 Signed Integer Representation

 0/1 in the high bit position indicates +/-

 Sign-Magnitude Form

 High bit stores 0/1 to represent +/-

 Low n-1 bits store the magnitude of the integer

 Example (1 Byte):

 59 : 0011 1011b : x3B
 -59 : 1011 1011b : xBB

 One's Complement Representation

 1Cn(X) = (2n - 1) - X

 Equivalent to complementing all bits of X

 Example (1 Byte):

 59 : 0011 1011 : x3B

 -59 : 1100 0100 : xC4

 Two's Complement Representation

 2Cn(X) = 2n - X

 Equivalent to 1Cn(X) + 1, i.e., complement and add 1
 Example (1 Byte)

 59 : 0011 1011 : x3B

 -59 : 1100 0101 : xC5

In practice, Sign-Magnitude representation is never used.

One’s Complement was used in some older machines, but has lost favor to the two’s-complement representation. The difficulty with 1’s complement results form having two representations of 0 (what is 1111 1111b as a signed byte integer?)

2’s Complement Arithmetic

Evaluate 30 – 59 (byte arithmetic)

 30
 0001 1110b
x1E

 -59
 1100 0101b
xC5

====
 ==========
===

 -29
 1110 0011
xE3
Note:

1) To form the 2’s complement in hexadecimal, subtract from xFF (byte) or from xFFFF (word). Why? Then add 1.

2) –1 = xFF (byte), xFFFF (word), xFFFFFFFF (doubleword)

3) A negative 2’s complement hex’ integer begins with 8..F. Why?

4) The range of unsigned integer values that can be stored in n bits is 0..2n-1. Byte : 0..255. Word : 0..65535.

5) The range of signed integer values that can be stored in n bits is –2n-1..2n-1-1. Byte : -128..127. Word : -32768..32767.

Overflow

When performing integer arithmetic, an overflow condition is said to occur if the arithmetic produces a result that is outside of the range of the intended storage (see notes 3 and 4 above).

For example, suppose that we are performing byte arithmetic. The sum 125 + 125 will produce signed overflow but not unsigned overflow. The sum, 250, is within the unsigned byte range, but outside the signed byte range. It is important to understand that producing a carry indicates unsigned overflow, but not necessarily signed overflow. Consider the following examples carefully…

 Binary

 Hex

Unsigned
Signed
(1)
 1010 1000
 xA8

168

-88

 0010 1101
 x2D

 45

 45

===========
====

===

===

 1101 0101
 xD5

213

-43
C = 0
V = 0
(2)
 1101 0011
 xD3

211

-45

 1111 0100
 xF4

244

-12

===========
====

===

===

11100 0111
x1C7

455

-57
C = 1
V = 0
(3)
 0010 1101
 x2D

 45

 45

 0101 1000
 x58

 88

 88

===========
====

===

===

 1000 0101
 x85

133

133
C = 0
V = 1
(4)
 1101 0011
 xD3

211

-45

 1010 1000
 xA8

168

-88

===========
====

===

===

10111 1011
x17B

379 -133
C = 1
V = 1
Note:

1) Producing a carry, C = 1, indicates unsigned overflow.

2) Producing a carry, C = 1, does not indicate signed overflow.

3) To recognize signed overflow, two conditions must be present:

· the augend and addend must have the same sign, and
· the sum must have the opposite sign.

