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Abstract
Key-value stores are ubiquitous in high performance

data-intensive, scale out, and NoSQL environments.

Many KV stores use flash devices for meeting their per-

formance needs. However, by using flash as a sim-

ple block device, these KV stores are unable to fully

leverage the powerful capabilities that exist within Flash

Translation Layers (FTLs). NVMKV is a lightweight

KV store that leverages native FTL capabilities such as

sparse addressing, dynamic mapping, transactional per-

sistence, and support for high-levels of lock free paral-

lelism. Our evaluation of NVMKV demonstrates that it

provides scalable, high-performance, and ACID compli-

ant KV operations at close to raw device speeds.

1 Introduction

Flash-based key-value (KV) stores are becoming main-

stream, with the importance of the KV interface to stor-

age and flash technology have been well established

through a gamut of implementations [13, 17, 21, 22,

31]. However, best utilizing the high-performance flash-

based storage to drive the new generation of key-value

stores continues to remain a challenge. The majority

of the existing KV stores use a logging-based approach

which induces significant additional write amplification

(WA) at the KV software layer in addition to the internal

WA caused by the FTL while managing physical flash.

Modern FTLs offer new capabilities that enable com-

pelling, new design points for KV stores [6, 9]. Integra-

tion with these advanced capabilities results in an opti-

mized FTL-aware KV store [33]. First, writing to the

flash can be optimized to significantly improve both de-

vice lifetime and workload I/O performance. Second,

modern FTLs already perform many functions that are

similar to the functionality built into many KV stores

such as log-structuring, dynamic data remapping, index-

ing, transactional updates, and thin provisioning [29, 35,

37]. Avoiding such replication of functionality can offer

significant resource and performance benefits.

In this paper, we present the design, implementation,

and evaluation of NVMKV, an FTL-aware KV store.

NVMKV has been designed from the ground up to uti-

lize the advanced capabilities found in modern FTLs. It

implements a hashing-based design that uses the FTLs

sparse address-space support to eliminate all write am-

plification at the KV layer, improving flash device en-

durance significantly relative to current KV stores. It

is able to achieve single I/O get/put operations with

performance close to that of the raw device, represent-

ing a significant improvement over current KV stores.

NVMKV uses the advanced FTL capabilities of atomic

multi-block write, atomic multi-block persistent trim,

exists, and iterate to provide strictly atomic and syn-

chronous durability guarantees for KV operations.

Two complementary factors contribute to increased

collocation requirements for KV stores running on a sin-

gle flash device. First, given the increasing flash den-

sities, the performance points of flash devices are now

based on capacity with larger devices being more cost-

effective [42]. Second, virtualization supports increases

in collocation requirements for workloads. A recent

study has shown that multiple independent instances of

such applications can have a counterproductive effect

on the underlying FTL, resulting in increased WA [42].

NVMKV overcomes this issue by offering a new pools

abstraction that allows transparently running multiple

KV stores within the same FTL. While similar features

exist in other KV stores, the FTL-aware design and im-

plementation within NVMKV enables both efficient FTL

coupling and KV store virtualization. NVMKV’s design

also allows for optimized flash writing across multiple

KV instances and as a result lowers the WA.

In the quest for performance, KV stores and other ap-

plications are trending towards an in-memory architec-

ture. However, since flash is still substantially cheaper

than DRAM, any ability to offset DRAM for flash has the

potential to reduce Total Cost of Ownership (TCO). We

demonstrate how accelerating KV store access to flash

can in turn result in similar or increased performance

with much less DRAM.

We evaluated NVMKV and compared its performance

to LevelDB. We evaluated the scalability of pools, com-

pared it to multiple instances of LevelDB, and also found

that NVMKV’s atomic writes outperform both async

and sync variants of LevelDB writes by up to 6.5x and

1030x respectively. NVMKV reads are comparable to

that of LevelDB even when the workloads fit entirely in

the filesystem cache, a condition that benefits LevelDB

exclusively. When varying the available cache space,

NVMKV outperforms LevelDB and more importantly

introduces a write amplification of 2x in the worst case,

which is small compared to the 70x for LevelDB. Finally,

NVMKV improves YCSB benchmark throughput by up

to 25% in in comparison to LevelDB.
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2 Motivation

In this section, we discuss the benefits of better integra-

tion of KV stores with the FTL’s capabilities. We also

motivate other key tenets of our architecture, in particu-

lar the support of multiple KV stores on the same flash

device and the need to increase performance with smaller

quantities of DRAM.

An FTL-aware KV store: A common technique for

performance improvement in flash optimized KV stores

is some form of log structured writing. New data is ap-

pended to an immutable store and reorganized over time

to reclaim space [1, 10, 26, 31]. The reclamation process,

also called garbage collection or compaction, generates

Auxiliary Write Amplification (AWA) which is the appli-

cation level WA above that which is generated by the

FTL. Unfortunately, AWA and the FTL induced WA have

a multiplicative effect on write traffic to flash [43]. Pre-

vious work highlighted an example of this phenomenon

with LevelDB, where a small amount of user writes

can be amplified into as much as 40X more writes to

the flash device [33]. As another example, the SILT

work describes an AWA of over 5x [31]. NVMKV en-

tirely avoids AWA by leveraging native addressing mech-

anisms and optimized writing implemented within mod-

ern FTLs.

Multiple KV stores in the device: The most recent

PCIe and SAS flash devices can provide as much as 4-

6TB of capacity per device. As density per die increases

with every generation of flash driven by the consumer

market, the multiple NAND dies required to generate a

certain number of IOPs will come with ever increasing

capacities as well as reduced endurance [27]. Multiple

KV stores on a single flash device become cost effective

but additional complexities arise. For instance, recent

work shows how applications that are log structured to be

flash optimal can still operate in suboptimal ways when

either placed above a file system or run as multiple inde-

pendent instances over a shared FTL [42]. NVMKV pro-

vides the ability to have multiple independent KV work-

loads share a device with minimal AWA.

Frugal DRAM usage: The ever increasing need

for performance is driving the in-memory computing

trend [7, 11, 24]. However, DRAM cost does not scale

linearly with capacity since high capacity DRAM and

the servers that support it are more expensive per unit of

DRAM (in GB) than the mid-range DRAM and servers.

The efficacy of using flash to offset DRAM has also been

established in the literature [16]. In the KV store context,

similar arguments have been made showing the server

consolidation benefits of trading DRAM for flash [1].

A KV store’s ability to leverage flash performance con-

tributes directly to its ability to trade off DRAM for flash.

NVMKV operates with high performance and low WA in

both single and multiple instance KV deployments.

3 Building an FTL-aware KV Store

NVMKV is built using the advanced capabilities of mod-

ern FTLs. In this section, we discuss its goals, provide

an overview of the approach, and describe its API.

3.1 Goals

NVMKV is intended for use within single node deploy-

ments by directly integrating it into applications. While

it is not intended to replace the scale out key-value

functionality provided by software such as Dynamo and

Voldemort [23, 39], it can be used for single node KV

storage within such scale out KV stores. From this point

onward, we refer to such single node KV stores simply

as KV stores. We had the following goals in mind when

designing NVMKV:

Deliver Raw Flash Performance: Convert the most

common KV store operations, GET and PUT into a single

I/O per operation at the flash device to deliver close to

raw flash device performance. As flash devices support

high levels of parallelism, the KV store should also scale

with parallel requests to utilize the performance scaling

capacity of the device. Finally, when multiple, indepen-

dent KV instances are consolidated on a single flash de-

vice, the KV store should deliver raw flash performance

to each instance.

Minimize Auxiliary Write Amplification: Given the

multiplicative effect on I/O volume due to WA, it is im-

portant to minimize additional KV store writes, which in

turn reduces the write load at the FTL and the flash de-

vice. Reducing AWA improves KV operation latency by

minimizing the number of I/O operations per KV opera-

tion as well as improvement of flash device lifetime.

Minimize DRAM Consumption: Minimize DRAM

consumption by (i) minimizing the amount of internal

metadata, and (ii) by leveraging flash performance to off-

set the amount of DRAM used for caching.

Simplicity: Leverage FTL capabilities to reduce code

complexity and development time for the KV store.

3.2 Approach

Our intent with NVMKV is to provide the rich KV in-

terface while retaining the performance of a much sim-

pler block based flash device. NVMKV meets its goals

by leveraging the internal capabilities of the FTL where

possible and complementing these with streamlined ad-

ditional functionality at the KV store level. The high

level capabilities that we leverage from the FTL include:

Dynamic mapping: FTLs maintain an indirection map

to translate logical addresses into physical data locations.

NVMKV leverages the existing FTL indirection map to

the fullest extent to avoid maintaining any additional lo-

cation metadata. Every read and write operation sim-

ply uses the FTL indirection map and thereby operates
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Category API Description

Basic

get(...) Retrieves the value associated with a given key.

put(...) Inserts a KV pair into the KV store.

delete(...) Deletes a KV pair from the KV store.

Iterate
begin(...) Sets the iterator to the beginning of a given pool.

next(...) Sets the iterator to the next key location in a given pool.

get current(...) Retrieves the KV pair at the current iterator location in a pool.

Pools

pool exist(...) Determines whether a key exists in a given pool.

pool create(...) Creates a pool in a given NVMKV store.

pool delete(...) Deletes all KV pairs from a pool and deletes the pool from NVMKV store.

get pool info(...) Returns metadata information about a given pool in a KV store.

Batching

batch get(...) Retrieves values for a batch of specified keys.

batch put(...) Sets the values for a batch of specified keys.

batch delete(...) Deletes the KV pairs associated with a batch of specified keys.

delete all(...) Deletes all KV pairs from a NVMKV store in all pools.

Management

open(...) Opens a given NVMKV store for supported operations.

close(...) Closes a NVMKV store.

create(...) Creates a NVMKV store

destroy(...) Destroys a NVMKV store.

Table 1: NVMKV API The table provides brief descriptions for the NVMKV API calls.
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Figure 1: NVMKV System Architecture

at raw flash device performance by definition. This ap-

proach also reduces the additional DRAM overhead of

NVMKV.

Persistence and transactional support: FTLs access

data and metadata, and in particular maintain the per-

sistence of indirection maps, at the speed of raw flash.

NVMKV leverages this highly tuned capability to re-

duce the overhead for metadata persistence, logging, and

checkpointing operations. Further, as FTLs operate as

non-overwriting redirect-on-write stores, they can eas-

ily provide high performance transactional write seman-

tics [35]. NVMKV leverages these capabilities to limit

locking and journaling overheads.

Parallel operations: FTLs already implement highly

parallel read/write operations while coordinating meta-

data access and updates. NVMKV leverages this FTL

feature to minimize locking, thus improving scalability.

We also define batch operations that are directly executed

by the FTL to enable parallel KV store requests to be is-

sued with lower I/O stack overhead [40].

3.3 NVMKV Architecture

NVMKV is a lightweight library in user space which in-

teracts with the FTL through a primitives interface im-

plemented as IOCTLs to the device driver that manages

the flash device. Figure 1 shows the architecture of a sys-

tem with NVMKV. Consumer applications, such as scale

out KV stores, communicate with the NVMKV library

using the NVMKV API. The NVMKV API calls are

translated to underlying FTL primitives interface calls to

be executed by the FTL.

3.4 NVMKV Consumer API

NVMKV’s consumer applications interact with the li-

brary through the NVMKV API. We held discussions

with the creators and vendors of several scale out KV

stores to identify a set of operations commonly needed

in a KV store. These operations formed the NVMKV

API and they fall under five broad categories based on

the functionality they provide. The categories are: basic,

iterate, pools, batching, and management.

Table 1 presents the overview of the NVMKV API. We

leverage the FTL’s ability to provide enhanced operations

such as Atomic Writes to provide transactional guaran-

tees in NVMKV operations. Most existing KV stores

do not offer such guarantees for their operations, and

adopt more relaxed semantics such as eventual consis-

tency to provide higher performance. On the other hand,

we found that our approach enabled us to provide trans-

actional guarantees with no loss of performance. We be-

lieve such guarantees can be of use to specific classes

of applications as well as for simplifying the store logic

3



Category API Description

Basic

read(...) Reads the data stored in the Logical Block Address (LBA).

write(...) Writes the data stored in buffer to destination LBA.

trim(...) Deletes (or discards) the mapping in FTL for the passed LBA range.

Sparse

exists(...) Returns the presence of FTL mapping for the passed LBA.

range exist(...) Returns the subset of LBA ranges that are mapped in the FTL.

ptrim(...) Persistently deletes the mapping in FTL for the passed LBA range.

iterate(...) Returns the next populated LBA starting from the passed LBA.

atomic read(...) Executes read for a contiguous LBAs as an ACID transaction.

Transactional atomic exists(...) Executes exists for a contiguous LBAs as an ACID transaction.

Persistence atomic write(...) Executes write of a contiguous LBAs as an ACID transaction.

atomic ptrim(...) Executes ptrim of a contiguous LBAs as an ACID transaction.

Conditional
cond atomic write(...) Execute the atomic write only if a condition is satisfied.

cond range read(...) Returns the data only from a subset of LBA ranges that are mapped in the FTL.

Batching Operations within each category can be batched and executed in the FTL.

Table 2: FTL Primitive Interface Enhanced FTL capabilities that NVMKV builds upon.

contained within such applications. For instance, atomic

KV operations imply that applications no longer need to

be concerned with partial updates to flash.

The Basic and Iterate categories contain common fea-

tures provided by many KV stores today. The Pools cat-

egory interfaces allow for grouping KV pairs into buck-

ets that can be managed separately within an NVMKV

store. Pools provide the ability to transparently run mul-

tiple KV stores within the same FTL (discussed in more

detail in § 6). The Batching category interfaces allow

for group operations both within and across Basic, Iter-

ate, and Pools categories, a common requirement in KV

stores [18]. Finally, the Management category provides

interfaces to perform KV store management operations.

4 Overview and FTL Integration

NVMKV’s design is closely linked to the advanced capa-

bilities provided by modern FTLs. Before describing its

design in more detail, we provide a simple illustrative ex-

ample of NVMKV’s operation and discuss the advanced

FTL capabilities that NVMKV leverages.

4.1 Illustrative Overview

To illustrate the principles behind NVMKV’s design sim-

ply, we now walk through how a get, a put, and a

delete operation are handled. We assume the sizes of

keys and values are fixed and then address arbitrary sizes

when we discuss design details (§5).

By mapping all KV operations to FTL operations,

NVMKV eliminates any additional KV metadata in

memory. To handle puts, NVMKV computes a hash on

the key and uses the hash value to determine the location

(i.e., LBA) of the KV pair. Thus, a put operation gets

mapped to a write operation inside the FTL.

A get operation takes a key as input and returns the

value associated with it (if the key exists). During a get

operation, a hash of the key is computed first to deter-

mine the starting LBA of the KV pair’s location. Using

the computed LBA, the get operation is translated to a

read operation to the FTL wherein the size of the read is

equal to the combined sizes of the key and value. The

stored key is matched with the key of the get operation

and in case of a match, the associated value is returned.

To handle a delete operation, the given key is hashed

to compute the starting LBA of the KV pair. Upon con-

firming that the key stored at the LBA is the key to be

deleted, a discard operation is issued to the FTL for the

range of LBAs containing the KV pair.

In this simplistic example, translating existing KV op-

erations to FTL operations is straightforward and the KV

store becomes a thin layer offloading most of its work to

the underlying FTL with no in-memory metadata. How-

ever, additional work is needed to handle hash collisions

in the LBA space and persisting discard operations.

4.2 Leveraging FTL Capabilities

We now describe the advanced FTL capabilities that are

available and also extended to enable NVMKV. Many of

these advanced FTL capabilities have already been used

in other applications [20, 29, 35, 37, 43]. The FTL inter-

face available to NVMKV is detailed in Table 2.

4.2.1 Dynamic Mapping

Conventional SSDs provide a dense address space, with

one logical address for every advertised available phys-

ical block. This matches the classic storage model, but

forces applications to maintain separate indexes to map

items to the available LBAs. Sparse address spaces are

available in advanced FTLs which allow applications to

address the device via a large, thinly provisioned, vir-

tual address space [35, 37, 43]. Sparse address entries

are allocated physical space only upon a write. In the

NVMKV context, a large address space enables sim-

ple mapping techniques such as hashing to be used with

manageable collision rates.
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Additional primitives are required to work with sparse

address spaces. EXISTS queries whether a particular

sparse address is populated. PTRIM is a persistent and

atomic deletion of the contents at a sparse address. These

primitives can be used for individual, or ranges of, loca-

tions. For example, RANGE-EXISTS returns a subset of a

given virtual address range that has been populated. The

ITERATE primitive is used to cycle through all populated

virtual addresses, whereby ITERATE takes a virtual ad-

dress and returns the next populated virtual address.

4.2.2 Transactional Persistence

The transactional persistence capabilities of the FTL

are provided by ATOMIC-WRITE and PTRIM [20, 29].

ATOMIC-WRITE allows a sparse address range to be writ-

ten as a single ACID compliant transaction.

4.2.3 Optimized Parallel Operations

The FTL is well-placed to optimize simultaneous device-

level operations. Two classes of FTL primitives,

conditional and batch, provide atomic parallel opera-

tions that are well-utilized by NVMKV. For example,

cond atomic write allows for an atomic write to be

completed only if a particular condition is satisfied,

such as the LBA being written to is not already popu-

lated. This primitive removes the need to issue separate

exists and atomic write operations. Batch or vec-

tored versions of all primitives are also implemented into

the FTL (such as batch read, batch atomic write,

and batch ptrim) to amortize lock acquisition and sys-

tem call overhead. The benefits of batch (or vector) op-

erations have been explored earlier [41].

5 Design Description

NVMKV implements novel techniques to make sparse

addressing practical and efficient for use in KV stores

and for providing low-latency, transactional persistence.

5.1 Mapping Keys via Hashing

Conventional KV stores employ two layers of transla-

tions to map keys to flash device locations, both of which

need to be persistent [8, 10, 13]. The first layer translates

keys to LBAs. The second layer (i.e., the FTL) translates

the LBAs to physical locations in flash device. NVMKV

leverages the FTLs sparse address space and encodes

keys into sparse LBAs via hashing, thus collapsing an

entire layer.

NVMKV divides the sparse address into equal sized

virtual slots, each of which stores a single KV pair. More

specifically, the sparse address space (with addressabil-

ity through N bits) is divided into two areas: the Key Bit

Range (KBR) and the Value Bit Range (VBR). This di-

vision can be set by the user at the time of creating the

LBA = hash(k, pid)

get(k, pid)

put(< k, v >, pid)

read(LBA, . . .)

write(LBA, . . .)

NVMKV VSL

LBA = [047|146| . . . |113|112
︸ ︷︷ ︸

hash36(k,pid)

|011| 110| . . . |001|100
︸ ︷︷ ︸

hash11(pid)

]

Figure 2: Hash model used in NVMKV. The arguments to

the functions represent k:key, v:value, and pid:pool id.

NVMKV store. The VBR defines the amount of contigu-

ous address space (i.e., maximum value size or virtual

slot size) reserved for each KV pair. The KBR deter-

mines the maximum number of such KV pairs that can

be stored in a given KV store. In the expected use cases,

the sparse virtual address range provided by the KBR

will still be several orders of magnitude larger than the

number of KV pairs as limited by the physical media.

The keys are mapped to LBAs through a simple hash

model as shown in Figure 2. User supplied keys can be

of variable length up to the maximum supported key size.

To handle a put operation, the specified key is hashed

into an address which also provides its KBR value. The

maximum size of the information (Key, Value, metadata)

that can be stored in a given VBR is half of the size ad-

dressed by the VBR. For example, if the VBR is 11 bits

and each address represents a 512B sector, a given VBR

value can address 2 MB.

The above layout guarantees the following two proper-

ties. First, each VBR contains exactly one KV pair, en-

suring that we can quickly and deterministically search

and identify KV pairs stored in the flash device. Sec-

ond, no KV pairs will be adjacent in the sparse address

space. In other words, there is always unpopulated vir-

tual addresses between every KV pair. This deliberately

wasted virtual space does not translate into unutilized

storage since it is in virtual and physical space. These

two properties are critical for NVMKV as the value size

and exact start location of the KV pair are not stored as

part of NVMKV metadata but are inferred via the FTL.

Doing so helps in significantly reducing the in-memory

metadata footprint of NVMKV. Non-adjacent KV pairs

in the sparse address space help in determining the value

size along with the starting virtual address of each KV

pair. To determine the value size, NVMKV issues a

range exist call to the FTL.

A direct consequence of this design is that every ac-

cess pattern becomes a random pattern, losing any possi-

ble order in the key space. The decision to not preserve

sequentiality was shaped by two factors: metadata over-

head and flash I/O performance. To ensure sequential
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writes for contiguous keys, additional metadata would

be required. This metadata would have to be consulted

when reading, updated after writing, and cached in RAM

to speed up the lookups. While straightforward to imple-

ment, doing so is unnecessary since the performance gap

between random and sequential access for flash is ever

decreasing; for current high performance flash devices,

it is practically non-existent.

5.2 Handling Hash Collisions

Hashing variable sized keys into fixed size virtual slots

could result in collisions. Since each VBR contains ex-

actly one KV pair, hash conflicts only occur in the KBR.

To illustrate the collision considerations, consider the

following example. A 1TB Fusion-io ioDrive can con-

tain a maximum of 231 (2 billion) keys. Given a 48 bit

sparse address space with 36 bits for KBR and 12 bits

for VBR, NVMKV would accommodate 236 keys with

a maximum value size of 512KB. Under the simplifying

assumption that our hash function uniformly distributes

keys across the value ranges, for a fully-utilized 1TB io-

Drive, the chances of a new key insertion resulting in a

collision is 1/25 or a little under 3 percent.

NVMKV implicitly assumes that the number of KBR

values is sufficiently large, relative to the number of keys

that can be stored in a flash device, so that the chances

of a hash collision are small. If the KV pair sizes are

increased, the likelihood of a collision reduces because

the device can accommodate fewer keys while preserv-

ing the size of the key address space. If the size of the

sparse address space is reduced, the chances of a colli-

sion will increase. Likewise, if the size of the flash de-

vice is increased without increasing the size of its sparse

address space, the likelihood of a collision will increase.

Collisions are handled deterministically by computing

alternate hash locations using either linear or polynomial

probing. By default, NVMKV uses polynomial probing

and up to eight hash locations are tried before NVMKV

refuses to accept a new key. With this current scheme, the

probability of a put failing due to hash failure is vanish-

ingly small. Assuming that the hash function uniformly

distributes keys, the probability of a put failing equals

the probability of 8 consecutive collisions. This is ap-

proximately (1/25)8 = 1/240, roughly one failure per

trillion put operations. The above analysis assumes that

the hash function used is well modeled by a uniformly

distributing random function. Currently, NVMKV uses

the FNV1a hash function [5] and we experimentally val-

idated our modeling assumption.

5.3 Caching

Caching is employed in two distinct ways within

NVMKV. First, a read cache speeds up access to fre-

quently read KV pairs. NVMKV’s read cache implemen-

medata data

NVMKV layout on a sparse block layer

store-info bitmap . . .

2MB

header key value| |
offset

expiry pid size . . .

44B

2MB region for single record

Figure 3: NVMKV layout

tation is based on LevelDB’s cache [26]. The read cache

size is configurable at load time. Second, NVMKV uses

a collision cache to improve collision handling perfor-

mance. It caches the key hash (the sparse LBA) along

with the actual key which is used during puts (i.e., in-

serts or updates). If the cached key matches the key to be

inserted, the new value can be stored in the correspond-

ing slot (the key’s hash value). This significantly reduces

the number of additional I/Os needed during collision

resolution. In most cases, only a single I/O is needed

for a get or a put to return or store the KV pair.

5.4 KV Pair Storage and Iteration

KV pairs are directly mapped to a physical location in

the flash device and addressable through the FTL’s sparse

address space. In our current implementation, the min-

imum unit of storage is a sector and KV pairs requiring

less than 512B will consume a full 512B sector. Each KV

pair also contains metadata stored on media. The meta-

data layout is shown in Figure 3; it includes the length

of the key, the length or the value, pool identifier (to be

discussed further in §6), and other information.

To minimize internal fragmentation, NVMKV packs

and stores the metadata, the key, and the value in a single

sector whenever possible. If the size of the KV pair and

the metadata is greater than a sector, NVMKV packs the

metadata and key into the first sector and stores the value

starting from the second sector. This layout allows for

optimal storage efficiency for small values and zero-copy

data transfer into the users buffer for larger values.

NVMKV supports unordered iteration through all KV

pairs stored in the flash device. Key iteration is ac-

complished by iterating across the populated virtual ad-

dresses inside the FTL in order. The iterator utilizes the

ITERATE primitive in the FTL, which takes in the previ-

ously reported start virtual address and returns the start

address of the next contiguously populated virtual ad-

dress segment in the sparse address space. Note that this

approach relies on the layout guarantee that each KV pair

is located contiguously in a range of virtual addresses,

and that there are unpopulated virtual addresses in be-

tween each KV pair.
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5.5 Optimizing KV Operations

NVMKV’s design goal is one I/O for a get or a put op-

eration. For get, this is achieved with the KV data layout

and the CONDITIONAL-RANGEREAD primitive. The lay-

out guarantees that individual KV pairs occupy a single

contiguous section of the sparse address space, separated

from other KV pairs by unpopulated virtual addresses.

Given this, a CONDITIONAL-RANGEREAD can retrieve

the entire KV pair in one operation without knowing the

size of the value up front. Second, collisions induce a

minimal number of additional operations. Since get and

put operations for a given key map to hash addresses in

a deterministic order, and since put places the new KV

pair at the first available hash address (that is currently

unused) in this order, subsequent gets are guaranteed to

retrieve the most recent data written to this key. Finally,

DELETE operations may require more than one I/O per

operation, since they are required to read and validate

the key before issuing a PTRIM. It also needs to check

multiple locations to ensure that previous instances of a

particular key have all been deleted.

NVMKV is intended to be zero copy and avoid mem-

ory comparison operations wherever possible. First, for

any value that is large enough to start at its own sec-

tor, the data retrieved from a get (or written during a

put) operation will be transferred directly to (or from)

the user provided memory buffer. Second, no key com-

parisons occur unless the key hashes match. Given that

the likelihood of collisions is small, the number of key

comparisons that fail is also correspondingly small.

6 Multiple KV Instances Via Pools

Pools in NVMKV allow applications to group related

keys into logical abstractions that can then be managed

separately. Besides simplifying KV data management

for applications, pools enable efficient access and iter-

ation of related keys. The ability to categorize or group

KV pairs also improves the lifetime of flash devices.

6.1 Need for Pools

NVMKV as described thus far, can support multiple in-

dependent KV stores. However, it would need to ei-

ther partition the physical flash device to create multiple

block devices each with its own sparse address space or

logically partition the single sparse address space to cre-

ate block devices to run multiple instances of KV stores.

Unfortunately, both approaches do not work well for

flash. Since it is difficult to predict the number of KV

pairs or physical storage needed in advance, static par-

titioning would result in either underutilization or insuf-

ficient physical capacity for KV pairs. Further, smaller

capacity physical devices would increase pressure on the

garbage collector, resulting in both increased write am-

plification and reduced KV store performance. Alterna-

tively, partitioning the LBA space would induce higher

key collision rates as the KBR would be shrunk depend-

ing on the number of pools that need to be supported.

6.2 Design Overview

NVMKV encodes pools within the sparse LBA to avoid

any need for additional in-memory pool metadata. The

encoding is done by directly hashing both the pool ID

and the key to determine the hash location within the

KBR. This ensures that all KV pairs are equally dis-

tributed across the sparse virtual address space regard-

less of which pool they are in. Distributing KV pairs of

multiple pools evenly across the sparse address space not

only retains the collision probability properties but also

preserves the get and put performance with pools.

Pool IDs are also encoded within the VBR to opti-

mally search or locate pools within the sparse address

space. Encoding pool IDs within the VBR preserves the

collision properties of NVMKV. The KV pair start offset

within the VBR determines the Pool ID. The VBR size

determines the maximum number of pools that can be

addressed without hashing, while also maintaining the

guarantee that each KV pair is separated from neigh-

boring KV pairs by unpopulated sparse addresses. For

example, with a 12 bit VBR, the maximum number of

pools that can be supported without pool ID hashing is

1024. If the maximum number of pools is greater than

1024, the logic of get is modified to also retrieve the

KV pair metadata that contains the pool ID now needed

to uniquely identify the KV pair.

6.3 Operations

Supporting pools requires changes to common opera-

tions of the KV store. We now describe three important

operations in NVMKV that have either been added or

significantly modified to support pools.

Creation and Deletion: Pool creation is a lightweight

operation. The KV store performs a one-time write to

record the pool’s creation in its persistent configuration

metadata. On the other hand, pool deletion is an ex-

pensive operation since all the KV pairs of a pool are

distributed across the entire LBA space, each requiring

an independent PTRIM operation. NVMKV implements

pool deletion as an asynchronous background operation.

Upon receiving the deletion request, the library marks

the pool as invalid in its on-drive metadata, and the ac-

tual deletion of pool data occurs asynchronously.

Iteration: NVMKV supports iteration of all KV pairs

in a given pool. If no pool is specified, all key-value

pairs on the device are returned by the iteration routines.

Iteration uses the ITERATE primitive of the FTL to find

the address of the next contiguous chunk of data in the

sparse address space. During pool iteration, each con-

tiguous virtual address segment is examined as before.
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However, the iterator also examines the offset within the

VBR of each starting address, and compares it to the pool

ID, or the hash of the pool ID, for which iteration is be-

ing performed. Virtual addresses are only returned to the

KV store if the pool ID match succeeds.

NVMKV guarantees that each KV pair is stored in a

contiguous chunk, and that adjacent KV pairs are always

separated by at least one empty sector, so the address re-

turned by ITERATE locates the next KV pair on the drive

(see §5.1). When the maximum number of pools is small

enough that each pool ID can be individually mapped to

a distinct VBR offset, the virtual addresses returned by

the ITERATE primitive are guaranteed to belong to the

pool currently being iterated upon. When the maximum

number of pools is larger, the ITERATE uses the hash of

the pool ID for comparison. In this case, the virtual ad-

dresses that match are not guaranteed to be part of the

current pool, and a read of the first sector of the KV pair

is required to complete the match.

7 Implementation

NVMKV is implemented as a stand-alone KV store writ-

ten in C++ using 6300 LoC. Our current prototype works

on top of ioMemory VSL and interacts with the FTL us-

ing the IOCTL interface [25]. The default subdivision

for KBR and VBR used in the current implementation is

36 bits and 12 bits respectively, in a 48 bit address space.

The KBR/VBR subdivision is also configurable at KV

store creation time. To accelerate pool iteration, we im-

plemented filters inside the ITERATE/BATCH-ITERATE

FTL primitives. During the iteration of keys from a par-

ticular pool, the hash value of the pool is passed along

with the IOCTL arguments to be used as a filter for the

iteration. The FTL services (BATCH-)ITERATE by re-

turning only populated ranges that match the filter. This

reduces data copying across the FTL and NVMKV.

7.1 Extending FTL Primitives

We extended the FTL to better support NVMKV.

ATOMIC-WRITE and its vectored forms are implemented

in a manner similar to what has been described by

Ouyang et al. [35]. Atomic operations are tagged within

the FTL log structure, and upon restart, any incom-

plete atomic operations are discarded. Atomic writes are

also not updated in the FTL map until they are com-

mitted to the FTL log to prevent returning partial re-

sults. ITERATE and RANGE-EXISTS are implemented

as query operations over the FTL indirection map.

CONDITIONAL-READ and CONDITIONAL-WRITE are

emulated within NVMKV in the current implementation.

7.2 Going Beyond Traditional KV Stores

NVMKV provides new capabilities with strong guaran-

tees relative to traditional KV stores. Specifically, it

provides full atomicity, isolation, and consequently se-

rializability for basic operations in both individual and

batch submissions. Atomicity and serializability guar-

antees are provided for individual operations within a

batch, not for the batch itself. The atomicity and iso-

lation guarantees provided by NVMKV rely heavily on

the ATOMIC-WRITE and PTRIM primitives from the FTL.

Each put is executed as a single ACID compliant

ATOMIC-WRITE, which guarantees that no get running

in parallel will see partial content for a KV pair. The get

operation opportunistically retrieves the KV pair from

the first hash location using cond range read to guar-

antee the smallest possible data transfer. In the unlikely

event of a hash collision, the next hash address is used.

Since the hash address order is deterministic, and every

get or put to the same key will follow the same order,

and every write has atomicity and isolation properties,

get is natively thread safe requiring no locking.

When ATOMIC-WRITEs are used, put operations re-

quire locking for thread safety because multiple keys can

map to the same KBR. When a CONDITIONAL-WRITE

(which performs an atomic EXISTS check and WRITE of

the data in question) is used, put operations can also be

made natively thread safe. Individual iterator calls are

thread safe with respect to each other and to get/put

calls; thus, concurrent iterators can execute safely.

The ITERATE primitive is also supported in batch

mode for performance. BATCH-ITERATE returns multi-

ple start addresses in each invocation, reducing the num-

ber of IOCTL calls. For each LBA range returned, the

first sector needs to be read to retrieve the key for the

target KV pair.

8 Evaluation

Our previous work established performance of the ba-

sic approach used in NVMKV, contrasting it relative to

block device performance [33]. Our evaluation addresses

a new set of questions:

(1) How effective is NVMKV in supporting multiple

KV stores on the same flash device? How well do

NVMKV pools scale?

(2) How effective is NVMKV in trading off DRAM for

flash by sizing its read cache?

(3) How effective is NVMKV in improving the en-

durance of the underlying flash device?

(4) How sensitive is NVMKV to the size of its collision

cache?

8.1 Workloads and Testbed

We use LevelDB [26], a well-known KV store as the

baseline for our evaluation of NVMKV. LevelDB uses

a logging-based approach to write to flash and uses com-

paction mechanisms for space reclamation. Our eval-
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Figure 4: Comparing multiple identical instances of Lev-

elDB with a single instance of NVMKV with equal num-

ber of pools.

uation consists of two parts. We answer question (1)

above using dedicated micro-benchmarks for NVMKV

and LevelDB. We then answer questions (2), (3), and

(4) using the YCSB macro-benchmark [19]. We used

the YCSB workloads A, B, C, D, and F with a data set

size of 10GB; workload E performs short range-scans

and the YCSB Java binding for NVMKV does not sup-

port this feature currently. We also used a raw device

I/O micro-benchmark which was configured so that I/O

sizes were comparable to the sizes of the key-value pairs

in NVMKV. Our experiments were performed on two

testbeds, I and II. Testbed I was a system with a Quad-

Core 3.5 GHz AMD Opteron(tm) Processor, 8GB of

DDR2 RAM, and a 825GB Fusion-io ioScale2 drive run-

ning Linux Ubuntu 12.04 LTS. Testbed II was a sys-

tem with a 32 core Intel(R) Xeon(R) CPU E5-2690 0

@ 2.90GHz with 128 GB DDR3 RAM, and a 1.2TB

Fusion-io ioDrive2 running Linux Ubuntu 12.04.2 LTS.

8.2 Micro-Benchmarks

Our first experiment using Testbed II answers question

(1). We ran a single instance of NVMKV and mea-

sured the throughput of reads and writes as functions of

the number of NVMKV pools. NVMKV also used as

many threads as pools. We compared its performance

against multiple instances of LevelDB. Both KV stores

were configured to use the same workload, sizes of key-

value pairs, and accessed a total of 500 MB of data. In

addition, LevelDB used both its own user-level cache of

size 1GB and the operating system’s file system cache as

well. On the other hand, NVMKV used neither. Lev-

elDB provides two options for writes, a low-performing

but durable sync and the high performing async, and we

include them both here. NVMKV, on the other hand,

performs all writes synchronously and atomically, and

thus only a synchronous configuration is possible.

Figure 4 provides a performance comparison. Due to

its low-latency flash-level operations, NVMKV almost

equals LevelDB’s primarily in-memory performance for

up to 32 pools/instances. LevelDB continues scaling be-

yond 32 parallel threads; its operations continue to be

memory-cache hits while NVMKV must perform flash-

level accesses (wherein parallelism is limited) for each

operation. When writing, NVMKV outperforms Lev-

elDB’s sync as well as async versions despite not using

the filesystem cache at all. Even when LevelDB was

configured to use async writes, it was about 2x slower

than NVMKV in the best case, and about 6.5x slower

at its worst. For synchronous writes, a more comparable

setup, NVMKV outperforms LevelDB between 643x (64

pools) and 1030x faster (1 pool).

8.3 DRAM Trade-off and Endurance

This second experiment using Testbed I addresses ques-

tions (2) and (3). NVMKV uses negligible in-memory

metadata and does not use the operating system’s page

cache at all. It implements a read cache whose size can

be configured, allowing us to trade-off DRAM for flash,

thus providing a tunable knob for trading off cost for per-

formance. To evaluate the effectiveness of the collision

cache, we evaluate two variants of NVMKV, one with-

out the collision cache and the other when it uses 64MB

of collision cache space. We used the YCSB benchmark

for this experiment. We present the results from both the

load phase, that is common to all workload personalities

implemented in YCSB, and the execution phase, that is

distinct across the workloads.

Figure 5 (top) depicts throughput as a function of the

size of the application-level read cache available to Lev-

elDB and NVMKV. Unlike NVMKV, LevelDB accesses

use the file system page cache as well. Despite this,

NVMKV outperforms LevelDB during both phases of

the experiment, load and execution, by a significant mar-

gin. Further, the gap in performance increases as the size

of the cache increases for every workload. This is be-

cause YCSB’s workloads favor reads in general, vary-

ing from 50%, in the case of workload A, all the way to

100% in the case of workload C. Furthermore, the YCSB

workloads follow skewed data access distributions, mak-

ing even a small amount of cache highly effective.

To better understand these results, we also collected

how much data was written to the media while the ex-

periments were running. All workload were configured

to use 10GB of data, so any extra data that is written to

the media is overhead introduced by NVMKV or Lev-

elDB. Figure 5 (bottom) depicts the results of the write

amplification. By the end of each experiment, LevelDB

has written anywhere from 42.5x to 70x extra data to the

media. This seems to be a direct consequence of its inter-

nal design which migrates the data from one level to the

next, therefore copying the same data multiple times as it

ages. NVMKV on the other hand, introduces a write am-

plification of 2x in the worst case. We believe this to be
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tion Comparison between NVMKV and LevelDB using YCSB workloads (below).
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Figure 6: Collision cache impact on YCSB workloads.

the main reason for the performance difference between

the two KV Stores.

Finally, the effect of NVMKV’s collision cache is

highly sensitive to the workload type. As expected, for

read-intensive workloads (i.e., B, C, and D) the presence

of collision cache has little to no impact at all. On the

other hand, the update heavy workloads (i.e., A and F)

benefit significantly from the collision cache, increasing

the performance up to 76% and 56% respectively. Sur-

prisingly the load phase is negatively affected by the col-

lision cache, and performance decreases by up to 11%.

8.4 Effectiveness of the Collision Cache

We used Testbed II to address question (4). We measured

YCSB workload throughput when varying the size of the

collision cache in NVMKV. During this experiment, the

read cache was disabled to eliminate other caching ef-

fects. As shown in Figure 6, the presence of the collision

cache benefits workloads A and F with a throughput im-

provement of 28% and 10% respectively. Read-mostly

workloads (B, C, and D) do not benefit from the colli-

sion cache since the probability of collision is low and a

single flash-level read is necessary to service KV GET op-

erations. A and F involve writes and these benefit from

the collision cache. The collision cache optimizes the

handling repeated writes to the same location by elimi-

nating the reading of the location (to check for collisions)

prior to the write. Finally, the loading phase does not

demonstrate any benefit from the collision cache mainly

because of YCSB’s key randomization during inserts.

9 Discussion and Limitations

Through the NVMKV implementation, we were able to

achieve a majority of our design goals of building a flash-

aware lightweight KV store that leverages advanced FTL

capabilities. We made several observations through the

design and development process.

It is valuable for atomic KV operations, such as those

described by Ouyang et al. [35], to be fully ACID com-

pliant. The usage described in Ouyang et al.’s work only

required the durable writes to have the atomicity prop-

erty. We found that having isolation and consistency en-

ables reduced locking and in some cases, fully lock free

operation, at the application level. For example, updat-

ing multiple KV pairs atomically as a single batch can

help provide application-level consistent KV store state

without requiring additional locks or logs.

Many primitives required by NVMKV are the same

as those required by other usages of flash. FlashTier, a

primitives based solid state cache leverages the sparse
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addressing model, and the EXISTS and PTRIM FTL

primitives [37], as does DirectFS, a primitives based

filesystem [4, 29].

NVMKV suffers from internal fragmentation for small

KV pairs. Since we map individual KV pairs to separate

sectors, NVMKV will consume an entire sector (512B)

even for KV pairs smaller than the sector size. While this

does not pose a problem for many workloads, there are

those for which it does. For the second group of work-

loads, NVMKV will have poor capacity utilization. One

way to manage efficient storage of small KV pairs is

to follow a multi-level storage mechanism, as provided

in SILT [31], where small items are initially indexed

separately and later compacted into larger units such as

sectors. We believe that implementing similar methods

within the FTL itself can be valuable.

10 Related Work

Most previous work on FTL-awareness has focused on

leveraging FTL capabilities for simpler and more effi-

cient applications, focusing on databases [35], file sys-

tems [29] and caches [37]. NVMKV is the first to present

the complete design and implementation of an FTL-

aware KV store and explains how specific FTL primitives

can be leveraged to build a lightweight and performant

KV store. NVMKV is also the first to provide support for

multiple KV instances (i.e., pools) on the same flash de-

vice. Further, NVMKV trades-off main memory for flash

well as evidenced in the evaluation of a read cache imple-

mentation. Finally, NVMKV extends the use of the FTL

primitives in a KV store to include conditional-primitives

and batching.

There is substantial work on scale-out KV stores

and many of the recent ones focus on flash. For ex-

ample, Dynamo [23] and Voldemort [39] both present

scale out KV stores with a focus on predictable perfor-

mance and availability. Multiple local node KV stores

are used underneath the scale out framework and these

are expected to provide get, put, and delete opera-

tions. NVMKV complements these efforts by providing

a lightweight, ACID compliant, and high-performance,

single-node KV store.

Most flash-optimized KV stores use a log structure

on block-based flash devices [10, 14, 17, 18, 21, 31].

FAWN-KV [14] focused on power-optimized nodes and

uses an in-memory map for locating KV pairs at they

rotate through the log. FlashStore [21] and SkimpyS-

tash [22] take similar logging-based approaches to pro-

vide high-performance updates to flash by maintaining

an in-memory map. SILT [31] provides a highly mem-

ory optimized multi-layer KV store, where data transi-

tions between several intermediate stores with increas-

ing compaction as the data ages. Unlike the above men-

tioned systems, NVMKV eliminates an entire additional

layer of mapping along with in-memory metadata man-

agement by utilizing the FTL mapping infrastructure.

There are several popular disk optimized KV stores [3,

8, 26]. Memcachedb [3] provides a persistent back

end to the in-memory KV store, memcached [2], us-

ing BerkeleyDB [34]. BerkeleyDB, built to operate on

top a black-box block layer, caches portions of the KV

map in DRAM to conserve memory and incurs read am-

plification on map lookup misses. MongoDB, a cross-

platform document-oriented database, and LevelDB, a

write-optimized KV store, are HDD based KV stores.

Disk-based object stores can also provide KV capabili-

ties [28, 30, 32, 36]. Disk-based solutions do not work

well on flash because the significant AWA that they in-

duce reduces the flash device lifetime by orders of mag-

nitude [33].

Finally, we examine the role of consistency in KV

stores in the literature. Anderson et al. analyze the

consistency provided by different KV stores [15]. They

observe that while many KV stores offer better perfor-

mance by providing a weaker form of (eventual) consis-

tency, user dissatisfaction when violations do occur is a

concern. Thus, while many distributed KV stores pro-

vide eventual consistency, others have focused on strong

transactional consistency [38]. NVMKV is a unique KV

store that leverages the advanced capabilities of modern

FTLs to offer strong consistency guarantees and high-

performance simultaneously.

11 Conclusions

Leveraging powerful FTL primitives provided by a flash

device allows for rapid and stable code development; ap-

plication developers can exploit features present in the

FTL instead of re-implementing their own mechanisms.

NVMKV serves as an example of leveraging and enhanc-

ing capabilities of an FTL to build simple, lightweight

but highly powerful applications. Through the NVMKV

design and implementation, we demonstrated the impact

to a KV store in terms of code and programming sim-

plicity and the resulting scalable performance that comes

from cooperative interaction between the application and

the FTL. We believe that the usefulness of primitives for

FTLs will only grow. In time, such primitives will fun-

damentally simplify applications by enabling developers

to quickly create simple but powerful, feature-rich appli-

cations with performance comparable to raw devices.
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