(u) ≥ 0,
i.e., the number of middleboxes that the NFV sever can host.
A link (u, v) ∈ E has a bandwidth capacity bc(u, v) ≥ 0, i.e.,
the available bandwidth.

Let F denote the collection of flows. A flow f ∈ F is
represented as a 4-tuple (sf , df , t

sf
f ,Mf) in which sf ∈ H

is the source host, df ∈ H is the destination host, tsff is
the initial traffic rate when f leaves sf , and Mf is the set
of middleboxes that need to be installed for f . Use tf (u, v)
to represent the traffic rate of f on link (u, v). Specifically,
tf (pre(u), u) denotes the traffic rate on the preceding link of
u, where u ∈ V is a switch on the path of f and pre(u) is the
preceding node on the path; tf (u, post(u)) denotes the traffic
rate on the succeeding link, where post(u) is the succeeding
node of u ∈ V .

Denote a middlebox by m ∈Mf , which is defined as a pair
(am, km), where am is the associated processing action, and
km is the traffic changing factor, or in other words 1+km is the
ratio of the traffic rate of f before and after being processed
by m. km ≥ −1 and 1 + km ≥ 0, since the traffic rate of a
flow cannot be negative. For example, if m ∈Mf is installed
on u ∈ V , then tf (u, post(u)) = tf (pre(u), u) ∗ (1 + km).
Note that expanding and shrinking middleboxes have positive
and non-positive traffic changing factors, respectively.

When a flow f enters the network, by the SDN architecture,
the controller will select a path for the flow. Use the decision
variable α to denote the flow path as follows:

αu,v
f =

{
1, if flow f traverses link (u, v).
0, otherwise. (1)

To avoid performance degradation for TCP flows, a flow is
not allowed to be split among two paths.

In addition, the controller will select switches to install (on
their attached NFV servers) the middleboxes m ∈ Mf . Use
the decision variable β to denote the middlebox placement as
follows:

βu
m =

{
1, if middlebox m is installed at node u.
0, otherwise.

(2)
The optimization objective is to identify a set of α and β

so that the maximum link load is minimized in the network,
as shown in Equation (3).

minimize maxLinkLoad (3)

subject to:

∀(u, v) ∈ E :∑
f∈F

tf (u, v) ≤ maxLinkLoad ≤ bc(u, v) (4)

∀u ∈ V,∀(u, v) ∈ E,∀f ∈ F :

tf (u, v) =
∑

w∈H∪V

αu,v
f tf (w, u)

∏
m∈Mf

(1 + βu
mkm)(5)

∀u ∈ V :∑
f∈F

∑
m∈Mf

βu
m ≤ sc(u) (6)

∀f ∈ F :∑
u∈V

α
sf ,u
f −

∑
u∈V

α
u,sf
f = 1, (7)∑

u∈V

α
u,df

f −
∑
u∈V

α
df ,u
f = 1 (8)

∀f ∈ F,∀m ∈Mf :∑
(u,v)∈E

βu
mα

u,v
f = 1 (9)

Equation (4) states that, for a link (u, v), the aggregate
traffic demand

∑
f∈F tf (u, v) of all flows is no greater than

the maximum link load, and should not exceed its bandwidth
capacity bc(u, v). Equation (5) states that, for a link (u, v) on

the path of flow f , i.e., αu,v
f = 1, the traffic generated by

f on this link is the product of the traffic on the previous
link tf (w, u) and the traffic changing ratios 1+ km of all the
middleboxes m placed at node u, i.e., βu

m = 1. This equation
also guarantees flow conservation on each switch on the path.
Equation (6) states that, for a switch node u ∈ V , the total
number of hosted middleboxes

∑
f∈F

∑
m∈Mf

βu
m should not

exceed its space capacity sc(u). Equations (7) and (8) state that
flow f must start at its source sf , and end at its destination
df . Equation (9) states that a middlebox m ∈ Mf must be
installed on one of the switches u on the path of f .

From the above formulation, we can see that the known NP-
hard Multi-Commodity Flow Problem [9] is a special case of
the TAMP problem without middleboxes. It can be formally
shown that the TAMP problem is NP-hard by reduction from
the Multi-Commodity Flow Problem. Due to space limitations,
the detailed proof is omitted.

III. PRACTICAL TRAFFIC-AWARE MIDDLEBOX
PLACEMENT

In this section, we propose a polynomial-time optimal
solution for the TAMP problem when there is a single flow,
i.e., |F | = 1. As seen above, when there are multiple flows,
the TAMP problem is NP-hard. Fortunately, in reality, flows
tend not to arrive at the exactly same time. Even if multiple
flows arrive simultaneously in an SDN network, the controller
will have to process them one by one. Thus, our solution for
a single flow is of practical importance, especially for SDN
networks.

The following theorem shows that for the TAMP problem
with a single flow, it is sufficient to find a solution that
minimizes the maximum link load on the flow path.

Theorem 1. For the Traffic-Aware Middlebox Placement prob-
lem with a single flow, the solution that minimizes maximum
link load on the flow path achieves the global optimization
objective.

Proof. For the purpose of contradiction, assume that the solu-
tion α, β, i.e., routing and placement, minimizes the maximum
link load on the flow path, but there exists another solution
α′, β′ where α′ 6= α or β′ 6= β, that has higher maximum link
load on its flow path, but lower global maximum link load,
i.e., the maximum link load of the entire network instead of
the flow path. Note that a link should have the same load in
the two solutions, unless it is no the flow path.

We analyze the following three possible scenarios.
1) If the link with the global maximum link load of α, β is

not on its flow path, and neither is that of α′, β′, then
the two solutions should have the same global maximum
link load.

2) If the link with the global maximum link load of α, β
is on its flow path, i.e., equal to its flow maximum link
load, since α′, β′ has higher flow maximum link load, it
will have higher global maximum link load as well.

3) If the link with the global maximum link load of α′, β′

is on its flow path, i.e., equal to its flow maximum link

sf
pre
(u)

u u'
post
(u')

dfβ':

sf
pre
(u)

u u'
post
(u')

dfβ'':

m' m

m'm

Fig. 2: Proof of Theorem 2.

load, since α, β has lower flow maximum link load, it
should have lower global maximum link load as well.

In either case, the result contradicts the assumption that α′, β′

achieves lower global maximum link load.

Next, we develop our solution for a single flow in two
steps. First, when the flow path has been determined, we
present the Least-First-Greatest-Last (LFGL) rule. It places
shrinking and expanding middleboxes from the head and tail
of the flow path, respectively, to minimize the amount of
traffic entering the network core. Next, we propose the LFGL
based MinMax routing algorithm by integrating the LFGL
rule with the widest-path routing algorithm. It uses a widest-
path like routing algorithm to search the path first from the
source and then from the destination, and installs middleboxes
simultaneously during the path searching process.

A. Least-First-Greatest-Last Placement Rule

Assume that for a flow f , its path has been determined,
i.e., α is known. The only remaining task is then to place
middleboxes, i.e., to determine β. The LFGL rule first sorts
all the middleboxes m ∈ Mf based on their traffic changing
factors km. It then places the middleboxes with non-positive
factors or shrinking middleboxes one by one from the head
of the path in an increasing order. When one node has used
up its space capacity, LFGL continues with the next node
on the path. After finishing placing shrinking middleboxes,
the rule switches to expanding middleboxes and place them
from the path tail in the decreasing order of their traffic
changing factors. The deployment succeeds if all middleboxes
are placed, and fails otherwise. Due to space limitations, the
detailed pseudo code description is omitted.

Theorem 2. The Least-First-Greatest-Last rule achieves the
optimal link load on the flow path.

Proof. For the purpose of contradiction, assume that a
different placement scheme β′ achieves maximum link
load maxLinkLoad′ lower than that of LFGL, i.e.,
maxLinkLoad′ < maxLinkLoad.

Without loss of generality, assume that the differences
between the two placement schemes include shrinking mid-
dleboxes, and m is the one with the least traffic changing
factor. By the LFGL rule, m is installed in the first available
node u of its placement time, i.e., βu

m = 1. By comparison,
the other placement scheme installed m on a different node

u′, i.e., β′u′

m = 1, which must be after u on the flow path, and
instead a different middlebox m′ is placed on u, i.e., β′u

m′ = 1.
Apparently, the placement of m′ is also different in β and β′.
Since among the differences between β and β′, m has the
least traffic changing factor, we know that km ≤ km′ .

Next, as shown in Fig. 2, we create a new placement scheme
β′′ by switching the locations of m and m′ in β′, i.e.,

β′′v
n =

β′v

n, if n 6= m,m′

β′u′

m(= 1), if n = m, v = u
β′u

m′(= 1), if n = m′, v = u′
(10)

Then, the maximum link load maxLinkLoad′′ of the new
placement β′′ will be less than or equal to that of β′, i.e.,
maxLinkLoad′′ ≤ maxLinkLoad′. Denote the traffic rates
of f on link (u, v) ∈ E under β′ and β′′ as t′f (u, v) and
t′′f (u, v), respectively. Analyze the following three types of
links.

1) For a link (v, w) between sf and u, since the middleboxes
placed before u are the same under β′ and β′′, the traffic
rates of f on such a link are also the same under both
schemes, i.e., t′′f (v, w) = t′f (v, w).

2) For a link (v, w) between u and post(u′), since we
exchanged the locations of m and m′ in β′′, t′′f (v, w) =
t′f (v, w)(km/km′). Since km ≤ km′ as shown above, we
know t′′f (v, w) ≤ t′f (v, w).

3) For a link (v, w) between post(u′) and df , since the
middleboxes placed after u′ are the same under β′ and
β′′, the traffic rates of f on such a link are the same, i.e.,
t′′f (v, w) = t′f (v, w).

Thus, compared with β′, β′′ achieves no higher maximum
link load maxLinkLoad′′ ≤ maxLinkLoad′, and it has one
less difference with β generated by LFGL. Continuing this
process and eliminating all the difference between β′ and
β, it can be shown by induction that β achieves no higher
maximum link load than that of β′, i.e., maxLinkLoad ≤
maxLinkLoad′, which contradicts the assumption.

B. LFGL Guided MinMax Routing

Next, we propose the LFGL based MinMax routing al-
gorithm. The basic idea is to integrate the LFGL rule with
the widest-path routing algorithm to find the optimal path.
Based on the LFGL rule, the algorithm also works in two
stages. In the first stage, the algorithm traverses the network
starting from the flow source sf , and calculates the path to
each nodes that minimizes the maximum link load. When the
MinMax path to a node is determined, the algorithm installs
shrinking middleboxes on the node until there is no more
space. Note that the calculation process may attempt placing
middleboxes at different nodes with a different search path.
When all shrinking middleboxes have been placed on each
possible searching path, the algorithm switches to process the
expanding middleboxes in the next stage.

In the second stage, the algorithm traverses the network
backwards from the flow destination df , and places expanding
middleboxes when the MinMax path to a node is found. Note
that if all middleboxes are successfully deployed, the traffic

rate at df will be tsff
∏

m∈Mf
km, which will be used as the

“initial” traffic rate when searching path from the path tail.
When the second stage reaches a node u that has been visited
in the first stage, it means that a path from sf to df has been
found where u is the junction node of the two sections of
the path. In such a case, the second stage will stop searching
along that particular path.

After the second stage finishes, the algorithm collects all the
junction nodes and compares the maximum link load of their
corresponding paths. The one with the minimum maximum
link load will be selected.

The pseudo code description of the LFGL based MinMax
routing algorithm is shown in Algorithm 1. For easy descrip-
tion, we define sc(u) to be remaining space capacity of node
u, bc(u, v) to be the remaining bandwidth capacity of link
(u, v), tuf to be the traffic rate of flow f when it leaves node
u, i.e., tuf = tf (u, post(u)), and t′

u
f to be the traffic rate of

flow f before it enters node u, i.e., t′uf = tf (pre(u), u).
Brief explanation is as follows. Line 1 sorts all the middle-

boxes in the increasing order of their traffic changing factors.
Lines 2 to 9 conduct initialization for the first stage, where
Saw is the set of nodes whose MinMax paths from the source
have been determined, and index[u] remembers the index of
the last middlebox that has been installed on node u. For each
neighbor u of the flow source sf , if the link (sf , u) has more
bandwidth than t

sf
f , then there is a possible path from sf to

u. mll[u] records the maximum link load of the path until
u, and pre(u) remembers the previous node before u on the
path. Lines 10 to 25 are the loop to find the MinMax path
to a node at a time. At the beginning of each loop, the node
u /∈ Saw with the minimum maximum link load mll(u) will
be selected and added to Saw. Lines 13 to 15 place shrinking
middleboxes in order on u until there is no more space or no
more shrinking middleboxes. Lines 16 to 18 check whether
the newly selected node u is the flow destination df and also
whether all middleboxes have been placed. If yes, the final
MinMax path can be constructed by tracing pre(u) from df
to sf , and the algorithm will exit. Otherwise, lines 20 to 24
check each neighbor v of u to see if there is a new path to v
via u with lower maximum link load, and update if yes. Lines
26 to 49 run the second stage in a similar manner, but starting
from the flow destination and placing expanding middleboxes.
In lines 40 to 42, if the second stage reaches a node u that has
been visited in the first stage, u will be added to the junction
node set J . When both stages finish, lines 50 to 54 select from
J the node u with the minimum maximum link load, and the
final MinMax path can be constructed by tracing pre(u) to sf
and post(u) to df . Otherwise, if J is empty, there does not
exist a path that can place all the middleboxes.

Since the LFGL based MinMax routing algorithm integrates
the LFGL rule and widest-path routing, its complexity is the
product of the two, i.e., O((|E|+|H∪V | log |H∪V |)×|Mf |).

IV. EXPERIMENT RESULTS

We have implemented a prototype using the open-source
SDN controller Floodlight [10] and emulation platform

Algorithm 1 LFGL based MinMax Routing

1: sort m ∈Mf [1..n] by km in increasing order
2: Stage one init: Saw = {sf}; index(sf) = 0
3: for each neighbor u of sf do
4: if bc(sf , u) ≥ t

sf
f then

5: mll(u) = load(sf , u) + t
sf
f ; pre(u) = sf

6: else
7: mll(u) =∞
8: end if
9: end for

10: while ∃u /∈ Saw, bc(pre(u), u) ≥ t
pre(u)
f and

index(pre(u)) < n and kMf [index(pre(u))+1] ≤ 0 do
11: select such u with min mll[u];Saw = Saw ∪ {u}
12: i = index(pre(u)) + 1
13: while sc(u) > 0 and i ≤ n and kMf [i] ≤ 0 do
14: place Mf [i] on u; sc(u)−−; i++
15: end while
16: if u = df and i > n then
17: exit with success
18: end if
19: index[u] = i− 1; tuf = t

pre(u)
f

∏
m placed on u km

20: for each neighbor v of u do
21: if bc(u, v) ≥ tuf and mll(v) >

max(mll(u), load(u, v) + tuf)) then
22: mll(v) = max(mll(u), load(u, v)+ tuf); pre(v) =

u
23: end if
24: end for
25: end while
26: Stage two init: Saw′ = {df}; index′(df) = n + 1; t′

df

f =

t
sf
f

∏
m∈Mf

km; J = ∅
27: for each neighbor u of df do
28: if bc(u, df) ≥ t′

df

f then
29: mll′[u] = load(u, df) + t′

df

f ; post(u) = df
30: else
31: mll′[u] =∞
32: end if
33: end for
34: while ∃u /∈ Saw′, bc(u, post(u)) ≥ t′

post(u)
f and

pre(u) = null do
35: select such u with min mll′[u];Saw′ = Saw′ ∪ {u}
36: i = index′(post(u))− 1
37: while sc(u) > 0 and i ≥ 1 and kMf [i] > 0 do
38: place Mf [i] on u; sc(u)−−; i−−
39: end while
40: if u ∈ Saw and i ≤ index(u) then
41: mll[u] = max(mll[u],mll[u′]); J = J ∪ {u}; con-

tinue
42: end if
43: index′[u] = i+ 1; t′

u
f = t′

post(u)
f /

∏
m placed on u km

44: for each neighbor v of u do
45: if bc(v, u) ≥ t′

u
f and mll′(v) >

max(mll′(u), load(v, u) + t′
u
f)) then

46: mll′(v) = max(mll′(u), load(v, u) +
t′
u
f ; post(v) = u

47: end if
48: end for
49: end while
50: if J 6= ∅ then
51: select u ∈ J with min mll[u]; exit with success
52: else
53: exit with failure
54: end if

Mininet [11]. In this section, we present the experiment results
to demonstrate the effectiveness of our design.

As explained in Section I, an SDN network is decoupled
into the control plane and data plane. For the control plane,
we use Floodlight as the controller, which is Java-based,
modular, and OpenFlow-supported. It can work with both
physical and virtual switches. Floodlight has some default
modules such as the core module, linkdiscovery module, and
topology module that must be loaded each run. For simplicity
and efficiency, users can set up Floodlight with minimal mod-
ule dependencies based on demands. For sepecific network
management requirements, new modules can be added to
Floodlight to alter the way to control the network. For the data
plane, we pick Mininet as a network emulator. Mininet can
conveniently create a network testbed, including virtual hosts,
Open vSwitches [12], and links. Since each host or switch
is a virtual machine, it is possible to run real applications in
Mininet to generate traffic. In our implementation, we use Iperf
to create pairs of User Datagram Protocol (UDP) data streams
from clients to servers and measure the delay and bandwidth
of the network.

A. Effectiveness of LFGL Rule

In the first experiment, we compare LFGL with the last-fit
and random-fit rules. The last-fit rule sorts middleboxes in the
decreasing order of their traffic changing factors, and places
them one by one from the tail of the flow path. The random-
fit rule randomly places a middlebox at one of the available
nodes.

We pick the tree topology in this experiment, since it is a
popular topology for enterprise networks, and there is only a
single path between any pair of nodes. We use a Python script
to create a complete binary tree with depth of three and seven
switches in Mininet. Each link has the same bandwidth of 12
Mbps, and each switch can host only two middleboxes. Each
leaf-switch has a connected host. We use Iperf to create two
UDP flows between two leaf nodes with the greatest distance,
and adjust the traffic rate of each flow from 1 to 5 Mbps.
Each flow has two associated middleboxes m1 and m2 with
km1

= −0.5 and km2
= −0.2. The middleboxes are simulated

by firewalls that drop the corresponding percentages of traffic.
Figure 3(a) shows the average end-to-end delay of the

three benchmark solutions. We can see that LFGL consistently
beats last-fit and random-fit. The delay of LFGL is relatively
constant, the delay of random-fit increases gradually, while
the delay of last-fit jumps dramatically when the traffic rate
of each flow increases to 5 Mbps. Figure 3(b) shows the
maximum link load of the three solutions. Similarly, LFGL
is consistently superior to the other two, and last-fit has the
worst performance with the maximum link load equal to the
traffic rate sum of both flows.

B. Effectiveness of LFGL based MinMax Routing

In the second experiment, we evaluate our LFGL based
MinMax Routing algorithm. The benchmark solutions will
first apply the widest-path routing algorithm [13] to find the

1 2 3 4 5
0

0.1

0.2

0.3

0.4

Flow traffic rate (Mbps)

A
ve

ra
ge

 d
el

ay
 (

m
s)

Tree toplogy

LFGL
Last−fit
Random−fit

1 2 3 4 5
0

2

4

6

8

10

12

Flow traffic rate (Mbps)

M
ax

im
um

 li
nk

 lo
ad

 (
M

bp
s)

Tree toplogy

LFGL
Last−fit
Random−fit

(a) End-to-end delay. (b) Maximum link load.

Fig. 3: Comparison under tree topology.

𝑆2

𝑆1

𝑆7

𝑆6

𝑆3

𝑆4

𝑆5

Fig. 4: Multipath topology.

flow path, and then use the last-fit or random-fit rule to place
middleboxes.

We use a topology with multiple available paths, as shown
in Fig. 4. The network contains seven switches, and each link
has 10 Mbps bandwidth. Similar as in the first experiment,
we use Iperf to create three UDP flows from S1, S2, and S5

to S4, respectively. Each flow has two associated middleboxes
m1 and m2 with km1

= −0.5 and km2
= −0.2, and we adjust

the flow traffic rate from 1 to 5 Mbps.
Fig. 5(a) and (b) show the average end-to-end delay and

maximum link load of the three competing solutions. We can
see that LFGL based MinMax routing consistently beats the
other two, while last-fit has the worst performance.

1 2 3 4 5
0.05

0.06

0.07

0.08

0.09

0.1

Flow traffic rate (Mbps)

A
ve

ra
ge

 d
el

ay
 (

m
s)

Multipath toplogy

LFGL, MinMax
Last−fit, widest
Random−fit, widest

1 2 3 4 5
0

2

4

6

8

10

12

Flow traffic rate (Mbps)

M
ax

im
um

 li
nk

 lo
ad

 (
M

bp
s)

Multipath toplogy

LFGL, MinMax
Last−fit, widest
Random−fit, widest

(a) End-to-end delay. (b) Maximum link load.

Fig. 5: Comparison under multipath topology.

In the next experiment, we use similar settings, but calculate
the flow path by the shortest-path routing algorithm, and then
apply the three rules to place middleboxes. The results are
plotted in Fig. 6. By comparing Fig. 5(a) and Fig. 6(a), it can
be observed that all the three placement rules achieve much
shorter delay with MinMax or widest-path routing. Similarly,
comparison of Fig. 5(b) and Fig. 6(b) shows that MinMax and

1 2 3 4 5
0

0.5

1

1.5

Flow traffic rate (Mbps)

A
ve

ra
ge

 d
el

ay
 (

m
s)

Multipath toplogy

LFGL, shortest
Last−fit, shortest
Random−fit, shortest

1 2 3 4 5
0

5

10

15

20

Flow traffic rate (Mbps)

M
ax

im
um

 li
nk

 lo
ad

 (
M

bp
s)

Multipath toplogy

LFGL, shortest
Last−fit, shortest
Random−fit, shortest

(a) End-to-end delay. (b) Maximum link load.

Fig. 6: Comparison under multipath topology with shortest-
path routing.

widest-path routing achieve lower maximum link load as well.

V. CONCLUSIONS

With the development of virtualization technology, NFV
enables flexible deployment of middleboxes as VMs running
on commodity server hardware. In this paper, we have studied
how to efficiently deploy such NFV middleboxes to achieve
optimal network performance, and proposed a solution lever-
aging the emerging SDN technology. First, we formulate the
Traffic-Aware Middlebox Placement (TAMP) problem as a
graph optimization problem, and show that it is NP-hard in
general. Since flows in real networks often arrive one at a
time, the solution for the TAMP problem with a single flow
is of practical importance. In two steps, we first develop the
LFGL rule for the known flow path scenario, and then propose
the LFGL based MinMax routing algorithm by integrating
LFGL with widest-path routing. To validate our designs, we
have implemented the proposed algorithm in the open-source
Floodlight SDN controller, and conducted experiments in the
Mininet system. The experiment results fully demonstrate the
superiority of our algorithm over competing solutions.

REFERENCES

[1] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio
Honda, Roberto Bifulco and Felipe Huici, “ClickOS and the Art of
Network Function Virtualization,” NSDI, 2014.

[2] J.W. Anderson, R. Braud, R. Kapoor, G.Porter, and A. Vahdat, “xOMB:
extensible open middleboxes with commodity servers,” ANCS, 2012.

[3] V.Sekar, N.Egi, S.Ratnasamy, M.K. Reiter, and G.Shi, “Design and
implementation of a consolidated middlebox architecture,” NSDI, 2012.

[4] J.Hwang, K. K. Ramakrishnan, and Timothy Wood. ”NetVM: high
performance and flexible networking using virtualization on commodity
platforms.” NSDI,2014.

[5] Seyed Kaveh Fayazbakhsh et al., “Enforcing Network-Wide Policies in
the Presence of Dynamic Middlebox Actions using FlowTags,” HotSDN,
2013.

[6] Luizelli, M.C.et al., ”Piecing together the NFV provisioning puzzle:
Efficient placement and chaining of virtual network functions,” IFIP/IEEE
International Symposium on Integrated Network Management, 2015

[7] Qazi, Zafar Ayyub, et al. ”SIMPLE-fying middlebox policy enforcement
using SDN.” SIGCOMM, 2013.

[8] SDN, https://www.opennetworking.org/sdn-resources/sdn-definition.
[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, 3rd ed. MIT Press, 2009.
[10] Floodlight, http://www.projectfloodlight.org/floodlight/.
[11] Mininet, http://mininet.org/.
[12] Open vSwitch, http://openvswitch.org/.
[13] Deepankar Medhi and Karthikeyan Ramasamy, Network Routing: Al-

gorithms, Protocols, and Architectures, Morgan Kaufmann, 2007.

