COP 3337
Pestaina
Assignment 6: Customized Linked List
Due: Sunday, December 10

Overview

A polynomial is a sequence of polynomial terms in descending exponent order.
Example 1: 4
Example 2: $2 x^{3}-x^{2}+5 x-2$
Example 3: $2 x^{7}-5 x^{5}+3 x^{4}-15 x^{2}+19 x-6$
The Example 2 polynomial terms may be represented as: $(3,2),(2,-1),(1,5),(0,-2)$
Specific Requirements

1. Write a class PolynomialTerm to represent one term of a Polynomial, each with a non-negative integer exponent and a non-zero integer coefficient:

- Instance variables of type int for the exponent and coefficient, and accessors.
- A parameterized constructor that enforces the constraints described above
- Method value(..) to evaluate a PolynomialTerm for a given int value (of x).
- Method plus(..) to return the sum of two PolynomialTerms.
- Method times(..) to return the product of two PolynomialTerms.
- Implements Comparable based on exponents only.
- Override toString().

2. Write a class Polynomial to represent a Polynomial:

- A customized linked list to store PolynomialTerms in descending order. The only instance variable provides a reference to the node storing first term.
- A parameter-less constructor that creates the 0-polynomial (no terms).
- A constructor public Polynomial(int[] data).The data parameter is an array of alternating exponents and coefficients; each pair of consecutive ints defines one PolynomialTerm. E.g. [1, 5, 3, 2, 0, -2, 2, -1] for Example 2 above. The terms may be in any order, but always with exponent first then coefficient.
- Helper insert(PolynomialTerm term) to insert a new PolynomialTerm; throw an exception if the exponent of the new term matches an existing one.
- Method isZero() to return true iff a Polynomial is the zero-polynomial.
- Method value(..) to evaluate a Polynomial for a given int value (of x).
- Method plus(..) to return the sum of a pair of Polynomials.
- Method times(..) to return the product of a pair of Polynomials.
- Override toString().

Algorithm Notes

1. Adding PolynomialTerms: $\left(\mathrm{e}, \mathrm{c}_{1}\right)+\left(\mathrm{e}, \mathrm{c}_{2}\right)=\left(\mathrm{e}, \mathrm{c}_{1}+\mathrm{c}_{2}\right)$. The exponents must be the same. If the coefficient sum $c_{1}+c_{2}=0$, the sum of the terms is null.
2. Multiplying PolynomialTerms: $\left(e_{1}, c_{1}\right) *\left(e_{2}, c_{2}\right)=\left(e_{1}+e_{2}, c_{1} * c_{2}\right)$.
3. Adding Polynomials: Combines like terms - add terms with the same exponent.
4. Multiplying Polynomials: Let $\mathrm{P}(\mathrm{x})=\mathrm{p}_{1}(\mathrm{x})+\mathrm{P}^{\prime}(\mathrm{x}), \mathrm{p}_{1}(\mathrm{x})$ the $1^{\text {st }}$ term, $\mathrm{P}^{\prime}(\mathrm{x})$ the rest. Then, $P(x){ }^{*} Q(x)=p_{1}(x) * Q(x)+P^{\prime}(x) * Q(x)$.
5. Consider providing recursive implementations of the Polynomial methods.
