Thwarting Virtual Bottlenecks in Multi-Bitrate Streaming Servers

Bin Liu and Raju Rangaswami Zoran Dimitrijevic
Florida International University Google, Inc:
{bliu001,rajy @cs.fiu.edu zorand@gmail.com
Abstract trate of the streams serviced in each time-cycle. If the average

bitrate of streams serviced in a time-cycle is low, the average

Current cycle-based disk 10 schedulers for multi-bitratelO size and the achieved disk throughput are low, potentially
streaming servers are unable to avoid the formation of virtuatesulting in avirtual disk-bandwidth bottleneckVe call this a
bottlenecks. We term a bottleneck dgual when it occurs virtual bottleneck because this bottleneck is a result of a mis-
within a single resource subsystem, and it is possible to us®nfigured time-cycle and may be avoided. One way to avoid
a secondary under-utilized resource to thwart the bottlenecithis bottleneck and increase disk throughput would be to in-
We presenstream combinatignan 10 scheduling technique crease the duration of the time-cycle. However, increasing the
that addresses this problem. Stream combination predicts thigne-cycle suddenly would result in display buffer underflow.
formation of virtual bottlenecks and proactively alters the 10Second, the server memory requirement would also increase
schedule to avoid them. A simulation study suggests signifis a result, increasing faster than the achieved disk utiliza-
cant performance gains compared to the current state-of-théon. Chang et al. analyze memory requirements in streaming

art fixed time-cycle |0 scheduler. servers extensively in [1]. A solution which can increase the
) average request size, without severely impacting the memory
1 Introduction use would eliminate this virtual disk-bandwidth bottleneck.
The design goals ajuaranteed-rate IGandhigh through- Virtual memory-bottlenecksan occur as a result of a high

put within a streaming server requires establishing a tradeverage bitrate of streams. Higher the average bitrate, larger

off between memory-use and disk-bandwidth utilization; thigre the display buffer sizes, and consequently, greater the total

has been long recognized by designers of streaming multhemory requirement. In such situations, time-cycle duration

media systems [7, 8]. The underlying mechanism that de¢eduction can be used to potentially avoid this virtual bottle-

termines this trade-off is the disk 10 scheduling algorithmneck. However, this reduction cannot occur after the bottle-

Prior approaches to scheduling in real-time systems can beck has been established. Proactive and dynamic reduction of

classified into two basic categoriesieadline-based priority time-cycle duration has not been studied before.

scheduling3, 5, 8, 9] andtime-cycle-based schedulirid, 6, In this paper, we proposstream combinationa variant

7]. Deadline-based priority scheduling works excellently foof the time-cycle-based scheduling algorithm that dynamically

CPU scheduling with provable guarantees for task completio@dapts to changing system bottlenecks brought upon by shift-

However, guaranteeing IO rate and performing admission cof?g workloads. Stream combination provides guaranteed-rate

trol under this paradigm requires constant-overhead resourtéé and a provably correct admission control. Using a technique

preemptibility [4], not feasible for disk-based systems. of combining and splitting IO streams and a technique for dy-
The time-cycle-based 10 scheduling model, originallynamic time-cycle alteration, it accounts for and avoids virtual

proposed as quality proportional multi-subscriber servicinglisk- and memory- subsystem bottlenecks until these system

(QPMS) by Rangan et al. [7], is a simpler and more populaiesources are fully utilized.

model for streaming media servers. This is due to the fact thgtq Stream Combination

it supports guaranteed-rate 1O and a provably correct admissi

control mechanism [1]. In this model, each stream is serviced In this section, we present the rationale behind stream com-

exactly one 10 per time-cycle; the retrieved data is stored iRination and the algorithm that drives this technique.

a display buffer. The size of each 10 is such that the display { Rationale

buvsradr%i?tir-]gittruar:gesrtfrlg\évnzﬁforseemgrn?ﬁ; It())u ;f(zarrtgiitezt;%?rgi.f- Virtual bottlenecks can occur when servicing a dynamic
g ' streaming workload in either the memory or disk subsystem.

ferent str eams C.OU|d vary significantly, |mplylng that th_e . Cor'Earlier, we noted that for virtual disk-bandwidth bottlenecks,
responding 10 sizes could also be vastly different. Intuitively

5imply increasing the time-cycle duration is not an acceptable

the O.“Sk _utlllzatlo_n depends on the average |0 size, since thé lution. We investigate further to determine the root cause of
metric directly dictates the overhead component. Lesser trzﬁsk |0 inefficiency. For a stream with bitrafé serviced in a
average 10O size, greater the fraction of per-unit time spent

0tﬂﬂe—cycle of duratiori’, the amount of data retrieved in each

access overheads, and lower the disk utilization. In the timcf-O is R x T and the amount of time spent to perform this 10

cycle model, the disk utilization therefore depends on the bi’s the sum of an (overhead) access tiffig,...., and a data

*This work was performed when the author was at UC, Santa Barbara. retrieval time,g;i , whereRy; . is the data transfer rate from

o] N R e o I] r
me
T T T T

[Legend: =4 Access Overhead m Datatransfer for Stream A Datatransfer for Stream B = Datatransfer for Stream C|

Figure 1. The Stream Combination Technique.

the disk medium. Therefore, the efficiency of the 10 for thestreams and is given by:
stream is:

N K
_ RxT 0 M=3 TxR+3 TxR @)
“ Rdisk' X Taccess +RxT = =t

This equation follows from the observation that combined

Based on Equation 1, we note that a stream with high bitrafr €2MS require buffering for two time-cycle durations as op-

may have fair efficiency while a stream with low bitrate ha osed to one time-cycle duration for uncombined streams.

poor efficiency. This raises the questid@an we combine two hen the _system approaches a poten-tlal virtual memory-
; : ; : : bottleneck, it may be in one of two states: (a) there exist com-
or more low bitrate streams to obtain a single higher bitrate

. - bined streams in the system, and (b) all streams are uncom-
stream and improve 10 efficiency?
bined. In case (a), combined streams can be split to reclaim
Figure 1 presents one possible combination technidie. memory. In case (b), reducing time-cycle duration can reduce
denote time-cycle durations along a time axis. Streams A, Bgtal memory requirement. However, three issues must be con-
and C are currently being serviced by the system. The bitratgdered: (i) if several combined streams exist, which stream
of A is relatively high compared to B and C. In time-cyde must be chosen to split first? (i) how many combined streams
(prior to combination), the 10 scheduler performs one IO eacbhould be split to avoid the bottleneck? (iii) by how much must
per time-cycle per stream, retrievigy, Sp andSc amountof the duration of the time-cycle be reduced to avoid the bottle-
data respectively. The scheduler starts the stream combinatigack? The answer to the question of which combined streams
process in time-cyclé; by retrieving twice the amount of data should be split first is straightforward. Splitting should be per-
for stream B € 2 x Sg). In time-cycleTs, the scheduler does formed first on the high bitrate streams because they allow re-
not perform IO for Stream B, but retrieves twice the amount o¢laiming the maximum amount of memory. However, the other
data for stream C< 2 x S¢). Starting from time cycld, in jssues need further investigation.
any given IO cycle, only one of streams B or C are serviced)
reducing the number of access overheads by one, increasi%g2 Mechanism
the average 10 size, and consequently improving disk utiliza- The basic idea of stream combination is to thwart vir-
tion. Although it is possible (and indeed practical) to combindual bottlenecks in streaming servers by proactively balancing
more than two streams at a time as well as further combiningemory and disk resource consumption under shifting stream
previously combined streams, we do not explore this directioworkload. This balancing act is performed until both mem-
in this paper and leave it to future work. ory and disk resources are fully utilized. To balance these re-

Although such a technique improves disk utilization as a res_ources, we use two parameters, the memory utilizatiom)
9 q P d the time-cycle utilizationu(t). Memory utilization is the

, . . . al
sult, several issues must be considered in a combination stra{]. e . .
ratio of the utilized memory to the available memory, while

egy: (i) the state of the system; combination makes sense OrWne-cycle utilization is the ratio of the utilized time-cycle to

Ifrgla?(l:(t-i\t;:n:r\:\gd:;]uft t:itbz;}g\?vn?ﬁ:,s(lli;tg?nm?én?;:cnh rguzggféhe time-cycle duration. These parameters capture the relative
P Y vailability of memory and disk-bandwidth resources.

neck state before taking effect, (iii) how many streams mus"’% A simplistic stream combination mechanism requires keep-
be combined to avoid the virtual bottleneck? (iv) Combinatior?ng track ofu_m andu_m: whenum < w.t. it combines the

increases memory requirement, and a wrong combination dﬁ\'/o lowest bitrate un-combined streams: whem: > u.t

cision may p.otentially resqlt "? a virual memory-bottleneck,it un-combines or splits the highest bitrate combined stream.
(v) the combination operation incurs a transitory data tr"’mSﬂ?—ﬁowever, this straightforward strategy has several problems:
overhead during the time-cycle in which combination is initi-(i) when choosing to combine, there may be no uncombined
ated, and (vi) after combination, if there is a virtual MEMOYstreams, (i) when choosing to split, there may be no combined

bottlenet;:_k_at somlg I_ater tlms_ dude to shift in thth\;orhoa((jJI’; 'Streams, (iii) this simplistic strategy would typically result in
un-combiningor splitting combined streams straightforward frequent combinations and splits, and (iv) several combination

The second virtual bottleneck is memory consumption. Aseperations in a short duration can lead to a significant transi-
sume that the firsi' out of NV streams served by the systemtory disk-bandwidth overhead for transferring additional data
are in the combined state. R; is the bitrate of streamand for combined streams.

T denotes the time-cycle duration, the total memory require- To avoid these problems, the stream combination 10 sched-
ment for V streams is the sum of the display buffer sizes of aluler uses four heuristics:

Input: Current Workload (W), of total available memory to buffer stream data. The maximum

Output: Nfﬁrggﬁeiﬁﬂeiﬂg) (€S) disk transfer-rate was 50MB/s and the average disk access time
(including seek, rotational, and settle overheads) was 10ms.

Procedure: CheckSchedule { The base-line 10 scheduler chosen was Fixed-Stretch [1], a

f?&?‘p“te {“—’T“"lJl—t} Ifomt T{)VV&S}S (yewm state-of-the-art fixed time-cycle scheduler that balances disk-
u_m>u_m u_tsu_ abs(u_m-u_t)<u_ .
| SFLAG) { Call Reschedule : } bandwidth and memory use.

} Figure 3 tracks the following metrics during a simulation
run of 20 minutes for a workload with uniformly distributed
P“’Sclff/ligi _R?SIChefju'e { stream bitrates between 128 and 1024 kbps and with uniformly
T e a{se ’ distributed request inter-arrival times between 2-7 seconds: (a)
If(combinedStreamsExist) { memory consumption (in MB), and (b) number of streams in
Split highest bitrate combined streams ; service at any instant. The initial time-cycle duration for the
Modify schedule to NS ; stream combination scheduler was the same as that of the fixed
} Else { Decrease Time-cycle by UNIT ; } .] - L.
Recalculate {u_m,u_t} from {W.NS} : t|m_e—cycle scheduler: 500 mllllsegonds. Initially, as streams
If(abs(u_m-u_t)>u_dT) { SFLAG = true ; } arrive, the two scheduling strategies performed similarly. At
return NS ; approximately 200 seconds, the fixed time-cycle scheduler en-
} Blse { . countered a virtual disk-bandwidth bottleneck due to an under-
If(luncombinedStreamsExist) {
Combine lowest bitrate uncombined streams estimated time-cycle duration. The stream combination sched-
Modify schedule to NS ; uler detected the future formation of a virtual disk-bandwidth
} Else { Double Time-cycle duration ; } bottleneck and proactively started combining streams at ap-
Recalculate {u_m,u_t} from {W,NS} ; proximately 100 seconds. As a result, it successfully thwarted
If(@bs(u_m-u_t)>u_dT) { SFLAG = true ; } . .
return NS - the bottleneck. Beyond 200 seconds, the fixed time-cycle
} scheduler was unable to accomodate more number of streams
} . o in a time-cycle. Our scheduler was able to continue servic-
Figure 2. Stream Combination Scheduler. ing greater number of streams in each time-cycle, delivering as

1. When combination is required and no uncombined strearﬁ‘%uch as 55% more throughput than the fixed time-cycle sched-

exist, the scheduler doubles the duration of the time-cycle, efter

fectively un-combining all streams. Notice that this increase [wiou siea Conbinaion - % [T Wilhou Suégp Combrnaton -
in time-cycle duration incurs no overhead. g w W“hs"‘i?ﬁ;:mm ” 0 v i
2. When splitting is required and no combined streams existg f‘* 1 w0
the scheduler decreases the time-cycle by a UNIT percentaée % ﬁ 1 £ ®
value, thereby reducing memory requirement. However, the) *_& i x K
disk utilization degrades due to a reduced average 10 sizg. ‘j = ’
Here, we trade disk-bandwidth to conserve memory. = %"-& !

0

3. It makes provision for three constants, the memory utiliza- ¢ 2w wo w00 mo 0 20 @ o0 &0 10w
tion threshold ¢_mT), the time-cycle utilization threshold reteeed reteee)

(u_tT), and the difference threshold (/7). The decision Figure 3. Comparison for a time-cycle=500ms.

to reschedule is made only in case either memory or time-

cycle utilizations exc:eed their threshold and their Oliﬁerenc‘auration for both schedulers was set to 5 seconds. The gener-
'S greater than. the dlfferenc_e thresho_ld_. ated workload was the same as for the previous experiment. At
4. When a decision to combine or splitis made, the schedulgfound 200 seconds into the simulation, the fixed time-cycle
spreads out multiple required combine or split operations, akcneduler encountered a virtual memory-bottleneck that lim-
lowing only one operation per time-cycle, thereby minimizieq jts throughput. Our scheduler proactively started reducing
ing the transitory disk-bandwidth overhead. This is achieveghe quration of the time-cycle (and the memory consumption
using a scheduling flag (SFLAG). o as a result) at around 100 seconds (See Figure 4(b)) to suc-
The detailed 10 scheduling algorithm is presented in Figure Zessfylly thwart the virtual bottleneck. More time-cycle reduc-
The procedure CheckSchedule is invoked at the beginning g5 occurred beyond 200 seconds, dynamically adapting to
each time-cycle, which in turn invokes the Reschedule procgne increased workload and delivering as much as 100% more
dure if required. throughput than the fixed time-cycle scheduler.
3 E . | Evaluati The above experiments demonstrated the inadequacy of a
xperimental Evaluation statically chosen time-cycle duration. We now determine how
To evaluate the performance of the stream combination I@e throughput of the streaming server (in terms of the maxi-
scheduler, we built a simulator to compare it with a fixed timemum number of streams admitted) depends on the time-cycle
cycle scheduler. The system was configured to have 128M&uration. Figure 5(a) compares against a fixed time-cycle

Figure 4 demonstrates the case where the initial time-cycle

Memory Consumption (MB)

140

120

100

60

40

20
x

60

.

ki
§

Without Stream Combination ~ +

-4

Pt x
i MUY g?mb\nalwon

W iy,

'
f*g &Rb
b

N

Stream in service

50

40

30

20

10

Without Streggn Combination ~ +
Witp St

200

600
Time (secs)

400

800 1000 1200

600 800
Time (secs)

200 400 1000 1200

favor low bitrates and then high bitrates. The fixed time-cycle
scheduler did not have a clear choice for the time-cycle dura-
tion and used the average bitrate as the basis. The stream com-
bination scheduler dynamically varied the time-cycle duration
over time to better match the request traffic and delivered as
much as 30% more throughput. It is important to note that real-
world streaming workloads behave relatively more like work-
load #6 (probably with greater variations) than like workloads

#1-5, underscoring the importance of stream combination.

Figure 4. Comparison for a time-cycle=5000ms.)

4 Conclusions and Future Work

scheduler with different time-cycle durations in each experi- We have presented stream combination, an 10 scheduling
ment, shown along the X-axis. The workload used was thiechnique that avoids virtual bottlenecks in streaming servers.
same as for the previous experiments. As the initial timeThis technique predicts subsystem bottlenecks and proactively
cycle duration is changed, the fixed-time cycle scheduler a@lters the 10 schedule to successfully thwart them until all sys-
mitted different number of streams, achieving its maximum fotem resources are fully utilized. Stream combination achieves
a time-cycle duration of 1.5 seconds. With stream combindts goal using the dynamic techniques of combining low-bitrate
tion, regardless of the initial time-cycle duration, the schedstreams, splitting high-bitrate combined streams, and chang-
uler dynamically altered both its schedule as well as time-cycl@g the time-cycle duration, as required. A simulation study
duration to always provide the maximum throughput. It issuggests that this technique can offer significant performance
important to note that, in case of the fixed time-cycle schedmprovement over fixed time-cycle schedulers. An implemen-
uler, determining the optimal time-cycle duration requires priotation of the stream combination technique is currently being
knowledge of the workload. Second, for real-world streamingncorporated into Xtream [2], a real-time streaming multime-
servers, the natural shift in the workload over time precludedia system. In the future, we plan to evaluate the appropri-
the existence of an optimal time-cycle duration. In such reakteness of the family of deadline-based priority schedulers for
world scenarios, the stream combination scheduler dynantieal-time disk IO scheduling and compare it against the stream
cally adapts to deliver the maximum possible throughput. combination scheduler.

References

300 400

[1] E. Chang and H. Garcia-Molina. Effective Memory Use in a Me-
dia Server. Proceedings of the 23rd VLDB Conferengages
496-505, August 1997.

[2] Z.Dimitrijevic, R. Rangaswami, and E. Chang. The Xtream Mul-
timedia SystemProceedings of the IEEE Conference on Multi-
media and ExppAugust 2002.

K. Jeffay, D. F. Stanat, and C. U. Martel. On Non-Preemptive
Scheduling of Periodic and Sporadic Taskroceedings of the

Twelfth IEEE Real-Time Systems SymposiDatember 1991.
C. Liuand J. Layland. Scheduling Algorithms for Multiprogram-

])) o ming in a Hard Real-Time EnvironmenACM Journal January
Our final experimental result, depicted in Figure 5(b), com- 1973,

pares the relative performance for six different workloads[5] A. Molano, K. Juvva, and R. Rajkumar. Guaranteeing Timing
These workloads were generated by varying both the distri- Constraints for Disk Accesses in RT-MacRroceedings of the
bution of stream bitrates as well as the arrival rates. Work- |EEE Real Time Systems Symposit897.

loads #1-3 used stream bitrates generated from a uniform gie]l B.Ozden, A. Biliris, R. R_astogl, and A. Silberschatz. A Low-cost
tribution. The time-cycle scheduler picked the time-cycle dura- ggor;gn?bse?rilgglor Movie On Demand Databasesmc. VLD

tion based on the. average duration (assuming pr?or knowledg[e,)] P \9 Rangan, H. M. Vin, and S. Ramanathan. Designing and On-
and performed within 8% of the stream combination scheduler.” pemand Multimedia ServicdEEE Communications Magazine
Workloads #4-5 used a non-uniform distribution for stream bi- 30(7):56-65, July 1992.

trates; #4 favored high bitrates and #5 favored low bitrateq8] A. L. Reddy and J. Wyllie. Disk Scheduling in a Multimedia
With workload #4, the primary bottleneck is memory and for /O System Proceedings of the ACM Conference on Multimedia
#5, it is disk-bandwidth, with no virtual bottlenecks formed _ Pages 225-233, 1993.

during these simulations. Even so, the stream combinatio[ﬁ J.C.Wu a.nd S.A. Brand. Storage Access Support for SOﬁ Real-
scheduler was able to fine-tune the time-cycle duration to de- Time Applications.Proceedings OT th? 10th IEEE R.eaI'T'me and

. . Embedded Technology and Applications Symposiames 164—
liver as much as 15% more throughput for workload #5. Fi-

. N - Y 173, May 2004.
nally workload #6 varied the distribution over time to initially

500 1000 1500 2000 2500 3000 3500

(3]

Time Cycle Duration Work load

(a) Varying time-cycle duration. (b) Varying workload.

Figure 5. Throughput comparison. [4]

