COT 3420 SUMMER A 2003

ANSWERS TO PRACTICE EXAM # 4

Question 1.(5 points)

Skolemize the formula $F = \exists x \forall y \exists z \exists u \forall v \exists w F^M[x, y, z, u, v, w].$ $F^* = \forall y \forall v F^M[a, y, f(y), g(y), v, h(y, v)].$

Question 2. (10 points)

Rectify the formula $F = \forall x (P(x, y) \lor \exists x P(x, z)) \land \forall y (\neg P(y, x) \lor \forall z \neg P(z, f(y))).$ $F^* = \forall u (P(u, y) \lor \exists v P(v, z)) \land \forall w (\neg P(w, x) \lor \forall z_1 \neg P(z_1, f(w))).$

Question 3. (5 points)

Close the formula $F = \forall z \exists v F^M[x, y, z, u, v, w].$ $F^* = \exists x \exists y \exists u \exists w \forall z \exists v F^M[x, y, z, u, v, w].$

Question 4. (10 points)

Prove that if x is not free in G, then $\forall xF \longrightarrow G \equiv \exists x(F \longrightarrow G)$.

A Syntactic Proof:

$$\forall xF \longrightarrow G$$

$$\equiv \neg \forall x F \lor G \longrightarrow -\text{elimination}$$

$$\equiv \exists x \neg F \lor G \qquad \neg \forall x F \equiv \exists x \neg F$$

$$\equiv \exists x (\neg F \lor G)$$
 x is not free in G

$$\equiv \exists x (F \longrightarrow G) \longrightarrow -introduction$$

A semantic Proof:

Let \mathcal{A} be a structure with universe D.

$$\mathcal{A}[\forall xF \longrightarrow G] = 1$$

iff
$$\mathcal{A}[\forall xF] = 0$$
 or $\mathcal{A}[G] = 1$ interpretation of \longrightarrow

iff there exists $d \in D$ such that $\mathcal{A}_{[x \leftarrow d]}[F] = 0$, or $\mathcal{A}[G] = 1$ interpretation of $\forall x$

iff there exists $d \in D$ such that, $\mathcal{A}_{[x \leftarrow d]}[F] = 0$ or $\mathcal{A}[G] = 1$

iff there exists $d \in D$ such that, $\mathcal{A}_{[x \leftarrow d]}[F] = 0$ or $\mathcal{A}_{[x \leftarrow d]}[G] = 1$ x is not free in G, so \mathcal{A} and $\mathcal{A}_{[x \leftarrow d]}$ agree on G

iff there exists $d \in D$ such that $\mathcal{A}_{[x \leftarrow d]}[F \longrightarrow G] = 1$ interpretation of \longrightarrow iff $\mathcal{A}[\exists x (F \longrightarrow G)] = 1$ interpretation of $\exists x$

Let S be the set that contains all atomic formulas, the empty clause, and the operators \longrightarrow and $\exists x$, where x can be any variable. Show, by structural induction, that S is adequate.

Proof: We show by structural induction that every formula F has an equivalent S-formula.

Case 1: F is atomic. Then F is an S-formula.

Case 2: $F = \neg G$. By IH there is an S-formula G_1 such that $G \equiv G_1$. Then

$$F = \neg G$$

 $\equiv \neg G_1$ by IH

 $\equiv \neg G_1 \lor \Box$ contradiction law

 $\equiv G_1 \longrightarrow \Box \longrightarrow -introduction$

The last formula is S.

Case 3: $F = G \vee H$. By IH there are S-formulas G_1 and H_1 such that $G \equiv G_1$ and $H \equiv H_1$. Then

$$F = G \vee H$$

$$\equiv G_1 \vee H_1$$
 by IH

$$\equiv \neg \neg G_1 \lor H_1 \quad \neg \neg \text{ introduction}$$

$$\equiv \neg G_1 \longrightarrow H_1 \longrightarrow -introduction$$

$$\equiv (G_1 \longrightarrow \Box) \longrightarrow H_1$$
 Case 2

The last formula is an S-formula.

Case 4: $F = G \wedge H$. By IH there are S-formulas G_1 and H_1 such that $G \equiv G_1$ and $H \equiv H_1$.

$$F = G \wedge H$$

$$\equiv G_1 \wedge H_1$$
 by IH

$$\equiv \neg \neg (G_1 \wedge H_1) \quad \neg \neg \text{ introduction}$$

$$\equiv \neg(\neg G_1 \lor \neg H_1)$$
 De Morgan's law

$$\equiv \neg (G_1 \longrightarrow \neg H_1) \longrightarrow -$$
 introduction

$$\equiv (G_1 \longrightarrow \neg H_1) \longrightarrow \square$$
 Case 2

$$\equiv (G_1 \longrightarrow (H_1 \longrightarrow \Box) \longrightarrow \Box$$
 Case 2

Case 5: $F = G \longrightarrow H$. By IH there are S-formulas G_1 and H_1 such that $G \equiv G_1$ and $H \equiv H_1$. The

$$F = G \longrightarrow H$$

$$\equiv G_1 \longrightarrow H_1.$$

The last formula is an S-formula.

Case 6: $F = G \longleftrightarrow H$. By IH there are S-formulas G_1 and H_1 such that $G \equiv G_1$ and $H \equiv H_1$. Then

$$F = G \longleftrightarrow H$$

$$\equiv G_1 \longrightarrow H_1$$
 by IH

$$\equiv (G_1 \longrightarrow H_1) \land (H_1 \longrightarrow G_1) \longleftrightarrow -\text{elim}$$

Then apply Case 4 to get rid of \wedge .

Case 7: $F = \forall xG$. By IH there is an S-formula G_1 such that $G \equiv G_1$. Then

$$F = \forall xG$$

$$\equiv \forall x G_1$$

$$\equiv \neg \neg \forall x G_1 \quad \neg \neg \text{-introduction}$$

$$\equiv \neg \exists x \neg G_1$$

$$\equiv \exists x \neg G_1 \longrightarrow \square$$
 Case 2

$$\equiv \exists x (G_1 \longrightarrow \Box) \longrightarrow \Box$$
 Case 2

Case 8: $F = \exists xG$. By IH there is an S-formula G_1 such that $G \equiv G_1$. Then $F \equiv \exists xG_1$.

Question 6. (15 points)

Construct a derivation tree of \square from $S = \{ \{ \neg P(x, y), \neg P(y, z), Q(x, f(z)) \}, \}$

$$\{P(x,y),Q(x,z)\},\{\neg Q(a,x),\neg R(x,y)\},\{R(f(x),a),R(y,x)\}\}.$$

Use the minimal number of steps.

The tree is shown in Figure 1.

Question 7. (10 points)

Write E(F,2) for $F = \forall x \forall y ((P(a, f(x))) \lor P(f(y), x)) \land \neg P(b, y)).$

 $D(F,2) = \{a,b,f(a),f(b),f^2(a),f^2(b)\}.$ There are 36 formulas in E(F,2).

 $E(F,2) = \{F^{M}[a,a], F^{M}[a,b], F^{M}[a,f(a)], F^{M}[a,f(b)], F^{M}[a,f^{2}(a)], F^{M}[a,f^{2}(b)], F^{M$

 $F^{M}[b,a], F^{M}[b,b], F^{M}[b,f(a)], F^{M}[b,f(b)], F^{M}[b,f^{2}(a)], F^{M}[b,f^{2}(b)],$

 $F^{M}[f(a),a],F^{M}[f(a),b],F^{M}[f(a),f(a)],F^{M}[f(a),f(b)],F^{M}[f(a),f^{2}(a)],F^{M}[f(a),f^{2}(b)],F^{M}[f($

 $F^{M}[f(b), a], F^{M}[f(b), b], F^{M}[f(b), f(a)], F^{M}[f(b), f(b)], F^{M}[f(b), f^{2}(a)], F^{M}[f(b), f^{2}(b)],$

 $F^{M}[f^{2}(a), a], F^{M}[f^{2}(a), b], F^{M}[f^{2}(a), f(a)], F^{M}[f^{2}(a), f(b)], F^{M}[f^{2}(a), f^{2}(a)],$

 $F^{M}[f^{2}(a),f^{2}(b)],F^{M}[f^{2}(b),a],F^{M}[f^{2}(b),b],F^{M}[f^{2}(b),f(a)],F^{M}[f^{2}(b),f(b)],$

 $F^M[F^2(b),f^2(a)],F^M[f^2(b),f^2(b)]\}.$

Bonus Question (15 points)

Let C be a clause and s a substitution. We call the clause s[C] a factoring of C. For example, $\{\neg P(x, x)\}$ is a factoring of $\{\neg P(x, y), \neg P(y, z)\}$

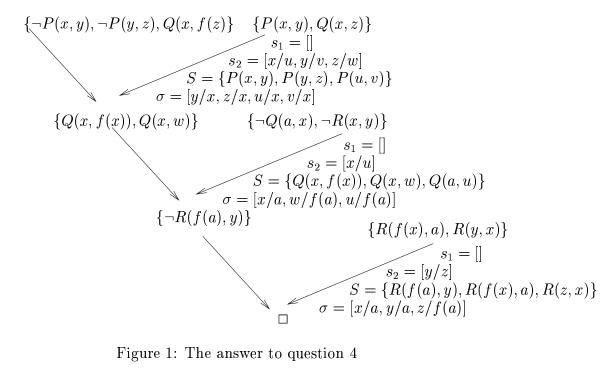


Figure 1: The answer to question 4

because $\{\neg P(x,y), \neg P(y,z)\}[y/x,z/x] = \{\neg P(x,x)\}$. We recall that the binary resolution unifies one literal from clause C_1 with one literal from clause C_2 . Prove that the full resolution can be implemented with binary resolution and factoring.

Proof: Let us assume that C_1 and C_2 are two clauses with no variables in common. Let $S = \{P_1, \ldots, P_n, Q_1, \ldots, Q_m\}$ be the set of atoms, with $S_1 = \{P_1, \dots P_n\}$ a subset of C_1 and the complement of $S_2 = \{Q_1, \dots, Q_m\}$ a subset of C_2 . Let σ be an mgu of S produced by the book algorithm. Since S is unifiable, so are its subsets S_1 and S_2 . Let s_1 be an mgu of S_1 and s_2 an mgu of S_2 given by the book algorithm. Then $s_1[S_1]$ and $s_2[S_2]$ have no variables in common!

By the property of the mgu's

- (1) $\sigma = \pi \circ s_1$
- and
- (2) $\sigma = \rho \circ s_2$.

Since s_1 and s_2 have no variables in common, $\sigma = ((\pi \uparrow Var[s_1]) \cup (\rho \uparrow var[s_1]))$ $Var[s_2])) \circ (s_1 \cup s_2)$. Let $\alpha = (\pi \uparrow Var[s_1]) \cup (\rho \uparrow Var[s_2])$. Since σ is a unifier of S, $\alpha(s_1 \cup s_2)[S_1] = \alpha(s_1 \cup s_2)[S_2]$. Let β be an mgu of $s_1[S_1]$ and

 $s_2[S_2]$. Since β is the mgu, $\alpha = \gamma \circ \beta$ for some γ . Then (3) $\sigma = \gamma \circ \beta \circ (S_1 \cup S_2)$.

This means that the resolvent R of C_1 and C_2 on σ can be implemented by factoring S_1 on s_1 , factoring S_2 on s_1 and unifying $s_1[C_1]$ and $s_2[C_2]$ on the binary $\{s_1[S_1], \neg s_2[S_2]\}$.