
COP 3337        Assignment 1: Arrays, enum types     Fall 2017 
Pestaina         Due:   Sunday, September 17 
 

Objectives 
To master programming with enum and array types. 
 

Overview 
The PlayingCard class represents a common playing-card. In this implementation, the 
suit and rank of a playing-card are represented by enum types, CardSuit and CardRank. 
You will implement 2 additional classes: 

 PlayingCardDeck represents a deck of 52 PlayingCards in 4 suits of 13 ranks each. 
The representation of PlayingCardDeck is non-traditional. Instead of as an array of 52 
PlayingCard elements, it is an array of 52 boolean elements. Each element corresponds 
to one of the 52 playing-cards: true if that card is in the deck, false if that card is not in 
the deck. Each group of 13 consecutive elements represents the cards of one suit: 

0                                       12 13                                       25 26                                       38 39                                     51 
CLUBS DIAMONDS HEARTS SPADES 

Within each suit, the array elements represent the playing-cards in rank order: 
2 3 4 5 6 7 8 9 T J Q K A 

 

 PokerHand represents a poker hand of 5 PlayingCards  
The PokerHand class is implemented using an array of 5 PlayingCard elements dealt 
from a PlayingCardDeck. 
 

Specific Requirements  
1. The PlayingCard class is already implemented. A client to test it is provided. Run the 

client and study the PlayingCard code until you understand the implementation. 
 

2. Complete the implementation of the PlayingCardDeck class. An outline with stubs of 
all the required methods is provided. Your implementation must 
 use the array representation described above, 
 use / and % to map an array index to CardSuit and CardRank ordinals, 
 use the ordinals to select from CardSuit.values() and CardRank.values() arrays. 
A client to test your implementation is provided. 

 

3. Complete the implementation of the PokerHand class. A class outline is provided. 
 Your addCard() method must insert a PlayingCard being added to a PokerHand 

to maintain the PokerHand cards in sorted order. 
 Your type() method’s algorithm must exploit the sorted order of a PokerHand. 
 Your type() method must use helper method(s) for each hand-type being tested. 
 A client to test your implementation is provided.  

 

4. Document your program 
 Include a Program Id Paragraph into both source files 
 Provide helpful comments 

 

Submitting your Assignment 
Upload your source (.java) files in SCIS Moodle by the due date. No late submissions. 


