
COP 3337 Assignment 6: Customized Linked List Fall 2017

Pestaina Due: Sunday, December 10

Overview
A polynomial is a sequence of polynomial terms in descending exponent order.

Example 1: 4
Example 2: 2x3 - x2 + 5x - 2
Example 3: 2x7 - 5x5 + 3x4 - 15x2 + 19x - 6

The Example 2 polynomial terms may be represented as: (3, 2), (2, -1), (1, 5), (0, -2)

Specific Requirements
1. Write a class PolynomialTerm to represent one term of a Polynomial, each with a

non-negative integer exponent and a non-zero integer coefficient:

 Instance variables of type int for the exponent and coefficient, and accessors.

 A parameterized constructor that enforces the constraints described above

 Method value(..) to evaluate a PolynomialTerm for a given int value (of x).

 Method plus(..) to return the sum of two PolynomialTerms.

 Method times(..) to return the product of two PolynomialTerms.

 Implements Comparable based on exponents only.

 Override toString().

2. Write a class Polynomial to represent a Polynomial:

 A customized linked list to store PolynomialTerms in descending order. The
only instance variable provides a reference to the node storing first term.

 A parameter-less constructor that creates the 0-polynomial (no terms).

 A constructor public Polynomial(int[] data).The data parameter is an array of
alternating exponents and coefficients; each pair of consecutive ints defines
one PolynomialTerm. E.g. [1, 5, 3, 2, 0, -2, 2, -1] for Example 2 above. The
terms may be in any order, but always with exponent first then coefficient.

 Helper insert(PolynomialTerm term) to insert a new PolynomialTerm; throw
an exception if the exponent of the new term matches an existing one.

 Method isZero() to return true iff a Polynomial is the zero-polynomial.

 Method value(..) to evaluate a Polynomial for a given int value (of x).

 Method plus(..) to return the sum of a pair of Polynomials.

 Method times(..) to return the product of a pair of Polynomials.

 Override toString().

Algorithm Notes
1. Adding PolynomialTerms: (e, c1) + (e, c2) = (e, c1 + c2). The exponents must be the

same. If the coefficient sum c1 + c2 = 0, the sum of the terms is null.
2. Multiplying PolynomialTerms: (e1, c1) * (e2, c2) = (e1 + e2, c1 * c2).
3. Adding Polynomials: Combines like terms – add terms with the same exponent.
4. Multiplying Polynomials: Let P(x) = p1(x) + P’(x), p1(x) the 1st term, P’(x) the rest.

Then, P(x) * Q(x) = p1(x) * Q(x) + P’(x) * Q(x) .
5. Consider providing recursive implementations of the Polynomial methods.

