TCN 5080 Secure Telecom Transactions

Florida International University

Course Info

- Instructor: Dr. Deng Pan
- Email: pand@cs.fiu.edu
- Office: ECS-261A
- Office hours:
 - Monday 10am-12pm, Friday 3-5pm
 - Or by appointment

Course Info

- All the materials will be available at http://moodle.cis.fiu.edu.
- Course objectives:
 - Understand threats, principles, and mechanisms in secure network and telecom transactions.
 - Study cryptographic algorithms and their applications in security protocols in different layers of the Internet protocol stack.

Course Info

- References:
 - Charlie Kaufman, Radia Perlman, and Mike
 Speciner, Network Security: Private
 Communication in a Public World (2nd Edition),
 Prentice Hall, 2002.
 - William Stallings, Cryptography and Network
 Security : Principles and Practice (6th Edition),
 Prentice Hall, 2013.

Course Outline

- Cryptography
- Hashes and Digital Signatures
- Authentication Protocols
- IP Security
- SSL, PKI
- Firewalls
- Advanced topics

Grading

- Course Projects: 30%
- Midterm: 35%
- Final Exam: 35%

Chapter 1 Introduction

What is network security?

- By Google:
 - Network security is protection of the access to files and directories in a computer network against hacking, misuse and unauthorized changes to the system.
- By Cisco:
 - Network security consists of the policies adopted to prevent and monitor unauthorized access, misuse, modification, or denial of a computer network and network-accessible resources.

What is network security?

confidentiality: only sender, intended receiver should "understand" message contents

- sender encrypts message
- receiver decrypts message

authentication: sender, receiver want to confirm identity of each other

message integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection

access and availability: services must be accessible and available to users

Friends and enemies: Alice, Bob, Trudy

- well-known in network security world
- Alice and Bob want to communicate "securely"
- Trudy (intruder) may intercept, delete, add messages

Who might Bob, Alice be?

- Web browser/server for electronic transactions (e.g., on-line purchases)
- on-line banking client/server
- DNS servers
- routers exchanging routing table updates
- other examples?

There are bad guys out there!

- <u>Q:</u> What can a "Trudy" do?
- <u>A:</u> A lot!
 - eavesdrop: intercept messages
 - actively *insert* messages into connection
 - *impersonation:* can fake (spoof) source address in packet (or any field in packet)
 - *hijacking:* "take over" ongoing connection by removing sender or receiver, inserting himself in place
 - *denial of service*: prevent service from being used by others (e.g., by overloading resources)

Background requirements

- Computer networks
 - 5-layer Internet protocol stack
 - Protocols in each layer
- Mathematics
 - Number theory, probability...
- Programming
 - At least one programming language for course project

Internet protocol stack

- Layered reference model
 - Change of implementation of one layer transparent to rest of system
- 5-layer TCP/IP protocol stack

Application Layer

- The application layer contains the higher-level protocols used by application programs for network communication.
 - Packet format, error handling, authentication...
- Two application architectures:
 - Client-server
 - Peer-to-peer (P2P)

Client-server architecture

server:

- always-on host
- permanent IP address
- data centers for scaling

clients:

- communicate with server
- may be intermittently connected
- may have dynamic IP addresses
- do not communicate directly with each other

Client-server protocols

- Web
 - HTTP: Hypertext Transfer Protocol, RFC 2616
- File transfer
 - FTP: File Transfer Protocol, RFC 959
- Email
 - SMTP: Simple Mail Transfer Protocol, RFC 5321
- Remote login:
 - Telnet, RFC 854
- Supporting functions:
 - DNS: Domain Name System, RFC 1035

P2P architecture

- *no* always-on server
- arbitrary end systems directly communicate
- peers request service from other peers, provide service in return to other peers
 - *self scalability* new peers bring new service capacity, as well as new service demands
- peers are intermittently connected and change IP addresses
 - complex management

P2P protocols

- File transfer
 - BitTorrent, RFC 5694
 - eMule
- Instant messaging
 - Skype
- Video streaming
 PPStream

Transport layer

- The transport layer establishes a basic data channel that an application uses in its task-specific data exchange.
 - Implemented in end systems only
 - Logical communication between processes
- Two main protocols
 - TCP: transmission control protocol
 - UDP: user datagram protocol

Internet transport-layer protocols

- reliable, in-order delivery (TCP)
 - congestion control
 - flow control
 - connection setup
- unreliable, unordered delivery: UDP
 - no-frills extension of "best-effort" IP
- services not available:
 - delay guarantees
 - bandwidth guarantees

TCP Format

UDP Format

Internet apps: application, transport protocols

	application	application layer protocol	underlying transport protocol
	.,		705
	e-mail	SMTP [RFC 2821]	ICP
remote strea In	terminal access	Telnet [RFC 854]	TCP
	Web	HTTP [RFC 2616]	TCP
	file transfer	FTP [RFC 959]	TCP
	ming multimedia	HTTP (e.g., YouTube), RTP [RFC 1889]	TCP or UDP
	iternet telephony	SIP, RTP, proprietary (e.g., Skype)	TCP or UDP

Network Layer

- The network layer has the responsibility of sending packets across potentially multiple networks.
 - Multi-hop transmission
 - Implemented in end systems and routers
 - Logical communication between hosts
- Single protocol
 - IP: Internet Protocol

Two key network-layer functions

- *forwarding:* move packets from router's input to appropriate router output
- routing: determine route taken by packets from source to dest.
 - routing algorithms

IP v4 Format

IP v6 Format

Data Link Layer

- The link layer transmits frames from one node to its adjacent nodes.
 - One-hop transmission
- Protocol used depends on type of network
 - Circuit switching
 - Packet switching
 - LANs (e.g., Ethernet, WIFI)

Switching Techniques

- Circuit switching
 - Dedicated communications path between two stations
 - E.g. public telephone network
- Packet switching
 - Message is broken into a series of packets
 - Each node determines next hop of transmission for each packet
 - E.g. IP

Public Switched Telephone Network

Physical Layer

- The physical layer consists of the basic networking hardware transmission technologies of a network.
- Covers the physical interface between a data transmission device and a transmission medium or network
- Physical layer specifies:
 - Characteristics of the transmission medium
 - The nature of the signals
 - The data rate
 - Other related matters

Protocol Data Units (PDUs)

Security protocols in each layer

- Application layer
 SSH (secure telenet), SFTP
- Transport layer
 SSL/TLS
- Network layer
 - IPSec
- Data link layer
 - WPA, WEP, PPP authentication
- Physical layer
 - Black listing
Security related Terminology

- Risk
- Threats
- Vulnerabilities
- Adversary
- Attacks
- Participants
- Trust
- Security Model

Risk

- At-risk valued resources that can be misused
 - Monetary
 - Data (loss or integrity)
 - Time
 - Confidence
 - Trust
- What does being misused mean?
 - Privacy (personal)
 - Confidentiality (communication)
 - Integrity (personal or communication)
- Availability
 - Denial of service

Threats

- A threat is a specific means by which an attacker can put a system at risk
 - An ability of an attacker (e.g., eavesdrop on a communication channel)
 - Independent of what can be compromised
- A threat model is a collection of threats that deemed important for a particular environment
 - A collection of attacker(s) abilities
 - E.g. a powerful attacker can read and modify all communications and generate messages on a communication channel

Vulnerabilities

- Vulnerabilities are systemic artifacts that expose the user, data or system to a threat.
 – Buffer overflows, WEP key leakage, etc
- Where do vulnerabilities come from?
 - Bad software or hardware
 - Poor understanding of requirements/bad design
 - Bad policy/configuration
 - System misuse
 - Unintended purpose or environment

Adversary

- An adversary is anyone attempting to circumvent the security infrastructure.
 - The curious and generally clueless (e.g., script-kiddies)
 - Casual attackers seeing to understand systems
 - People with an axe to grind
 - Malicious groups with sophisticated users (e.g., chaos clubs)
 - Competitors (industrial espionage)
 - Governments (seeking to monitor or disrupt activities)

Attacks

- An attack occurs when someone attempts to exploit a vulnerability
- Kinds of attacks
 - Passive (e.g., eavesdropping)
 - Active (e.g., replay attack)
- A compromise occurs when an attack is successful
 - Typically associated with taking over/altering resources

Passive Attacks

Active Attacks

Participants

- Participants are expected system entities
 - Computers, agents, people, enterprises, ...
 - Depending on context referred to as: servers, clients, users, entities, hosts, routers, ...
- Security is defined with respect to these entitles
 Implication: every party may have unique view
- A trusted third party
 - Trusted by all parties for some set of actions
 - Often used as introducer or arbiter

Trust

- Trust refers to the degree to which an entity is expected to behave.
- What is an entity not expected to do?
- A trust model describes, for a particular environment, who is trusted to do what.
- You make trust decisions every day...
 - What are they?
 - Whom do you trust?
- Can you measure trust?

Security Model

- A security model is the combination of a trust and threat models that address the set of perceived risks
 - The "security requirements" used to develop some cogent and comprehensive design
 - Every design must have security model: LAN network or global information system? Java applet or operating system?
- Systems must be explicit about these things to be secure.
 - What are the security concerns (risks)? Threats?
 - Who are our adversaries?
 - Who do we trust and to do what?

Model for Network Transmission Security

Model for Network Access Security

Security Service

- Enhance security of data processing systems and information transfers of an organization
- Using one or more security mechanisms
 - Encipherment, digital signatures, access controls, data integrity, authentication exchange, traffic padding, routing control, notarization
- Often replicates functions normally associated with physical documents
 - which, for example, have signatures, dates; need protection from disclosure, tampering, or destruction; be notarized or witnessed; be recorded or licensed

Security Services (X.800)

- Authentication assurance that the communicating entity is the one claimed
- Access Control prevention of the unauthorized use of a resource
- Data Confidentiality –protection of data from unauthorized disclosure
- Data Integrity assurance that data received is as sent by an authorized entity
- Non-Repudiation protection against denial by one of the parties in a communication

Chapter 2 Secret Key Cryptography

Secret Key Encryption

- or conventional / private-key / single-key
- sender and recipient share a common key
- all classical encryption algorithms are secret key based
- was only type prior to invention of public-key in 1970's

Some Basic Terminology

- **plaintext/cleartext** original message
- **ciphertext** coded message
- **cipher** algorithm for transforming plaintext to ciphertext
- **key** info used in cipher known only to sender/receiver
- encipher (encrypt) converting plaintext to ciphertext
- **decipher (decrypt)** recovering plaintext from ciphertext
- **cryptography** study of encryption principles/methods
- cryptanalysis (codebreaking) study of principles/ methods of deciphering ciphertext without knowing key

Symmetric Cipher Model

Requirements

- two requirements for secure use of symmetric encryption:
 - a strong encryption algorithm
 - a secret key known only to sender / receiver
- mathematically have:

$$Y = \mathsf{E}_{\kappa}(X)$$
$$X = \mathsf{D}_{\kappa}(Y)$$

assume encryption algorithm is known

Cryptography

- characterize cryptographic system by:
 - type of encryption operations used
 - substitution / transposition / product
 - number of keys used
 - single-key or private / two-key or public
 - way in which plaintext is processed
 - block / stream

Cryptanalysis

- objective to recover key not just message
- general approaches:
 - cryptanalytic attack
 - brute-force attack

Brute Force Search

- always possible to simply try every key
- most basic attack, proportional to key size
- assume either know / recognise plaintext

Key Size (bits)	Number of Alternative Keys	Time required at 1 decryption/µs	Time required at 10 ⁶ decryptions/µs
32	$2^{32} = 4.3 \times 10^9$	$2^{31} \mu s = 35.8$ minutes	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	$2^{55} \mu s = 1142 years$	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127} \mu s = 5.4 \times 10^{24}$ years	5.4×10^{18} years
168	$2^{168} = 3.7 \times 10^{50}$	$2^{167} \mu s = 5.9 \times 10^{36}$ years	5.9×10^{30} years
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu s = 6.4 \times 10^{12} y ears$	6.4×10^6 years

Classical Substitution Ciphers

- where letters of plaintext are replaced by other letters or by numbers or symbols
- or if plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns

Caesar Cipher

- earliest known substitution cipher
- by Julius Caesar
- first attested use in military affairs
- replaces each letter by 3rd letter on
- example:

PHHW PH DIWHU WKH WRJD SDUWB

Caesar Cipher

• can define transformation as:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

- mathematically give each letter a number F B Ε G ΜN Ρ R S W/ X Y 7 Κ \mathbf{O} 0 4 5 6 7 8 9 1 1 1 1 1 1 1 0 1 2 3 2 2 2 2 1 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 0
- then have Caesar cipher as:
 c = E(p) = (p + k) mod (26)
 p = D(c) = (c k) mod (26)

Cryptanalysis of Caesar Cipher

• only have 26 possible ciphers

– A maps to A,B,..Z

- could simply try each in turn
- a brute force search
- given ciphertext, just try all shifts of letters
- do need to recognize when have plaintext
- eg. break ciphertext "GCUA VQ DTGCM"

Monoalphabetic Cipher

- rather than just shifting the alphabet
- could shuffle (jumble) the letters arbitrarily
- each plaintext letter maps to a different random ciphertext letter
- hence key is 26 letters long

Plain: abcdefghijklmnopqrstuvwxyz

Cipher: dkvqfibjwpescxhtmyauolrgzn

Plaintext: ifwewishtoreplaceletters Ciphertext: wirfrwajuhyftsdvfsfuufya

Monoalphabetic Cipher Security

now have a total of

 $-26! = 4 \times 10^{26}$ keys

- with so many keys, might think is secure
- but would be wrong
- problem is language characteristics

Language Redundancy and Cryptanalysis

- human languages are redundant
- eg "th lrd s m shphrd shll nt wnt"
- letters are not equally commonly used
- in English E is by far the most common letter
 followed by T,R,N,I,O,A,S
- other letters like Z,J,K,Q,X are fairly rare
- have tables of single, double & triple letter frequencies for various languages

English Letter Frequencies

Use in Cryptanalysis

- key concept monoalphabetic substitution ciphers do not change relative letter frequencies
- calculate letter frequencies for ciphertext
- compare counts/plots against known values
- if caesar cipher look for common peaks/troughs
 - peaks at: A-E-I triple, NO pair, RST triple
 - troughs at: JK, X-Z
- for monoalphabetic must identify each letter
 - tables of common double/triple letters help

Example Cryptanalysis

• given ciphertext:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

- count relative letter frequencies (see text)
- guess P & Z are e & t
- guess ZW is th and hence ZWP is the
- proceeding with trial and error finally get: it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

Example

- A generalization of the Caesar cipher, known as the affine cipher is as follows:
 C=E([a,b],p)=(ap+b) mod 26
- A ciphertext has been generated with an affine cipher. The most frequent letter of the ciphertext is 'B', and the second most frequent is 'U'. Break the code.

Playfair Cipher

- not even the large number of keys in a monoalphabetic cipher provides security
- one approach to improving security was to encrypt multiple letters
- the **Playfair Cipher** is an example
- invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair

Playfair Key Matrix

- a 5X5 matrix of letters based on a keyword
- fill in letters of keyword (sans duplicates)
- fill rest of matrix with other letters
- eg. using the keyword MONARCHY

Μ	0	Ν	Α	R
С	Н	Y	В	D
Е	F	G	I/J	к
L	Р	Q	S	т
U	V	W	X	Z
Encrypting and Decrypting

- plaintext is encrypted two letters at a time
 - 1. if a pair is a repeated letter, insert filler like 'X'
 - if both letters fall in the same row, replace each with letter to right (wrapping back to start from end)
 - 3. if both letters fall in the same column, replace each with the letter below it (again wrapping to top from bottom)
 - otherwise each letter is replaced by the letter in the same row and in the column of the other letter of the pair

Security of Playfair Cipher

- security much improved over monoalphabetic
- since have 26 x 26 = 676 digrams
- would need a 676 entry frequency table to analyse (verses 26 for a monoalphabetic)
- and correspondingly more ciphertext
- was widely used for many years
 eg. by US & British military in WW1
- it can be broken, given a few hundred letters
- since still has much of plaintext structure

Polyalphabetic Ciphers

- polyalphabetic substitution ciphers
- improve security using multiple cipher alphabets
- make cryptanalysis harder with more alphabets to guess and flatter frequency distribution
- use a key to select which alphabet is used for each letter of the message
- use each alphabet in turn
- repeat from start after end of key is reached

Vigenère Cipher

- simplest polyalphabetic substitution cipher
- effectively multiple caesar ciphers
- key is multiple letters long $K = k_1 k_2 \dots k_d$
- ith letter specifies ith alphabet to use
- use each alphabet in turn
- repeat from start after d letters in message
- decryption simply works in reverse

Example of Vigenère Cipher

- write the plaintext out
- write the keyword repeated above it
- use each key letter as a caesar cipher key
- encrypt the corresponding plaintext letter
- eg using keyword *deceptive*
 - key: deceptivedeceptivedeceptive
 plaintext: wearediscoveredsaveyourself
 ciphertext: zicvtwqngrzgvtwavzhcqyglmgj

Security of Vigenère Ciphers

- have multiple ciphertext letters for each plaintext letter
- hence letter frequencies are obscured
- but not totally lost
- start with letter frequencies
 see if look monoalphabetic or not
- if not, then need to determine number of alphabets, since then can attack each

Autokey Cipher

- ideally want a key as long as the message
- Vigenère proposed the **autokey** cipher
- with keyword is prefixed to message as key
- knowing keyword can recover the first few letters
- use these in turn on the rest of the message
- eg. given key *deceptive*

key: deceptivewearediscoveredsav
plaintext: wearediscoveredsaveyourself
ciphertext: zicvtwqngkzeiigasxstslvvwla

Transposition Ciphers

- now consider classical transposition or permutation ciphers
- these hide the message by rearranging the letter order
- without altering the actual letters used
- can recognise these since have the same frequency distribution as the original text

Rail Fence cipher

- write message letters out diagonally over a number of rows
- then read off cipher row by row
- eg. write message out as: mematrhtgpry etefeteoaat
- giving ciphertext MEMATRHTGPRYETEFETEOAAT

Row Transposition Ciphers

- a more complex transposition
- write letters of message out in rows over a specified number of columns
- then reorder the columns according to some key before reading off the rows

 Key:
 3
 4
 2
 1
 5
 6
 7

 Plaintext:
 a
 t
 t
 a
 c
 k
 p

 o
 s
 t
 p
 o
 n
 e

 d
 u
 n
 t
 i
 1
 t

 w
 o
 a
 m
 x
 y
 z

Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Product Ciphers

- ciphers using substitutions or transpositions are not secure because of language characteristics
- hence consider using several ciphers in succession to make harder, but:
 - two substitutions make a more complex substitution
 - two transpositions make more complex transposition
 - but a substitution followed by a transposition makes a new much harder cipher
- this is bridge from classical to modern ciphers