
Thwarting Virtual Bottlenecks in Multi-Bitrate Streaming Servers

Bin Liu and Raju Rangaswami
Florida International University
{bliu001,raju}@cs.fiu.edu

Zoran Dimitrijevíc
Google, Inc.∗

zorand@gmail.com

Abstract

Current cycle-based disk IO schedulers for multi-bitrate
streaming servers are unable to avoid the formation of virtual
bottlenecks. We term a bottleneck asvirtual when it occurs
within a single resource subsystem, and it is possible to use
a secondary under-utilized resource to thwart the bottleneck.
We presentstream combination, an IO scheduling technique
that addresses this problem. Stream combination predicts the
formation of virtual bottlenecks and proactively alters the IO
schedule to avoid them. A simulation study suggests signifi-
cant performance gains compared to the current state-of-the-
art fixed time-cycle IO scheduler.

1 Introduction
The design goals ofguaranteed-rate IOandhigh through-

put within a streaming server requires establishing a trade-
off between memory-use and disk-bandwidth utilization; this
has been long recognized by designers of streaming multi-
media systems [7, 8]. The underlying mechanism that de-
termines this trade-off is the disk IO scheduling algorithm.
Prior approaches to scheduling in real-time systems can be
classified into two basic categories:deadline-based priority
scheduling[3, 5, 8, 9] andtime-cycle-based scheduling[1, 6,
7]. Deadline-based priority scheduling works excellently for
CPU scheduling with provable guarantees for task completion.
However, guaranteeing IO rate and performing admission con-
trol under this paradigm requires constant-overhead resource
preemptibility [4], not feasible for disk-based systems.

The time-cycle-based IO scheduling model, originally
proposed as quality proportional multi-subscriber servicing
(QPMS) by Rangan et al. [7], is a simpler and more popular
model for streaming media servers. This is due to the fact that
it supports guaranteed-rate IO and a provably correct admission
control mechanism [1]. In this model, each stream is serviced
exactly one IO per time-cycle; the retrieved data is stored in
a display buffer. The size of each IO is such that the display
buffer does not underflow before the next IO for that stream.

In a multi-bitrate streaming server, the buffer sizes for dif-
ferent streams could vary significantly, implying that the cor-
responding IO sizes could also be vastly different. Intuitively,
the disk utilization depends on the average IO size, since this
metric directly dictates the overhead component. Lesser the
average IO size, greater the fraction of per-unit time spent on
access overheads, and lower the disk utilization. In the time-
cycle model, the disk utilization therefore depends on the bi-

∗This work was performed when the author was at UC, Santa Barbara.

trate of the streams serviced in each time-cycle. If the average
bitrate of streams serviced in a time-cycle is low, the average
IO size and the achieved disk throughput are low, potentially
resulting in avirtual disk-bandwidth bottleneck. We call this a
virtual bottleneck because this bottleneck is a result of a mis-
configured time-cycle and may be avoided. One way to avoid
this bottleneck and increase disk throughput would be to in-
crease the duration of the time-cycle. However, increasing the
time-cycle suddenly would result in display buffer underflow.
Second, the server memory requirement would also increase
as a result, increasing faster than the achieved disk utiliza-
tion. Chang et al. analyze memory requirements in streaming
servers extensively in [1]. A solution which can increase the
average request size, without severely impacting the memory
use would eliminate this virtual disk-bandwidth bottleneck.

Virtual memory-bottleneckscan occur as a result of a high
average bitrate of streams. Higher the average bitrate, larger
are the display buffer sizes, and consequently, greater the total
memory requirement. In such situations, time-cycle duration
reduction can be used to potentially avoid this virtual bottle-
neck. However, this reduction cannot occur after the bottle-
neck has been established. Proactive and dynamic reduction of
time-cycle duration has not been studied before.

In this paper, we proposestream combination, a variant
of the time-cycle-based scheduling algorithm that dynamically
adapts to changing system bottlenecks brought upon by shift-
ing workloads. Stream combination provides guaranteed-rate
IO and a provably correct admission control. Using a technique
of combining and splitting IO streams and a technique for dy-
namic time-cycle alteration, it accounts for and avoids virtual
disk- and memory- subsystem bottlenecks until these system
resources are fully utilized.

2 Stream Combination
In this section, we present the rationale behind stream com-

bination and the algorithm that drives this technique.

2.1 Rationale
Virtual bottlenecks can occur when servicing a dynamic

streaming workload in either the memory or disk subsystem.
Earlier, we noted that for virtual disk-bandwidth bottlenecks,
simply increasing the time-cycle duration is not an acceptable
solution. We investigate further to determine the root cause of
disk IO inefficiency. For a stream with bitrateR serviced in a
time-cycle of durationT , the amount of data retrieved in each
IO is R × T and the amount of time spent to perform this IO
is the sum of an (overhead) access time,Taccess, and a data
retrieval time,R×T

Rdisk
, whereRdisk is the data transfer rate from

���������
���������������� ���������

���������
�������

T1

Data transfer for Stream A Data transfer for Stream B Data transfer for Stream C

���������
������������������ ���������

���������
������� 	�	�	�	�	

	�	�	�	�	

�
�
�
 ���������

���������
��������� ����

����
������� ���������

���������
������� ���������

���������
��������� ���������

���������
���������

�
��

T T T42 3
time

Legend: Access Overhead

Figure 1. The Stream Combination Technique.

the disk medium. Therefore, the efficiency of the IO for the
stream is:

e =
R× T

Rdisk × Taccess + R× T
(1)

Based on Equation 1, we note that a stream with high bitrate
may have fair efficiency while a stream with low bitrate has
poor efficiency. This raises the question:Can we combine two
or more low bitrate streams to obtain a single higher bitrate
stream and improve IO efficiency?

Figure 1 presents one possible combination technique.Ti

denote time-cycle durations along a time axis. Streams A, B,
and C are currently being serviced by the system. The bitrate
of A is relatively high compared to B and C. In time-cycleT1

(prior to combination), the IO scheduler performs one IO each
per time-cycle per stream, retrievingSA, SB andSC amount of
data respectively. The scheduler starts the stream combination
process in time-cycleT2 by retrieving twice the amount of data
for stream B (= 2× SB). In time-cycleT3, the scheduler does
not perform IO for Stream B, but retrieves twice the amount of
data for stream C (= 2 × SC). Starting from time cycleT3, in
any given IO cycle, only one of streams B or C are serviced,
reducing the number of access overheads by one, increasing
the average IO size, and consequently improving disk utiliza-
tion. Although it is possible (and indeed practical) to combine
more than two streams at a time as well as further combining
previously combined streams, we do not explore this direction
in this paper and leave it to future work.

Although such a technique improves disk utilization as a re-
sult, several issues must be considered in a combination strat-
egy: (i) the state of the system; combination makes sense only
if disk-bandwidth is the bottleneck, (ii) combination must be
proactive and must not allow the system to reach a bottle-
neck state before taking effect, (iii) how many streams must
be combined to avoid the virtual bottleneck? (iv) combination
increases memory requirement, and a wrong combination de-
cision may potentially result in a virtual memory-bottleneck,
(v) the combination operation incurs a transitory data transfer
overhead during the time-cycle in which combination is initi-
ated, and (vi) after combination, if there is a virtual memory-
bottleneck at some later time due to shift in the workload, is
un-combiningor splittingcombined streams straightforward?

The second virtual bottleneck is memory consumption. As-
sume that the firstK out of N streams served by the system
are in the combined state. IfRi is the bitrate of streami and
T denotes the time-cycle duration, the total memory require-
ment forN streams is the sum of the display buffer sizes of all

streams and is given by:

M =
N∑

i=1

T ×Ri +
K∑

i=1

T ×Ri (2)

This equation follows from the observation that combined
streams require buffering for two time-cycle durations as op-
posed to one time-cycle duration for uncombined streams.
When the system approaches a potential virtual memory-
bottleneck, it may be in one of two states: (a) there exist com-
bined streams in the system, and (b) all streams are uncom-
bined. In case (a), combined streams can be split to reclaim
memory. In case (b), reducing time-cycle duration can reduce
total memory requirement. However, three issues must be con-
sidered: (i) if several combined streams exist, which stream
must be chosen to split first? (ii) how many combined streams
should be split to avoid the bottleneck? (iii) by how much must
the duration of the time-cycle be reduced to avoid the bottle-
neck? The answer to the question of which combined streams
should be split first is straightforward. Splitting should be per-
formed first on the high bitrate streams because they allow re-
claiming the maximum amount of memory. However, the other
issues need further investigation.

2.2 Mechanism
The basic idea of stream combination is to thwart vir-

tual bottlenecks in streaming servers by proactively balancing
memory and disk resource consumption under shifting stream
workload. This balancing act is performed until both mem-
ory and disk resources are fully utilized. To balance these re-
sources, we use two parameters, the memory utilization (u m)
and the time-cycle utilization (u t). Memory utilization is the
ratio of the utilized memory to the available memory, while
time-cycle utilization is the ratio of the utilized time-cycle to
the time-cycle duration. These parameters capture the relative
availability of memory and disk-bandwidth resources.

A simplistic stream combination mechanism requires keep-
ing track ofu m andu m; whenu m < u t, it combines the
two lowest bitrate un-combined streams; whenu m > u t,
it un-combines or splits the highest bitrate combined stream.
However, this straightforward strategy has several problems:
(i) when choosing to combine, there may be no uncombined
streams, (ii) when choosing to split, there may be no combined
streams, (iii) this simplistic strategy would typically result in
frequent combinations and splits, and (iv) several combination
operations in a short duration can lead to a significant transi-
tory disk-bandwidth overhead for transferring additional data
for combined streams.

To avoid these problems, the stream combination IO sched-
uler uses four heuristics:

2

Input: Current Workload (W),
Current Schedule (CS)

Output: New Schedule (NS)

Procedure: CheckSchedule {
Compute {u_m,u_t} from {W,CS} ;
If(((u_m>u_mT || u_t>u_tT) && abs(u_m-u_t)<u_dT)

|| SFLAG) { Call Reschedule ; }
}

Procedure: Reschedule {
SFLAG = false ;
If(u_m>u_t) {

If(combinedStreamsExist) {
Split highest bitrate combined streams ;
Modify schedule to NS ;

} Else { Decrease Time-cycle by UNIT ; }
Recalculate {u_m,u_t} from {W,NS} ;
If(abs(u_m-u_t)>u_dT) { SFLAG = true ; }
return NS ;

} Else {
If(uncombinedStreamsExist) {

Combine lowest bitrate uncombined streams ;
Modify schedule to NS ;

} Else { Double Time-cycle duration ; }
Recalculate {u_m,u_t} from {W,NS} ;
If(abs(u_m-u_t)>u_dT) { SFLAG = true ; }
return NS ;

}
}

Figure 2. Stream Combination Scheduler.

1. When combination is required and no uncombined streams
exist, the scheduler doubles the duration of the time-cycle, ef-
fectively un-combining all streams. Notice that this increase
in time-cycle duration incurs no overhead.

2. When splitting is required and no combined streams exist,
the scheduler decreases the time-cycle by a UNIT percentage
value, thereby reducing memory requirement. However, the
disk utilization degrades due to a reduced average IO size.
Here, we trade disk-bandwidth to conserve memory.

3. It makes provision for three constants, the memory utiliza-
tion threshold (u mT), the time-cycle utilization threshold
(u tT), and the difference threshold (u dT). The decision
to reschedule is made only in case either memory or time-
cycle utilizations exceed their threshold and their difference
is greater than the difference threshold.

4. When a decision to combine or split is made, the scheduler
spreads out multiple required combine or split operations, al-
lowing only one operation per time-cycle, thereby minimiz-
ing the transitory disk-bandwidth overhead. This is achieved
using a scheduling flag (SFLAG).

The detailed IO scheduling algorithm is presented in Figure 2.
The procedure CheckSchedule is invoked at the beginning of
each time-cycle, which in turn invokes the Reschedule proce-
dure if required.

3 Experimental Evaluation
To evaluate the performance of the stream combination IO

scheduler, we built a simulator to compare it with a fixed time-
cycle scheduler. The system was configured to have 128MB

of total available memory to buffer stream data. The maximum
disk transfer-rate was 50MB/s and the average disk access time
(including seek, rotational, and settle overheads) was 10ms.
The base-line IO scheduler chosen was Fixed-Stretch [1], a
state-of-the-art fixed time-cycle scheduler that balances disk-
bandwidth and memory use.

Figure 3 tracks the following metrics during a simulation
run of 20 minutes for a workload with uniformly distributed
stream bitrates between 128 and 1024 kbps and with uniformly
distributed request inter-arrival times between 2-7 seconds: (a)
memory consumption (in MB), and (b) number of streams in
service at any instant. The initial time-cycle duration for the
stream combination scheduler was the same as that of the fixed
time-cycle scheduler: 500 milliseconds. Initially, as streams
arrive, the two scheduling strategies performed similarly. At
approximately 200 seconds, the fixed time-cycle scheduler en-
countered a virtual disk-bandwidth bottleneck due to an under-
estimated time-cycle duration. The stream combination sched-
uler detected the future formation of a virtual disk-bandwidth
bottleneck and proactively started combining streams at ap-
proximately 100 seconds. As a result, it successfully thwarted
the bottleneck. Beyond 200 seconds, the fixed time-cycle
scheduler was unable to accomodate more number of streams
in a time-cycle. Our scheduler was able to continue servic-
ing greater number of streams in each time-cycle, delivering as
much as 55% more throughput than the fixed time-cycle sched-
uler.

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200

M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 (

M
B

)

Time (secs)

Without Stream Combination
With Stream Combination

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200

S
tr

e
a

m
 I

n
 S

e
rv

ic
e

Time (secs)

Without Stream Combination
With Stream Combination

Figure 3. Comparison for a time-cycle=500ms.

Figure 4 demonstrates the case where the initial time-cycle
duration for both schedulers was set to 5 seconds. The gener-
ated workload was the same as for the previous experiment. At
around 200 seconds into the simulation, the fixed time-cycle
scheduler encountered a virtual memory-bottleneck that lim-
ited its throughput. Our scheduler proactively started reducing
the duration of the time-cycle (and the memory consumption
as a result) at around 100 seconds (See Figure 4(b)) to suc-
cessfully thwart the virtual bottleneck. More time-cycle reduc-
tions occurred beyond 200 seconds, dynamically adapting to
the increased workload and delivering as much as 100% more
throughput than the fixed time-cycle scheduler.

The above experiments demonstrated the inadequacy of a
statically chosen time-cycle duration. We now determine how
the throughput of the streaming server (in terms of the maxi-
mum number of streams admitted) depends on the time-cycle
duration. Figure 5(a) compares against a fixed time-cycle

3

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200

M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 (

M
B

)

Time (secs)

Without Stream Combination
With Stream Combination

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200

S
tr

e
a

m
 i
n

 s
e

rv
ic

e

Time (secs)

Without Stream Combination
With Stream Combination

Figure 4. Comparison for a time-cycle=5000ms.

scheduler with different time-cycle durations in each experi-
ment, shown along the X-axis. The workload used was the
same as for the previous experiments. As the initial time-
cycle duration is changed, the fixed-time cycle scheduler ad-
mitted different number of streams, achieving its maximum for
a time-cycle duration of 1.5 seconds. With stream combina-
tion, regardless of the initial time-cycle duration, the sched-
uler dynamically altered both its schedule as well as time-cycle
duration to always provide the maximum throughput. It is
important to note that, in case of the fixed time-cycle sched-
uler, determining the optimal time-cycle duration requires prior
knowledge of the workload. Second, for real-world streaming
servers, the natural shift in the workload over time precludes
the existence of an optimal time-cycle duration. In such real-
world scenarios, the stream combination scheduler dynami-
cally adapts to deliver the maximum possible throughput.

(a) Varying time-cycle duration. (b) Varying workload.

Figure 5. Throughput comparison.

Our final experimental result, depicted in Figure 5(b), com-
pares the relative performance for six different workloads.
These workloads were generated by varying both the distri-
bution of stream bitrates as well as the arrival rates. Work-
loads #1-3 used stream bitrates generated from a uniform dis-
tribution. The time-cycle scheduler picked the time-cycle dura-
tion based on the average duration (assuming prior knowledge)
and performed within 8% of the stream combination scheduler.
Workloads #4-5 used a non-uniform distribution for stream bi-
trates; #4 favored high bitrates and #5 favored low bitrates.
With workload #4, the primary bottleneck is memory and for
#5, it is disk-bandwidth, with no virtual bottlenecks formed
during these simulations. Even so, the stream combination
scheduler was able to fine-tune the time-cycle duration to de-
liver as much as 15% more throughput for workload #5. Fi-
nally workload #6 varied the distribution over time to initially

favor low bitrates and then high bitrates. The fixed time-cycle
scheduler did not have a clear choice for the time-cycle dura-
tion and used the average bitrate as the basis. The stream com-
bination scheduler dynamically varied the time-cycle duration
over time to better match the request traffic and delivered as
much as 30% more throughput. It is important to note that real-
world streaming workloads behave relatively more like work-
load #6 (probably with greater variations) than like workloads
#1-5, underscoring the importance of stream combination.

4 Conclusions and Future Work
We have presented stream combination, an IO scheduling

technique that avoids virtual bottlenecks in streaming servers.
This technique predicts subsystem bottlenecks and proactively
alters the IO schedule to successfully thwart them until all sys-
tem resources are fully utilized. Stream combination achieves
its goal using the dynamic techniques of combining low-bitrate
streams, splitting high-bitrate combined streams, and chang-
ing the time-cycle duration, as required. A simulation study
suggests that this technique can offer significant performance
improvement over fixed time-cycle schedulers. An implemen-
tation of the stream combination technique is currently being
incorporated into Xtream [2], a real-time streaming multime-
dia system. In the future, we plan to evaluate the appropri-
ateness of the family of deadline-based priority schedulers for
real-time disk IO scheduling and compare it against the stream
combination scheduler.

References

[1] E. Chang and H. Garcia-Molina. Effective Memory Use in a Me-
dia Server. Proceedings of the 23rd VLDB Conference, pages
496–505, August 1997.

[2] Z. Dimitrijevic, R. Rangaswami, and E. Chang. The Xtream Mul-
timedia System.Proceedings of the IEEE Conference on Multi-
media and Expo, August 2002.

[3] K. Jeffay, D. F. Stanat, and C. U. Martel. On Non-Preemptive
Scheduling of Periodic and Sporadic Tasks.Proceedings of the
Twelfth IEEE Real-Time Systems Symposium, December 1991.

[4] C. Liu and J. Layland. Scheduling Algorithms for Multiprogram-
ming in a Hard Real-Time Environment.ACM Journal, January
1973.

[5] A. Molano, K. Juvva, and R. Rajkumar. Guaranteeing Timing
Constraints for Disk Accesses in RT-Mach.Proceedings of the
IEEE Real Time Systems Symposium, 1997.

[6] B. Ozden, A. Biliris, R. Rastogi, and A. Silberschatz. A Low-cost
Storage Server for Movie On Demand Databases.Proc. VLDB,
September 1994.

[7] P. V. Rangan, H. M. Vin, and S. Ramanathan. Designing and On-
Demand Multimedia Service.IEEE Communications Magazine,
30(7):56–65, July 1992.

[8] A. L. Reddy and J. Wyllie. Disk Scheduling in a Multimedia
I/O System.Proceedings of the ACM Conference on Multimedia,
pages 225–233, 1993.

[9] J. C. Wu and S. A. Brandt. Storage Access Support for Soft Real-
Time Applications.Proceedings of the 10th IEEE Real-Time and
Embedded Technology and Applications Symposium, pages 164–
173, May 2004.

4

