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ANSWERS TO PRACTICE EXAM # 4

Question 1.(5 points)
Skolemize the formula F' = JzVy3z3uVvIwFM[z, y, 2, u, v, w].

F* =YyVoFMa,y, f(y), 9(y), v, h(y,v)].

Question 2. (10 points)
Rectify the formula F' = Va(P(x, y)V3zP(x, 2))AVy(—P(y, 2)VVz—P(z, f(y))).
F* =Vu(P(u,y) V IP(v, 2)) ANVw(—P(w,x) V V21~ P (2, f(w))).

Question 3. (5 points)
Close the formula F' = VI FM |z, y, 2, u, v, w].
F* = 3z3yFudwVzIvFM [z, y, 2, u, v, w].

Question 4. (10 points)

Prove that if x is not free in GG, then

VoF — G = 3z(F — Q).
A Syntactic Proof:

VeF — G

=-VzF V(G  —-elimination

=de-FVGE Vol =dzg—F

=dz(—-F V(@) zisnot free in G

=dz(F — G)  —-introduction
A semantic Proof:

Let A be a structure with universe D.

AVzF — G] =1

iff AVzF]=0o0r A[G]=1 interpretation of —

iff there exists d € D such that Ay g[F] =0, or A[G] =1  interpre-
tation of Vz

iff there exists d € D such that, A g[F] =0 or A[G] =1

iff there exists d € D such that, Apcq[F] =0 or Apq[G] =1 z is
not free in G, so A and Ay q agree on G



iff there exists d € D such that Ay q[FF — G] =1  interpretation of
—
ifft A[Fz(F — G)] =1 interpretation of Jz

Question 5. (15 points)

Let S be the set that contains all atomic formulas, the empty clause, and
the operators — and dz, where x can be any variable. Show, by structural
induction, that S is adequate.

Proof: We show by structural induction that every formula F' has an equiv-
alent S-formula.

Case 1: F'is atomic. Then F'is an S-formula.

Case 2: ' = —=(G. By IH there is an S-formula G such that G = G;. Then

F=-G
_|G1 by IH
-G Vv O  contradiction law
G, — 0O ——-introduction

The last formula is S.

Case 3: F = GV H. By IH there are S-formulas G; and H; such that G = G,
and H = H;. Then

F=GVH
Gl V H1 by IH
-GV Hy —— introduction
-G, — H; —-introduction

Case 4: F = GAH. By IH there are S-formulas G; and H; such that G = G,
and H = H;.
F=GAH
Gy ANH, bylIH
—-=(G1 A Hy)  —— introduction
—(=G1 Vv —H;) De Morgan’s law
-(G1 — —H)) —- introduction
(Gy — —H;) — O  Case 2
(G — (HL— 0) — 0O  Case 2
Case 5: ' = G — H. By IH there are S-formulas G; and H; such that
G =G and H = Hy. The
F=G—H
= G1 — H;.



The last formula is an S-formula.
Case 6: F = G «— H. By IH there are S-formulas G; and H; such that
G =G, and H = H;. Then
F=G+— H
=G — H; by IH
= (Gl — Hl) A (H1 — G1) +—-elim
Then apply Case 4 to get rid of A.
Case 7: F' =Vz(G. By IH there is an S-formula G; such that G = G;. Then
F=VvzG
val
—-—Vz(G, ——-introduction
_lE|IE_|G1
dz—-G, — O Case 2
=dz(G; — 0O) — O  Case 2
Case 8: F' = dz(G. By IH there is an S-formula G; such that G = G;. Then
F =d2G,.

(1

Question 6. (15 points)
Construct a derivation tree of O from S = {{=P(z,y), ~P(y, 2), Q(z, f(2))},
{P(2,1),Q(z, )}, {~Q(a, 7), ~R(z, )}, {R(f (x), 0), Ry, )} }
Use the minimal number of steps.
The tree is shown in Figure 1.

Question 7. (10 points)
Write E(F,2) for F = VaVy((P(a, f(x
D(F,2) ={a,b, f(a), f(b), f*(a), f*(b)
E(F,2) = {FM|a,a|, FM[a,b], FM]a, f
FM[b, a], FM[b, b], FM[b, f(a)], FM[b, f
a),al, FM[f(a),b], F*[f(a), f(a
b), al, FM[f(b),b], FM[f(b), f(a)
(), a] FM[f*(a), b], FM[f*(a), f
(o), f 2(0)], FM[f2(b), al, FM[f?
2(b), f2(a)), FM2(0), f2(D)]}-

Bonus Question (15 points)
Let C be a clause and s a substitution. We call the clause s[C] a fac-
toring of C. For example, {—P(z,z)} is a factoring of {—P(x,y), " P(y,2)}

)V P(f(y),z)) A =P(b,y)).

}. There are 36 formulas in E(F, 2).

(@], F¥[a, f ()], F¥[a, f*(a)], F¥[a, f*(b)],

(0)], E¥[b, f*(a)l, ¥ [b, f (b)),

), FY[f(a), FO)], F¥[f(a), f*(a)], F¥[f(a), f*(B)],
, FMLf(b), £ (B)], FM[f(b),fZ( ), FMLf(b), f ()],
(@), FY[f2(a), £ (b)), FY[f*(a), f*(a)],

F2(b), 01, FM[f2(0), f(a)), F¥[f2(b), f (b)),
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FMf
FM[f
FM[f
FM[F



(Pl ~P02) Qe S0} {Ple 1) Qo)
52 = [/, y/v, 2/u]

S = {P(x,y). P(y, =), P(u,v)}
o = ly/e, 2/, uf2 v)]

{Q(f,f(iﬂ)),@(iﬂ,ﬂ))} {_'Q(a’ $),_'R(£E,y)}

S ={Q(z, f(z)), Qz,w), Q(a,u)}
0= [:E/a, w/f(a)vu/f(a')]

{~R(f(a),y)} {R(f(z),a), R(y,z)}

o =[z/a,y/a, z/f(a)]
Figure 1: The answer to question 4

because {—P(z,y), ~P(y, 2)}y/z, z/x] = {-P(z,z)}. We recall that the bi-
nary resolution unifies one literal from clause C; with one literal from clause
Cs. Prove that the full resolution can be implemented with binary resolution
and factoring.
Proof: Let us assume that C; and Cy are two clauses with no variables
in common. Let S = {P,...,P,,Q1,...,Qn} be the set of atoms, with
S1 ={Pi,...P,} asubset of C; and the complement of Sy = {Q1,...,Qn}
a subset of Cy. Let o be an mgu of S produced by the book algorithm. Since
S is unifiable, so are its subsets S; and S5. Let s; be an mgu of S; and s,
an mgu of Sy given by the book algorithm. Then s;[S;] and s5[S5] have no
variables in common!

By the property of the mgu’s

(1) c=mos

and

(2) 0 = poss.

Since s; and sy have no variables in common, o = ((7 1 Var[s:]) U (p 1
Var[ss])) o (s1 U s2). Let o = (7 T Var[s1]) U (p 1 Var[sy]). Since o is a
unifier of S, a(s1 U $2)[S1] = a(s1 U $2)[Ss]. Let 5 be an mgu of s;[S;] and



S9[Ss]. Since (3 is the mgu, a = v o 3 for some . Then

(3) 0 =700 (S U sy).

This means that the resolvent R of C; and C5 on ¢ can be implemented
by factoring S; on s, factoring Sy on s; and unifying s;[C;] and s,[Cs] on
the binary {s;[S1], =s2[Sa]}.



