
Florida International University Technical Report TR-2005-04-01

Efficient Native XML Storage

Medha Bhadkamkar Vagelis Hristidis Raju Rangaswami

School of Computer Science
Florida International University

Miami, FL 33199

{medha,vagelis,raju}@cs.fiu.edu

Efficient Native XML Storage

Medha Bhadkamkar Vagelis Hristidis Raju Rangaswami

School of Computer Science
Florida International University
{medha,vagelis,raju}@cs.fiu.edu

ABSTRACT
XML has emerged as one of the popular data-representation
formats for information storage and exchange. XML data
today range from representing small files to encapsulating gi-
gabytes of information. Large XML databases must be stored
on mass storage devices for both persistence as well as cost-
efficiency. For mass storage of data today, disk drives are the
most cost-effective medium. Current approaches of mapping
XML data to relational databases or simply using flat files
incur a mismatch between the structure of XML data and
the underlying storage device (disk drives). In this study, we
investigate a new method to store XML data on disk drives
that matches the characteristics of XML with those of disk
drives. In particular, we present algorithms that, given an
XML document and a disk drive, decide how to store the
document on the drive, in a way that will later allow efficient
execution of XML queries. We evaluate our proposed method
using analytical modeling and by simulating the execution of
benchmark XPath queries.

1. INTRODUCTION
The popularity of XML data has increased in recent years,

and so did the efforts to develop XML processing systems
(e.g., Galax1, Timber2, XALAN3, and XT4). Although much
work has been conducted on optimizing the evaluation of
XML queries (e.g., [1, 13]), little work has tackled the prob-
lem of efficiently storing XML data. The problem of efficiently
storing XML data on disk drives (the device of choice today
for mass storage) has become critical as the amount of data
stored in an XML database has increased to several gigabytes.
Current approaches either map the XML data to an under-
lying relational database system [2, 5, 9, 23, 26, 27], or use
the abstraction provided by a general-purpose object storage
manager [4], or simply use flat files.

These storage schemes, however, ignore the specific char-
acteristics of the XML data format as well as those of disk
drives. In particular, XML has a tree (or graph) structure,
whereas relational databases are structured tables and flat
files are unstructured. On the other hand, disk drives store
information in circular tracks that are accessed with mechan-
ical seek and rotational overheads. The performance of disk
drives greatly depends on the I/O access pattern (orders of
magnitude difference between sequential and random access
times). To the best of our knowledge, there exists no data
layout strategy that accounts for the structural mismatch be-
tween XML and disk drive storage.

1http://www.galaxquery.org.
2http://www.eecs.umich.edu/db/timber/.
3Xalan-Java is an XSLT processor for transforming XML doc-
uments (http://xml.apache.org/xalan-j).
4XT is an implementation of XSLT for Java
(http://www.blnz.com/xt/index.html).

In this paper, we propose ways to optimize the storage
(placement) and retrieval of XML data on disk drives by ex-
plicitly accounting for the mismatch between tree-structured
XML data and disk drive characteristics. In particular, we
present algorithms that given the physical characteristics of
a disk drive (number of tracks, rotational speed, seek time,
etc.), place XML data on the disk drive in a way that fa-
cilitates efficient execution of XML queries by reducing the
disk access overhead. We exploit the idea of semi-sequential
access [21] to place the XML data such that common naviga-
tion operations (parent to child and node to next sibling) are
efficient, which in turn allows efficient querying.

To evaluate our work, which optimizes the navigation of
XML documents, we consider XPath5 queries, since XPath is
the core navigation component of XQuery6. Notice that pre-
vious work on indexing of XML data [12, 14, 15] is orthogonal
to our XML data placement approach, since we can leverage
these indexes if available. To simplify presentation, we assume
that no indexes are available for comparison purposes.

The baseline storage strategy that we compare our ap-
proach against is sequential layout (called default storage strat-
egy from now on) of the XML file on the disk, as provided by
general-purpose filesystems. Furthermore, we use the terms
storage, layout and placement interchangeably. In this paper,
we make the following contributions:
1. We present a new data layout strategy for XML data on
disk drives, along with algorithms to implement it.

2. We create a model to analytically evaluate the perfor-
mance of our strategy compared to the default approach.
We explain how the characteristics of the hard disk (seek
time, rotational speed) and of the XML document (height
and width) affect the performance of our approach.

3. We compare the performance of benchmark [10] XPath
query executions when the XML document is placed by our
approach versus the default approach.

1.1 Related Work
Storage of XML data has received attention in the last few

years due to the popularity of XML. However, most work has
focused on storing XML in relational DBMSs or in flat files
with indexes. The former approach [2, 5, 9, 23, 26, 27] has
been the most popular due to the success and maturity of the
relational DBMSs. The latter approach [16, 17] is based on
storing the XML document as a flat file and building separate
indexes on top.

The only work that tackles the problem of storing XML
data without using a DBMS or indexes is by Kanne and Mo-
erkotte [3], in which XML documents are stored by first split-
ting the XML tree into a tree of pages, where each page cor-
responds to a disk block. In this manner, they reduce the

5http://www.w3.org/TR/xpath.
6http://www.w3.org/TR/xquery/.

number of blocks read to traverse the tree. However, this
method ignores the physical characteristics of operation of
the disk drive and views it as just a list of pages. On the
other hand, we investigate how to exploit detailed informa-
tion about the disk drive and use this information to minimize
overheads like seek-time and rotational-delay. Finally, Atro-
pos [21] is a system that exploits the physical properties of
disk drives and uses semi-sequential accesses to store rela-
tional databases. Our work is different because we deal with
XML data that has a tree (or graph)-like structure, which is
more complex than relational tables. To the best of our knowl-
edge, there is no existing work tackling the problem of laying
out tree-structured data, accounting for low-level hard drive
storage and operation semantics. Using a similar approach as
ours, Semi-preemptible I/O [7] uses low-level drive informa-
tion obtained from Diskbench [8] (described in Section 2) to
make traditionally non-preemptible disk I/Os preemptible by
issuing rotationally-optimal I/Os.

2. BACKGROUND ON DISK DRIVES
In this section, we present a brief overview of how disk

drives are significantly different on the inside from the logical
block interface that they export. We also briefly present ear-
lier work on profiling disk drives [8] that enables us to extract
detailed information about the disk device, typically unavail-
able using the existing interface.

Accessing data on a disk drive consists of three time com-
ponents: seek-time, during which the disk arm moves from
the current cylinder to the target cylinder, rotational-delay,
during which the disk waits for the target sector to rotate
and appear below the disk head, and transfer-time, during
which data is read from or written to the disk platter. The
seek-time depends only on the distance between the current
cylinder and the target cylinder, but is not a linear function.
The rotational-delay depends on the RPM of the disk (which
is fairly constant, varying less than 0.5%) and the angular dis-
tance of the target sector from the sector on which the disk
head lands after the seek operation. The transfer-time of the
disk depends on the RPM as well as the recording density of
information on the disk zone7.

Modern disk drives provide a logical block abstraction that
makes them appear as a linear sequence of logical blocks to
the operating system. This interface was introduced to serve
two purposes: (a) free the operating system from dealing with
low-level disk drive specific operation and management, and
(b) allow disk manufacturers to innovate and optimize behind
the interface. However, such an interface also disables the
operating system and upper layers from obtaining accurate
information about physical data layout, drive characteristics,
operation semantics, and internal drive optimizations.

For XML as well as other data types which are accessed
mostly non-sequentially, it is necessary to re-examine the ex-
isting interface. Of course changing or augmenting the exist-
ing block interface requires industry wide consensus and stan-
dardization effort which is practically infeasible within a short
span of time. However, we can employ alternative techniques
to get around the interface restriction [8, 20]. Diskbench [8],
a disk profiling tool developed earlier, enables a richer access
interface to disk drives by extracting accurate performance
characteristics for disk drives. Profiled information includes:

7Multi-zone drives are the norm today, where each zone has
different number of sectors-per-track. The interested reader
is referred to [8] for a detailed discussion on zoning as well as
other details of disk operation.

procedure process-location-step(n0, Q) {
/* n0 is the context node;

query Q is a list of location steps */
node set S := apply Q.first to node n0;
if (Q.tail is not empty) then
for each node n in S do
process-location-step(n, Q.tail);

}

Figure 2: Standard XPath evaluation strategy.

rotational time, seek time, track and cylinder skew times,
sizes of read cache and write buffer along with prefetching
and buffering techniques, logical to physical block mappings,
and access time prediction. With this profiled information,
Diskbench allows us to control disk operations accurately and
tailor it to specific data and application requirements, which
in this case is tree-structured XML data.

3. XML TREE STORAGE
In this section, we first (Section 3.1) present the XML doc-

ument abstraction and the XPath execution strategy used in
this work, along with a set of assumptions we make on the
operation of the hard disk. Then, Section 3.2 presents our
basic placement strategy. Finally, Sections 3.2.1, 3.2.2 and
3.3 discuss variations and improvements of the basic strategy.

3.1 Data Model and Assumptions
XML data: We view an XML document as a labeled tree
T , where each node v has a label λ(v), which is a tag name
for non-leaf nodes and a value for leaf nodes. Also, non-leaf
nodes v have an optional set A(v) of attributes, where each
attribute a ∈ A(v) has a name and a value. We assume that
there are no ID-IDREF edges8 (which would make the tree a
graph). Figure 1 shows an example of an XML document.

In this work we assume the existence of no indexes on the
XML data. However, we assume that each node has a pointer
to its first child and its right sibling. This assumption is in-
tended to make the comparison of our storage method to the
default storage method more fair, because otherwise in the
default storage method we would have to read the whole sub-
tree of a node v to access the right sibling of v. Furthermore,
we assume that there are no updates on the XML data. (No-
tice that the problem of updates is even harder for the default
storage strategy.)

XPath: We use XPath queries to evaluate our storage strat-
egy. We adopt the “standard” XPath evaluation method (Fig-
ure 3.1), described in [13], which is used (with slight modifica-
tions) to the best of our knowledge by popular XPath engines
like XALAN and XT. Intuitively, the algorithm of Figure 3.1
processes an XPath query Q in a breadth first manner on the
XML document, one step of Q (Q.first) at a time, and stores
the intermediate results in a set S.

Disk drive assumptions: We make the following assump-
tions, which we plan to relax in the future (see Section 6).
First, we assume that the disk drive has a single platter and
surface on which data is recorded9. Second, we assume that
each node of the XML tree requires a disk block of storage10.

8Although our methodology supports ID-IDREF edges in
principle, their navigation has not been optimized.
9There is a straightforward extensions to multiple surfaces
and platters, although doing it in an optimal manner is an
open research issue.

10Although this assumption seems unrealistic at face-value,

root

Book [title= “ XML
Databases ”, year= 2002]

Chapter [title=
“XML Introduction”]

Book [title= “ Storage
Principles ”, year= 2001]

Book [title= “XML
Queries ”, year= 2002]

Chapter [title=
“Semistructured Data”]

Chapter [title=
“Implementation

Issues”]

Section [title=
“Concurrency”]

Section [title=
“Converting to

XML”]

Chapter [title=
“Conclusions”]

Chapter [title=
“Overview”]

Section [title=
“Hard Disks”]

Section [title=
“Main Memory”]

Section [title=
“Conclusions”]

Chapter [title=
“Introduction”]

Chapter [title=
“XPath”]

Chapter [title=
“Conclusions ”]

Section [title=
“Discussion”]

Section [title=
“Open Issues”]

Figure 1: Sample XML document.

Third, we ignore OS-level I/O optimizations such as prefetch-
ing [18, 28] or retrieving “empty” pages to reduce I/O over-
head [25]. These assumptions and optimizations, we believe,
are orthogonal, and will apply equally to all the alternative
placement strategies.

3.2 Tree-structured Placement
The limitation of the default storage method is that it is

optimized only for accesses in depth-first order (notice that
since the siblings in an XML tree are ordered, the left siblings
are accessed first). For example, for the XML tree in Figure 3
(created by replacing the labels with node ids in the XML
tree of Figure 1), the nodes would be stored sequentially in
alphabetical order. If the XML file is accessed in strictly
depth-first order, such a placement scheme would be optimal.

Q

N

J

M

O P

A

I

K L R SGF

C D E H

B
2

1 1

2

5 3

3

6 5

6

7 7

4 4

Figure 3: A Sample XML tree.

However, answering XPath queries displays the following
characteristics: (a) nodes are accessed along any path from
the root to a leaf of the XML tree, and (b) siblings are of-
ten accessed together. The default layout of the nodes would
translate to random accesses (and therefore poor I/O per-
formance) for both the above characteristics (except for the
leftmost path or traversals along leaf levels).

Based on the above observations, we design our basic XML
layout strategy, tree-structured placement. We consider
breadth-first order to describe the tree-structured placement
strategy, although other orders can be used instead as we
discuss in Section 3.2.1. Once the ordering (numbering) of
the nodes has been determined, they are placed on the disk
starting from the outermost available track. In particular, we
first place the root node v on the outermost available track
of the disk. Second, we place its children sequentially on the
next free track such that accessing the first child u of v after

strategies for node grouping such as those presented in [3]
can be employed and are complementary to our work.

accessing v results in a semi-sequential access [21]. This is
accomplished by choosing a sector for u rotationally skewed
from v such that the rotational delay between the sectors is
equal to the seek time from the track of v to the track of u.
Accessing any child of a parent node involves a semi-sequential
access to reach the first child and a rotational-delay based on
the child index.

A

B

I

N
C

E

H

D

J

O

P

Q

FG

K

L

M

R
S

*

*

*

*

*

*

*

*
*

**
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
* * *

*
*

*

*

*

*

*
*

* *
*

*

*

*

**

*
*

*

*
* * *

*
*

*
*

*

*
*

*

*
*

*
*
*

*

*

*
*

*

*
*

*
*
*

*
*

* *

Figure 4: Tree-structured strategy for XML file lay-
out.

Example 3.1 Figure 4 shows the placement of the XML tree
of Figure 3 on a hard disk (platter). For the sake of il-
lustration, let us assume that tracks are numbered 0 to N,
starting from the outermost track and that the platter ro-
tates in the clockwise direction. Let us also assume, that the
rotational skew between tracks is the seek-distance×quarter-
rotation. The root node A is placed on the outermost track,
track 0. Its first child B is placed on the first available free
track closest to A, i.e., track 1. The sector on which B is
placed is rotationally skewed by 1 relative to A as a conse-
quence of our assumption. Accessing B after A would require
only seeking, which in this case would be to the next track.
The remaining children of node A, i.e. I, and N, are placed
sequentially next to the first child B. The asterisked sectors
in each track right before the first-child corresponds to the ro-
tational skew between the parent node and the first-child.

The tree-structured layout strategy, as is obvious in Fig-
ure 4, results in severe fragmentation of disk space. If the
filesystem does not store other files to occupy the fragmented
space, this strategy may be practically unusable. In Sec-
tion 3.2.2, we present a variant of the tree-structured strategy

that reduces fragmentation as well as random seek times dras-
tically.

Figure 5 outlines the algorithm for tree-structured place-
ment, along with the auxiliary methods used with their de-
scriptions. Line 1 places the root node of the tree T on
the outermost track. Lines 2-8 place on the next free track
the children of the next node (that is, the node returned by
getNextNode(), which is the root node in the first iteration).
This is repeated until all the nodes are placed on the disk.
Notice that the leaf nodes of T are not numbered and hence
are not returned by getNextNode().

Auxiliary Methods:

Node getNextNode() /* returns one node at a
time in ascending order */

Track getFirstFreeTrack()
placeInTrack(Track t,LBN lbnFirstChild,NodeList L)
LBN findSemiSequential(LBN parent, int cyl)
/* returns the logical block number (LBN) t,
such that t is cyl tracks away from parent and
the access from parent to t is semi-sequential */

Tree-structured Placement Algorithm:

1. placeInTrack(getFirstFreeTrack(),0,root(tree));
2. while (more nodes) {
3. n = getNextNode();
4. t = getFirstFreeTrack();
5. L = empty;
6. L -> add(children(n));
7. lbaFirstChild = findSemiSequential(n, t);
8. placeIntrack(t,lbaFirstChild,L);}

Figure 5: Tree-structured placement algorithm.

The following example illustrates the execution of an XPath
query when the XML document has been placed using the
tree-structured placement algorithm.

Example 3.2 Consider the XPath query root/
Book[title =“XML Queries”]/Chapter[title =“XPath”] on
the XML document of Figures 1 and 3. The following ta-
ble shows the sequence of node accesses to answer this query
using the evaluation strategy of Figure 3.1 and the types of
disk accesses they correspond to for the default and the tree-
structured placement. Notice that the tree-structured place-
ment incurs a semi-sequential access instead of sequential ac-
cess in two cases, but this is outweighed by a sequential instead
of random access in two other cases.

nodes A B I N O P Q
default rand seq rand rand seq seq seq
tree rand semis seq seq semis seq seq

3.2.1 Node Ordering Variations
As mentioned earlier, there are multiple alternative strate-

gies to determine the order in which nodes are chosen for
placement. In the above example, we chose the breadth-first-
ordering (BFO) of nodes. The BFO numbering (ignoring the
leaf-nodes) for the XML tree in Figure 3, is illustrated as the
left number above each node. Depth-first-ordering (DFO) is
defined in the usual way as well and the numbering is shown
(italicized) to the right of each node in Figure 3. As we show
in Section 5, DFO results in drastically shorter average semi-
sequential access times, due to the localization of the num-
berings for each subtree in DFO.

3.2.2 Handling Fragmentation and Random Seek
Using tree-structured placement, each track on the drive

contains only the children of a single node. Therefore, this
strategy, while reducing the access overhead for tree naviga-
tion operations, increases disk fragmentation. It also occupies

much more tracks than the XML file-size warrants, as a re-
sult of which the random seek times within the tree are much
larger than that for the default layout. We now present the
optimized tree-structured placement, a variant of the original
algorithm, that reduces both space fragmentation as well as
random seek times drastically. The basic idea for the op-
timized layout is the use of non-free tracks for placing the
children for a given parent node. The optimized placement
strategy allows further flexibility by not requiring the first-
child to be placed at the exact rotationally-optimal sector,
but rather allows placing the first-child anywhere within a
rotationally-optimal track-region (defined below).

To perform optimized placement, we use the fact that track-
skew for adjacent tracks is usually between a quarter rotation
to a sixth of a full rotation depending on the mechanical char-
acteristics of the disk. Given the adjacent track-skew ts (ts
can be obtained by profiling [8]), we can divide any track into
k = b1/tsc equi-sized track-regions. Figure 6 shows the k = 4
track-regions separated by bold radial cuts for Track 0 (the
outermost track).

A

C

D

E

H

J

O

P

Q

F G

B

I

N

K

L

M

R

S

#
#

##
#

#

#
#

#
#

Figure 6: Optimized Strategy for XML file layout.

The optimized placement strategy is less restrictive than
the basic tree-structured placement strategy in three ways:
(1) it allows placing children on a non-free track, (2) it does
not require the first-child to be placed at the rotationally-
optimal sector, but rather allows placing the first-child any-
where within a rotationally-optimal track-region (defined be-
low), and (3) it provides a choice of candidate rotationally-
optimal track-regions on different tracks to place children
nodes.

Given a parent node u, its rotationally-optimal track-region
for a given track t is defined as the track-region starting from
the sector where the disk head lands when seeking to track t
starting from u. In Figure 6, two rotationally-optimal track-
regions for parent node ‘S’ are marked using the # symbol. To
place the children nodes for u, a set of candidate rotationally-
optimal track-regions are chosen close to u, which can lie in
either side of the parent track. The placement algorithm
chooses either the track-region closest to u or one that lies
on the most fragmented (i.e., least occupied) track or a com-
bination of these factors. The rationale behind choosing the
least occupied track is that it will most likely result in provid-
ing the maximum number of candidate track-regions during
future placement decisions.

Figure 6 shows the placement of the XML tree of Figure 3
on a hard disk (platter) using the optimized strategy. Again,
we assume that the platter rotates in the clockwise direc-
tion. The assumptions of track skew are also the same as for
the basic strategy. In the optimized placement, since track-

regions can be filled with children of various nodes, the space
fragmentation is drastically reduced compared to the basic
tree-structured placement. Figure 7 outlines the algorithm
for optimized tree-structured placement.

Additional Auxiliary Methods:

<Track,LBN> findROTrackRegion(LBN parent)
/*returns the Track & Logical Block Number
(based on the offset in the rotationally-
optimal track-region) relative to parent. */

Optimized Tree-structured placement Algorithm:

1. placeInTrack(getFirstFreeTrack(),0,root(tree));
2. while (more nodes) {
3. n = getNextNode();
4. L = empty;
5. L -> add(children(n));
6. <t,lbaFirstChild> = findROTrackRegion(n.lba);
7. placeInTrack(t,lbaFirstChild,L);}

Figure 7: Optimized tree-structured placement algo-
rithm.

3.3 Other Optimizations
An alternative strategy to reduce the space fragmentation

is the following. We group adjacent nodes of T into supern-
odes (similar to [3]), such that the sum of the supernode sizes
of the children of any supernode is approximately equal to
the track-size. As a result, there is no (or minimal) fragmen-
tation of disk space. However, since the internal structure of
supernodes is complex, query executions may result in access-
ing much more data than required. Hence, I/O performance is
likely to deteriorate compared to the basic/optimized strate-
gies. Finally, the root node could be placed on the central
track (rather than the outermost track) and the subtrees are
distributed in either direction, to reduce the maximum seek
distance during semi-sequential access. We will evaluate the
above two optimizations in our future work.

4. QUANTITATIVE ANALYSIS
In this section, we present a quantitative model to analyze

the access times for the default placement and for our tree-
structured placement. Table 1 summarizes the description of
each parameter used in this analysis.

Tdefault: Average access time in default placement
Ttree: Average access time in tree-structured placement
tseq: Average access time for sequential access
trand: Average access time for random access
tsemi−seq: Average access time for semi-sequential access
a1: Access is from parent to first child
a2: Access is from a parent node to non-first child
a3: Access is from a non-leaf node to its right sibling
a4: Access is from a leaf node to its right sibling
a5: All other accesses (that is, P5 = (1− (

P4
i=1 Pi))

Pi: Probability that access ai occurs; 1 ≤ i ≤ 5
tdefault(ai): Average time for ai in default placement
ttree(ai): Average time for ai in tree-structured placement
C: Number of Cylinders
Trot: Rotational Period
Tnt: Time taken to transfer one node of data

Table 1: Parameter Description

First we compute the random, sequential and semi-sequential
access times. The average random access time trand, is a func-
tion of the average seek time and rotational delay and is given
by:

trand = γ (
1

3
C) +

1

2
Trot (1)

where γ() is a disk specific function computing the seek time
given the number of tracks to jump.

The average sequential access time tseq from one block to
another is a very small value, approaching zero. Hence,

tseq = 0 (2)

For the tree-structured placement, the access between a
parent and its first child is semi-sequential, and from a node
to its right sibling is sequential. The average time for semi-
sequential access tsemi−seq given by:

tsemi−seq(v) = γ(s(v)) (3)

where s(v) is the number of tracks that are jumped and is
computed in 4.1

Equation 3 assumes perfect semi-sequential time, which is
achieved by the tree-structured algorithm (Figure 5). How-
ever, in the case of the optimized tree-structured algorithm
(Figure 7), tsemi−seq(v) depends on the number of regions, k.

Theorem 4.1 In the optimized tree-structured placement,
tsemi−seq(v) = γ(s(v)) + 1

2k
Trot.

Proof Sketch: Since the first-child is placed anywhere within
a rotationally-optimal track-region rather than rotationally
optimal sector, accessing the first child may involve anywhere
between 0 to 1

k
Trot rotational delay after the seek operation.

This additional rotational delay during the semi-sequential
access is 1

2k
Trot on an average.

Next, we discuss the time needed for each of the 5 basic ac-
cess types of Table 1. When the first child is accessed from its
parent (a1), a sequential access occurs in the default place-
ment, whereas a semi-sequential access occurs in the tree-
structured placement. When a non-first child is read from its
parent (a2), it is a random access in the default placement,
whereas for the tree-structured placement, it is the sum of
the semi-sequential time and the average sibling index (f/2)
times Tnt (time required to transfer data from one node).
When the access is from a non-leaf node to its right sibling
(a3) it is a random access in the default placement, and a se-
quential access in the tree-structured placement. When from
a leaf-node we access its right sibling (a4), its is a sequential
access in either placement strategy. In all other cases (a5),
such as when moving up the tree, for both placements a ran-
dom access will be performed. Table 2 summarizes the access
times in the default and the tree-structured storage for every
ai.

Access type ai tdefault(ai) ttree(ai)
a1 tseq tsemi−seq

a2 trand tsemi−seq + f
2
(Tnt)

a3 trand tseq

a4 tseq tseq

a5 trand trand

Table 2: Average access times in default and tree-
structured placement for each access type ai.

The average access times in default and tree-structured
storage are computed by Equations 4 and 5 respectively.

Tdefault =

5X
i=1

Pi · tdefault(ai) (4)

Ttree =

5X
i=1

Pi · ttree(ai) (5)

(a) (b)

Figure 8: Best and worst case for both BFS and DFS.

The tree-structured placement is preferable when Ttree <
Tdefault.

4.1 Semi-sequential Access Time Analysis
This section presents an analytical calculation of the semi-

sequential access time tsemi−seq for the tree-structured place-
ment. In particular, we provide analytical formulas for the
number of tracks, s(v), between a node v and its first child,
which is related to tsemi−seq through the disk’s seek curve,
i.e., tsemi−seq(v) = γ(s(v)).

The calculation of s(v) depends on the numbering scheme
we use, that is, on the implementation of the getNextNode().
We focus on the two alternative numbering schemes described
in Section 3.2.1: breadth-first (BFO) and depth first (DFO).
Equation 6 shows the calculation of s(v) for both BFO and
DFO numbering.

s(v) = N(v)−N(parent(v)) (6)

where N(v) is the number of v, that is, after how many calls
v is returned by getNextNode(), and parent(v) returns the
parent node of v. If v is the root node of T , then s(v) = 0.

The average s(v) depends on the structure of T . The best
case for both BFO and DFO is when only one node from
any list of siblings has children (Figure 8 (a)). In this case
s(v) = 1 for any v for both BFO and DFO. The other extreme
(worst case) is when T is wide and short and specifically when
the tree has height 3 (Figure 8 (b)). In this case, the average
s(v) is (n′ − 1)/2), where n′ is the number of internal nodes
(non-leaf) of T .

Finally, we discuss the case of complete trees which have
an average s(v) between the two extremes. Theorems 4.2 and
4.3 show the average values for BFO and DFO respectively.

Theorem 4.2 For BFO, when T is a complete tree with height
d and degree f , the average s(v) is
Pn′

i=1(i−round(i/f))

n′ , where n′ = (1− fd−1)/(1−f) is the num-
ber of internal nodes.

Proof Sketch: i− round(i/f) is the BFO numbering differ-
ence between a child and its parent.

Theorem 4.3 For DFO, when T is a complete tree with height
d and degree f , the average s(v) is
fd−2(d−2−f/(1−f))+2+f/(1−f)

2n′ , where n′ = (1 − fd−1)/(1 − f)
is the number of internal nodes.

Proof Sketch: Notice that we assume than root is at depth
1 and the leaves at depth d. First notice that if there is two
edges u1-v1 and u2-v2 where u1, u2 are on the same level
and v1 (v2) is the l-th child of u1 (u2), then DFO(v1) −
DFO(u1) = DFO(v2) − DFO(u2), that is, the jumps from
v1 to his childen and from v2 to his children are the same.

Second, we calculate the average s(v) for the nodes v of level
k+1. To do so we need to find the size of the subtree rooted at

Query# P1 P2 P3 P4 P5

1 0.21 0.00 0.17 0.48 0.14
2 0.28 0.00 0.19 0.36 0.17
3 0.11 0.00 0.21 0.44 0.24
4 0.11 0.00 0.21 0.44 0.24
5 0.34 0.00 0.20 0.30 0.16

Table 3: Access probabilities for XPathMark queries.

v. It is 1+f + · · ·+fd−k−1 = (1−fd−k)/(1−f). The average
of s(v) for the nodes v of level k +1 is the average s(v) of any
set of siblings at level k+1. That is, (f+(1−fd−k)/(1−f)(1+
· · · + (f − 1)))/f = (f + (1 − fd−k)/(1 − f)(f − 1)f/2)/f =
(f + (fd−k − 1)f/2)/f = 1 + (fd−k − 1)/2 = (fd−k + 1)/2.
Hence, for level k it is (fd−k−1 + 1)/2.

5. EXPERIMENTS
This section evaluates the suitability of our approach for

placing XML data. To do so, we have developed an analyti-
cal cost model (Appendix B) to compare the performance of
tree-structured placement with the default placement strategy
(placing an XML file sequentially on disk) when the following
parameters change: the structure of the XML tree, the node
numbering (DFO vs. BFO), and the distribution of the basic
tree navigation operations (e.g., parent to first child). We use
this cost model to derive our results in this section. How-
ever, our analysis here is only a yardstick and by no means
a complete evaluation. A thorough evaluation would involve
experimentation using both trace-driven simulations as well
as an actual extension of the filesystem that places XML files
as an on-disk tree structure. Section 6 outlines some initial
steps that we have taken in these directions.
XPath benchmark queries: The analysis of Section 4 de-
rives the disk access time for answering an XPath query, given
the access probabilities P1, . . . , P5 (P1 is parent to first child,
P2 is parent to non-first child, P3 is non-leaf node to right sib-
ling, P4 is leaf node to right sibling, P5 is the rest accesses).
To get a sense of the distribution of these probabilities we cal-
culated them using the XML documents and XPath queries
defined in the XPathMark benchmark [10], and the XPath
evaluation algorithm described in Figure 3.1. Table 3 shows
these probabilities for the first 5 queries for the first doc-
ument of the benchmark (the document is generated using
XMark [24]).

Figure 9 compares the average access times for the default,
the optimized BFO tree-structured and the optimized DFO
tree-structured placements for the five benchmark queries.
The size of the XML tree (T) used is n = 1, 000, 000 nodes
and the average fanout of nodes is 10. The disk fragmenta-
tion due to the tree-structured placement strategy is assumed
to be 50%. In practice, we expect this number to be much
smaller. Notice that for all placement methods the same total
number of node accesses are required. Hence, the differences
in average access times reflect the differences in the total ex-
ecution times as well. The DFO tree-structured placement
always performs better than both the BFO tree-structured
and the default placement. The intuition why DFO is better
than BFO is that when storing a specific subtree of the XML
tree T , the average seek-distance from a parent node to its
first-child (s(v)), does not depend on the rest of T , whereas
for BFO, s(v) always increases when going deeper in T . The
other observation from Figure 9 is that the tree-structured
placement has the highest performance advantage for Queries
3 and 4 since they have the highest P3/P1 ratio. P3 is the
strong point for tree-structured placement since the access is

depth worst best compl −DFO compl −BFO
3 250000 1 1 500
4 undef 1 1.48 5000
7 undef 1 2.73 50000
10 undef 1 3.48 87350
20 undef 1 4.98 131100

Table 4: Average seek-distance in cylinders for semi-
sequential accesses for various XML trees.

sequential instead of random-access for default placement. On
the other hand, P1 is the strong point for default placement
since it’s access is sequential instead of semi-sequential in tree-
structured placement. A more detailed analysis is available
in Section 4.

Figure 9: Average access time for XML queries.

Effect of tree-structure on access time: In this exper-
iment, we fix the number of nodes in the XML tree T to
n = 1, 000, 000. We then plot the average seek-distance, s(v),
for a semi-sequential access (averaged over all possible parent-
to-first-child accesses in the XML tree T) for XML trees with
varying depth (and consequently varying fanout). In partic-
ular, we consider the following types of trees: (a) the best
case tree (See Section 4), (b) the worst case tree, (c) a com-
plete tree where BFO numbering is used, and (d) a complete
tree with DFO placement strategy. The results, which are
shown in Table 4, clearly show the superiority of the DFO
numbering.
Effect of drive characteristics on access time: Since
the proposed data placement scheme is directly related to the
drive characteristics, we simulate a range of drive technolo-
gies, similarly to [19], by varying rotational period, seek-time
characteristics, and data transfer-rate. We use the 7200 RPM
Western Digital WD400JD [29] as the base disk, which has
C = 16, 383 cylinders. We also assume the existence of a fast-
seeking drive, which cuts down seek times by a factor of two,
while a slow-seeking one increases it by a factor of 1.5. Our
fast-rotating and slow-rotating drives spin at 10, 000 RPM
and 5, 400 RPM respectively. These numbers are presented
in Table 5.

Seek [ms]
Configuration Trot Track Avg. Full R

[ms] switch Seek stroke [MB
s

]

1. Base 8.3 2.0 8.9 21 100
2. Fast seek 8.3 1.0 4.45 10.5 100
3. Slow seek 8.3 3.0 13.35 31.5 100
4. Fast rotate 6.0 2.0 8.9 21 139
5. Slow rotate 11.1 2.0 8.9 21 75
6. Fast seek+rot 6.0 1.0 4.45 10.5 139
7. Slow seek+rot 11.1 3.0 13.35 31.5 75

Table 5: Characteristics of disk configurations used
in the experiments.

Figure 10 shows the average access times for the disk con-
figurations of Table 5, for the default, the BFO tree-structured
and the DFO tree-structured placement strategies. Again, we
assume that tree-structured placement strategies incur 50%
disk fragmentation. We consider the access probabilities of
the first query of Table 3. First, we notice that with 50% frag-
mentation, BFO access times are worse than the default (i.e.
sequential layout) strategy, while DFO performs consistently
better for all disk configurations. For the base configuration
(i.e., Disk1), the improvement in average access time with
DFO is approximately 30%. For Disk2 and Disk5, rotational-
delays are relatively higher than seek-times when compared to
the base configuration since these are fast-seeking and slow-
rotating drives respectively. As a result, we notice that the
tree-structured DFO strategy which cuts down on rotational-
delays, performs even better than for the base configuration.

Figure 10: Average access time for various disk
drives.

Effect of fragmentation on sequential access time: Fi-
nally, the average access time for the default, BFO
tree-structured and DFO tree-structured strategies are plot-
ted for varying disk fragmentation values (from 10% to 50%)
as shown in Figure 11. In practice we expect disk fragmenta-
tion due to tree-structured placement to lie between 5% and
25%. However, this is only an intuitive estimate for now. We
notice that with increased disk fragmentation, there is sig-
nificant degradation in BFO access times and only a slight
increase for DFO. At 10% fragmentation, DFO access times
are more than 35% better than the default sequential layout
of the XML file. This implies that the DFO strategy scales
well with fragmentation and is a practical approach overall.

Figure 11: Average access time vs. Fragmentation.

6. CONCLUSIONS AND FUTURE WORK
We have presented a new on-disk placement strategy for

tree-structured XML data. The new placement strategy ex-
plicitly accounts for the structural mismatch between XML
data and disk devices. We first presented a basic placement
strategy that improves the performance of common XML tree-
navigation operations, but suffers from severe space fragmen-
tation and large random seek-times. We proposed the opti-
mized tree-structured layout to reduce space fragmentation

as well as random seek-time. Preliminary experimental eval-
uation suggests that the optimized tree-structured placement
strategy reduces the average access time by as much as 35%
compared to the default (sequential) placement. We work on
simulating our placement strategies with DiskSim [11]. In the
future we also plan to extend an existing filesystem to support
efficient access to tree-structured data. Our experience from
past efforts on providing additional application control of the
storage system [6] indicates that a similar approach for tree
storage is feasible.

Furthermore, we plan to adapt the single-platter-surface
placement strategies to multi-platter disks as well as to a
RAID environment. The strategies presented here can also be
adapted to new storage media like MEMS-based storage [22].
In addition, we plan to study the effect of disk prefetching in
our placement strategy. Finally, we plan to work on han-
dling updates within the tree-structured placement frame-
work. The slight fragmentation incurred by our placement
strategies can aid us in this pursuit.

7. REFERENCES
[1] S. Abiteboul and V. Vianu. Regular Path Queries with

Constraints. In PODS, 1997.

[2] P. Bohannon, J. Freire, P. Roy, and J. Siméon. From
XML Schema to Relations: A Cost-based Approach to
XML Storage. ICDE, 2002.

[3] G. M. C. Kanne. Efficient Storage of XML Data .
Universitaet Mannheim Technical Report, 1999.

[4] M. Carey, D. DeWitt, M. Franklin, N. Hall,
M. McAuliffe, J. Naughton, D. Schuh, M. Solomon,
C. K. Tan, O. Tsatalos, S. White, and M. Zwilling.
Shoring up Persistent Applications. In ACM SIGMOD,
1994.

[5] A. Deutsch, M. F. Fernandez, and D. Suciu. Storing
Semistructured Data with STORED. ACM SIGMOD,
1999.

[6] Z. Dimitrijevic and R. Rangaswami. Quality of Service
Support for Real-time Storage Systems. Proceedings of
International IPSI Conference, October 2003.

[7] Z. Dimitrijevic, R. Rangaswami, and E. Chang. Design
and Implementation of Semi-preemptible IO.
Proceedings of Usenix FAST, March 2003.

[8] Z. Dimitrijevic, R. Rangaswami, E. Chang, D. Watson,
and A. Acharya. Diskbench: User-level disk feature
extraction tool. UCSB Technical Report., April 2004.

[9] D. Florescu and D. Kossmann. Storing and Querying
XML Data using an RDBMS. IEEE Data Engineering
Bulletin, 22(3):27–34, 1999.

[10] M. Franceschet. XPathMark: An XPath Benchmark for
XMark. In
http://staff.science.uva.nl/ francesc/xpathmark/index.html.

[11] G. R. Ganger, B. L. Worthington, and Y. N. Patt. The
DiskSim Simulation Environment Version 2.0 Reference
Manual. Reference Manual, December 1999.

[12] R. Goldman and J. Widom. DataGuides: Enabling
Query Formulation and Optimization in Semistructured
Databases. In VLDB, 1997.

[13] G. Gottlob, C. Koch, and R. Pichler. Efficient
Algorithms for Processing XPath Queries. In VLDB,
2002.

[14] T. Grust. Accelerating XPath Location Steps. In ACM
SIGMOD, 2002.

[15] A. Halverson, J. Burger, L. Galanis, A. Kini,
R. Krishnamurthy, A. Rao, F. Tian, S. Viglas, Y. Wang,

J. Naughton, and D. DeWitt. Efficient Algorithms for
Processing XPath Queries. In VLDB, 2003.

[16] Q. Li and B. Moon. Indexing and Querying XML Data
for Regular Path Expressions. VLDB Journal, 2001.

[17] J. McHugh, J. Widom, S. Abiteboul, Q. Luo, and
A. Rajaraman. Indexing Semistructured Data. Stanford
Technical Report, 1999.

[18] R. H. Patterson, G. A. Gibson, E. Ginting,
D. Stodolsky, and J. Zelenka. Informed Prefetching and
Caching. In Proc. of the 15th ACM Symp. on Operating
System Principles, December 1995.

[19] F. I. Popovici, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Robust, Portable I/O Scheduling with
the Disk Mimic. Proceedings of the USENIX Annual
Technical Conference, pages 297–310, June 2003.

[20] C. Ruemmler and J. Wilkes. An introduction to disk
drive modeling. Computer, 2:17–28, 1994.

[21] J. Schindler, S. W. Schlosser, M. Shao, A. Ailamaki,
and G. R. Ganger. Atropos: A Disk Array Volume
Manager for Orchestrated Use of Disks. Proceedings of
the USENIX Conference on File and Storage
Technologies, March 2004.

[22] S. W. Schlosser, J. L. Griffin, D. Nagle, and G. R.
Ganger. Designing Computer Systems with
MEMS-based Storage. In Architectural Support for
Programming Languages and Operating Systems, pages
1–12, 2000.

[23] A. Schmidt, M. L. Kersten, M. Windhouwer, and
F. Waas. Efficient Relational Storage and Retrieval of
XML Documents. WebDB, 2001.

[24] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. XMark: A Benchmark for
XML Data Management. VLDB, 2002.

[25] B. Seeger, P.-A. Larson, and R. McFadyen. Reading a
Set of Disk Pages. In Proceedings of VLDB, 1993.

[26] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He,
D. J. DeWitt, and J. F. Naughton. Relational
Databases for Querying XML Documents: Limitations
and Opportunities. 1999.

[27] I. Tatarinov, S. D. Viglas, K. Beyer,
J. Shanmugasundaram, E. Shekita, and C. Zhang.
Storing and Querying Ordered XML using a Relational
Database System. In ACM SIGMOD, 2002.

[28] P. Varman and R. Verma. Tight Bounds for Prefetching
and Buffer Management Algorithms for Parallel I/O
Systems. In Foundations of Software Technology and
Theoretical Computer Science, Decemeber 1998.

[29] Western Digital Technologies Inc. WD Caviar SE
Datasheet.
http://www.wdc.com/en/library/sata/2879-001081.pdf,
2005.

