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Abstract

Database storage management at data centers is a man-
ual, time-consuming, and error-prone task. Such manage-
ment involves regular movement of database objects across
physical storage devices in a Storage Area Network (SAN)
so that storage utilization is maximized. We present STORM,
an automated approach that guides this task by combining
low-overhead information gathering about database access
and storage usage patterns, efficient analysis, and effective
decision-making for reconfiguring data layout. The recon-
figuration process is guided by the primary optimization
objective of minimizing the total data movement required
for the reconfiguration, with the secondary constraints of
space and balanced I/O bandwidth utilizations across the
storage devices. We show that this formulation of the dy-
namic data layout reconfiguration problem is

���
-hard and

present a heuristic that provides an approximate solution in�����	��
���������� ��������� time, where � is the number of stor-
age devices and

�
is the total number of database objects

residing in the storage devices. A simulation study shows
that the heuristic converges to an acceptable solution that is
successful in balancing storage utilization with an accuracy
that lies within 7% of the ideal solution.

1 Introduction

Data center services for medium to large entreprises typ-
ically host several petabytes of data on disk drives. Most of
this storage houses data residing in hundreds to thousands of
databases. This data landscape is both growing as well as dy-
namic; new data-centric applications are constantly added at
data centers, while restrictions such as SOX [14] prevent old
and unused data from being deleted. Further, the data access
characteristics of these applications change constantly. En-
suring peak application throughput at data centers is incum-
bent upon addressing this dynamic data management prob-
lem in a comprehensive fashion.

Today’s IT managers have various storage options rang-

ing from low cost SATA, iSCSI, to high performance RAID
storage. Due to the exponential growth in the number
of storage devices across data centers and their associated
management overhead1, data center managers are inclining
more and more toward isolating storage management at data
centers using Storage Area Networks (SAN [11]) - a net-
work whose primary purpose is the transfer of data between
computer systems and storage elements. Applications read
from and write to storage devices through SAN switches or
routers [19].

Although SANs allow significant isolation of storage
management from server management, the storage manage-
ment problem is still complex. Due to the dynamic nature of
modern enterprises, the interaction and use of applications
changes over time. The dynamic changes in the set of “pop-
ular” data results in skewed utilization of network storage
devices, both in terms of storage space and I/O bandwidth.
Such skewed storage utilization eventually degrades the per-
formance of applications, creating the necessity to buy more
storage (when existing storage is not fully utilized), thereby
resulting in overall cost increment.

IT managers spend copious amounts of time moving data
between storage devices to avoid such skewness. However,
manual decision making in large data centers containing sev-
eral terabytes of data and hundreds of storage devices (if
not thousands) is time-consuming, inefficient, and at best
sub-optimal. Off-the-shelf relational databases contribute
to a large portion of these terabytes of data. Consequently,
the manual data management tasks of system administrators
mostly involve remapping of database elements (tables, in-
dexes, logs, etc.) to storage devices.

In this paper, we present the architecture and design of
STORM, a system that enables automatic identification of
skewness in database storage utilization in a data center en-
vironment and accordingly proposes an optimal data move-
ment strategy. Moving a large amount of data between

1Current estimates put expenditure on storage management at approx-
imately one person per ������� TB and state that storage cost is domi-
nated by storage management cost rather than hardware cost over the long
term [2, 18].



storage devices requires considerable storage bandwidth and
time. Though such movement is typically done in periods
of low activity, such as night-time, it nevertheless runs the
risk of affecting the performance of applications. Moreover,
such data movement operations are so critical that they are
seldom done in unsupervised mode; a longer time implies
greater administrator cost. A longer time requirement for the
data movement also prompts data center managers to post-
pone such activities and live with skewed usage for as long
as possible. It is therefore critical to minimize the overall
data movement in any reconfiguration operation.
Paper contributions:

1. We present the architecture of STORM, a database stor-
age management system in a data center environment.
2. We present a mathematical model for the problem of of
balancing the I/O bandwidth utilization across the storage
devices with the objective of minimizing data movement,
given the storage device capacity constraints.
3. We show that obtaining an accurate solution to this prob-
lem is

���
-hard and propose a heuristic algorithm that pro-

vides an acceptable approximate solution.
4. We conduct a simulation study to demonstrate the effi-
ciency and accuracy of the heuristic algorithm.

The rest of the paper is organized as follows. We present
related research in Section 2. We present a practical data
center architecture that incorporates STORM in Section 3.
In Section 4, we model the problem of dynamic database
storage management in a data center environment. Section 5
presents a heuristic algorithm that provides an approximate
solution to this problem, while Section 6 details online tech-
niques for monitoring database and storage usage patterns.
Section 7 presents an evaluation of STORM using a simula-
tion study compared against a baseline optimal solution. We
make final remarks in Section 8.

2 Related Work

Research on data-placement in parallel database sys-
tems [10, 20, 9] may seem related at the first glance. How-
ever data placement in a parallel database system is de-
signed with the motivation of achieving maximum query par-
allelism for a single database system. Whereas our goal is to
balance the utilization of shared storage devices in a SAN
across multiple database systems, as is typical in a data cen-
ter setting.

Distributed data storage systems such as Mariposa [22]
have developed ways to place data distributed in geograph-
ical locations based on access pattern and other cost factors
such as network cost. The basic objective of Mariposa and
our system are different in that Mariposa works on a single
distributed database system, while our system works on mul-
tiple centralized database systems, that store data in a shared
SAN environment. Further, Mariposa optimizes for a WAN
setting where network bandwidth is scarce. In our system

database servers are connected to SAN devices over a high-
speed network. In such a scenario we can assume all storage
devices are equally accessible by database servers. We ad-
dress the problem of balancing the storage device utilization
which is more applicable in a data center environment.

Load balancing server resource usage has been an active
area of research for over a decade since early work on web-
servers [17]. Traditional load balancers work in a dynamic
fashion, operating at a per-request level. Further, they have
a single objective i.e. balancing the request load of a set
of servers. We address data movement for balancing data-
access load with the dual objectives of minimizing the data
movement and nullifying the skewness in storage utilization,
all while meeting the projected capacity requirement based
on future growth of data. Further, such data movement is
performed periodically with a much coarser time interval,
rather than in a continuous fashion.

Storage management vendors such as Veritas [23], Com-
puter Associates [8], and BMC [5] provide application-
independent software for storage management. These so-
lutions typically work at the block level. Any allocation
of blocks without application-level knowledge of what the
blocks store and how they are being utilization, will likely
lead to suboptimal usage of the storage. Further, these solu-
tions involve moving blocks of data from one storage to an-
other to achieve balanced utilization. However, such move-
ment may lead to a single database table being split across
several drives, severely complicating the task of a database
administrator. As a result, such storage management is
seldom used for databases. A similar argument can also
be made for research related to data migration [16] across
storage devices which migrate data across storages at the
block level. Our research focuses on data movement at its
application-level granularity such as database tables or in-
dexes, thereby also utilizing the semantic knowledge of the
data being moved.

Finally, Oracle’s Automatic Storage Manager (ASM) so-
lution [21] proposes a different approach to database storage
management by striping each file within a single database
across all the available storage using a 1MB stripe size. The
claim with ASM is that it eliminates the need to move data
dynamically because the striped layout of each file across all
drives implicitly balances I/O load. However, this solution
works on a per-DB level, requiring a dedicated “disk group”
to be allocated to each database. Our solution works in an en-
vironment where sharing storage across multiple databases
is permitted thereby providing greater utilization of storage
resources.

3 System Design and Architecture

We consider a data center environment, with a tiered ar-
chitecture for providing services, comprising of application
servers, database servers, and storage nodes. At the head
are the application servers which service user requests. The
application servers use the database servers to query the



databases, which in turn access data from the tables stored in
the SAN device pool. Further, as typically the case, we as-
sume that the datacenter comprises of several database server
clusters; these clusters share the storage space provided by
the SAN device pool.

Our work focuses on the interaction between the database
servers and the SAN devices. Database servers allocate stor-
age space in the SAN devices to store database objects such
as tables, indexes, logs, etc. The access patterns for individ-
ual objects managed by the database servers are application-
dependent and can vary widely over time. Consequently, one
of the key problems in managing SAN devices in a database-
centric system is to move data from one storage device to
another to accommodate the future growth of objects and
to balance the utilization of the individual devices in the
SAN. This primarily includes reconfiguring the storage al-
location and data placement on a per-object basis based on
application access patterns. Successful reconfiguration leads
to a more balanced access to the SAN device pool by the
database servers, thereby preventing bottlenecks at individ-
ual storage nodes.

The storage management tasks required for such recon-
figuration includes information gathering, analysis, decision
making, and execution, akin to the Monitor-Analyze-Plan-
Execute loop proposed in the IBM’s Autonomic Computing
intiative [15]. Currently, each of these tasks are performed
manually by system administrators based on human intuition
and experience. We propose comprehensive automation of
these management tasks in a data center environment. Our
system will perform data gathering, analysis, and decision
making automatically based on which data-center managers
can choose to reconfigure the layout of objects to improve
the storage utilization.
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Figure 1. A SAN configuration connecting
the database servers and SAN devices. The
TableMapper collects usage data (for both the
database and storage) periodically for provid-
ing reconfiguration hints to the administrator.

The key component of our system is the TableMapper,

which has access to the database servers as well as the SAN
device pool. Figure 1 depicts the TableMapper in a SAN
configuration that connects the DB server clusters to the stor-
age devices in the SAN. The TableMapper gathers object-
access and storage-usage data (elaborated in Section 6) us-
ing the database monitor (DBMON) and storage monitor
(STMON) modules, analyzes the data, and makes recon-
figuration decisions within its decision maker module. The
STMON component gathers data related to storage devices
such as storage capacity and I/O bandwidth. These stor-
age data are static in nature and can be adjusted manually
when a new storage is added or existing storage is taken out
from SAN. The storage utilization, ie which database object
is using which storage node and how much space it is con-
suming, is also gathered by the STMON from database sys-
tems. The DBMON component gathers usage information
of key database objects (tables and indexes). The data gath-
ering mechanism of both the DBMON and STMON com-
ponents are described in detail in Section 6. Based on this
data, the decision maker analyzes and makes reconfigura-
tion decisions. This analysis and decision-making process
are elaborated in Sections 4 and 5. In case a reconfigura-
tion is deemed appropriate by the decision maker, it notifies
the system administrator, who may choose to act upon the
recommendation.

In realizing the TableMapper we had to consider two
key factors. First, the TableMapper must be non-intrusive
in collecting object and storage usage information from the
database servers. Since this operation is performed period-
ically and infrequently, it can be performed during system
idle time. The second challenge is to avoid a bottleneck at
the TableMapper itself. We argue that since the TableMapper
only manages metadata and the actual dataflow bypasses the
TableMapper, it is unlikely to become a bottleneck. Further,
following our architecture, we envision no significant hur-
dles to using multiple DBMONs to collect data from number
of database servers and storage nodes.

The decision maker module of the TableMapper is its
most complex component. Based on gathered database-
object and storage usage data, the decision maker proposes a
reconfiguration of object layout on storage devices. In doing
so, it must balance multiple optimization objectives. First,
the new configuration should be achievable with minimal
data movement. Reducing the total amount of data move-
ment will contribute to realizing the new configuration in
lesser time and thus lesser cost, reduce the amount of net-
work traffic, and also reduce the volume of data which may
be potentially rendered unavailable during the move. These
factors would also encourage data center IT managers to per-
form more frequent reconfiguration leading to reduced skew-
ness in storage usage over time. Second, it must ensure that
none of the storage devices is overly utilized in terms of I/O
bandwidth. This is addressed by posing a reconfiguration
constraint so that the percentage I/O bandwidth utilization
for each device is below the average percentage I/O band-
width utilization across all storage devices plus a small con-



figurable threshold. Finally, the new configuration should
support the future table growth till the storage managers de-
cide for another round of reconfiguration.

In the next section, we formally describe the dynamic
storage reconfiguration decision-making problem followed
by a heuristic solution (in Section 5) for such decision that
will help data center storage manager.

4 Model

We describe the configuration decision making problem
formally as ”give a set of database objects ( � ) with their
present growth rate (

���
), usage characteristic ( � � ) and size

( � � ), and given a set of network storage ( � ) with allowable
I/O bandwidth ( ���	 ) and capacity ( 
 	 ) specifications - de-
termine a new assignment of objects to storage nodes that (i)
will result in minimal physical movement of data across stor-
age devices to realize the new assignment, (ii) will balance
the I/O bandwidth utilization of storage nodes, and (iii) that
will meet the future size growth of objects for certain time
( � ).”

Parameter Description� Index for set of physical storage devices (  )� Index for set of database objects ( � )��� � Equals 1, if � is currently located in storage ���� Current size of object � in bytes��� Current growth rate of object � in bytes/days���� Maximum I/O bandwidth utilization of the storage
in bytes/sec� � Storage capacity in bytes for storage ���� The average bytes/sec retrieved from object �� to serve database requests related to object ����! Threshold in percentage that can be allowed for a
storage to be over-utilized than the average utiliza-
tion

T Validity duration of new object location in days"� Average percent utilization of all storages#$� � Equals 1, if the new allocation of object � is to stor-
age �

Table 1. Model parameters.

Table 1 describes the parameters of the proposed model.
Based on these we formulate the dynamic data layout
reconfiguration problem, P, as follows.

Problem P:

Z(P) %'&)(�*,+ 	 + � �.- 	 �0/21 	 � � - 	 � � � (1)

subject to,

+ � � � � � � � � � 1 	 �,3 
 	 4 ( (2)

5�6%87:9;9�<>=?<A@CB @D=FEG=<A@�HJI@ (3)

7:9;9�< =LK @D= E =HJI@
3 5� � �NM.O 4 ( (4)

+ 	 1 	 � % + 	 - 	 � 4QP (5)

The objective function 1 minimizes the total data movement
across storage devices. Constraint 2 ensures that allocated
objects have the flexibility to accomodate projected future
growth without relocating it to another storage device in fu-
ture (for � days). Equation 3 computes the average percent-
age utilization across all storage devices. Constraint 4 en-
sures that the utilization of each storage node is below the
average utilization with a leeway threshold of � M.O . Con-
straint 5 ensures that any object that was located in a storage
device is assigned to a storage space in the new allocation
scheme.

Theorem 1 The problem P is
���

-Hard

Proof: We show that problem P is
���

-Hard by showing
that a special case of the problem reduces to the multi-
demand constraint multi-dimensional knapsack problem
(MDMKP) [7, 6], which is known to be

���
-Hard.

The MDMKP problem can be stated in math-programming
form as follows

&)R 1 S�FT�UWVYXYXYXYV ZJ[ �]\^� (6)

subject to
S�FT_U`VYXYXYX V Z R 	 � \ � 3ba 	�c 4 (_%d7 cfe]efegc 4QP %87 c]efe]egc * (7)

S�FT_U`VYXYXYXYV Z R 	 �f\h��i'a 	 c 4 (�%'& � 7 c]efe]egc & �kj c 4lP %d7 cfe]efegc *
(8)\h�>m 9 c 7 (9)

Let us assume n 	 � % 1 	 �>/ - 	 � , then the problem P can be
written as follows.

&)R 1 + 	 + � n 	 � - 	 � � �
subject to + � R U� n 	 �o3ba U	 4 (
where R U� %p� � � � � � and

a U	 %q
 	 / + � � � � � � and,

+ � R �� n 	 �o3ba �	 4 (
where R �� %b� � and

a �� % � 5� � �NM.O � �o�	sr 7f9L9 � + � - 	 � � � and,

n 	 ��3 9 c n 	 �>i 9 4 ( c P
The above form of the problem P clearly maps to the
MDMKP. Thus we can say the problem can be reduced to
a MDMKP in polynomial time. So the problem P is also���

-hard.

Note that the above problem P is an integer programming
(IP) problem. Typically IP for large size problems (e.g. thou-
sands of database objects and hundreds of storage devices in
a data center) are hard to solve using standard solvers like
CPLEX [12]. Further the

���
-hardness of the problem P



makes it harder to obtain exact solutions. In the next sec-
tion, we develop a simple heuristic algorithm that provides
an acceptable approximate solution to the problem with an
acceptable time complexity. Moreover unlike CPLEX and
the model based approach where we can not get a solution
when the problem is infeasible, our heuristic algorithm will
provide a solution that will balance the utilization of I/O
bandwidth across storage nodes while also meeting the ca-
pacity constraint. In Section 7, we evaluate the accuracy of
our heuristic.

5 A Heuristic Algorithm

In this section, we present a heuristic algorithm that pro-
vides an approximate solution to the problem P with an ac-
ceptable time complexity. Given the current storage config-
uration (i.e., the assignment of database objects to individual
storage nodes), the heuristic aims at finding a new storage
configuration that is better suited to serve the current request
load.

The psuedocode for the heuristic algorithm is shown in
Figure 2. The algorithm takes as input the current object
assignment to storage nodes (

- 	 � ), the current bandwidth
utilization of each storage node ( � 	 ), and the current I/O
bandwidth consumed due to each object ( � 	 ). The algorithm
produces as output, a new assignment of objects to storage
nodes (

1 	 � ). Although this algorithm requires an existing as-
signment of objects to storage nodes, bootstrapping the sys-
tem can still be performed by starting with a random assign-
ment of objects to storage nodes.

Greedy heuristics are known to give good heuristic solu-
tion for various kinds of knapsack problems [13]. Also a
greedy heuristic allows us to develop a simple algorithm that
can be easily adapted by data center managers. In our al-
gorithm, we try to move the smaller objects across storage
nodes first to achieve the objective goal, before choosing to
move the larger ones (i.e. greedy on size). In moving the
objects we first try to assign objects with higher bandwidth
utilization ( � � ) to storage nodes that have lower overall per-
centage bandwidth utilization ( H @H I@ ), i.e. greedy on I/O band-
width utilization.

To begin, the algorithm chooses a set
�

of storage nodes,
whose bandwidth utilizations are above the threshold set in
Equation 4 or with storage sizes that do not allow the future
growth of database objects that they house (line 1). It then
creates a list of objects currently residing in the node set

�
such that removing these objects from

�
will decrease the

utilization of each node in
�

to an acceptable level. Further,
in choosing the objects to place in L, the algorithm ensures
that minimum amount of data is moved from the set

�
of

nodes. The creation of � occurs in lines 8 through 17 of the
psuedocode. Additionally, for each storage ( m � ,

� 	 keeps
track of the objects have already been considered for moving
into another storage from storage ( . This tracking eliminates
the reconsideration of the same object, and chooses other ob-

Input: Storage node set (  ) and database object set ( � ),
Current configurations ( ��� � , � � , � � , and ��� )

Output: The new assignment of objects to storage nodes ( #L� � )
Constants: MAX NUMBER

Begin Algorithm:

1: Let ����� �	�G��
  and ��� �� @� I@
� "��� �Q�! 

and � ����� #$� ��� ��� ��� ������� � ���
2: Let � � � empty,  ��
 
3: Let ! �#"%$'&(")$ �+*�,!�.-%/ � MAX NUMBER
4: Let

"� � ��� �10 = 0 @�2 @ =)3�=0 @ � I@5: Let �54$�W�#" /6, &("%$ �.*�,!�.-7/ = � -78 ! 4 , "9&("%$ �.*�,!�.-7/ � ��� �:�
6: Let #$� � � ��� �  �;
 �:< �=
 
7: While ( �?>@ " 8 ! ,.A and ! �#"%$'&("%$ �.*�,!�.-7/ >@ �54;� �#" /6, &("%$ �.*�,!�.-7/ ) �
8: List B�� " 8 ! ,.A , A � � � #$� � <C ��
 �<6 �;
 �
9:  �1
 �D�
10: While ( ��� ��� @� I@

� "�E� � �! or � ����� #$� �F�!� � ��� ������� � � ) �
11: Choose �(
 � s.t. #;� � @ �#< � �HG
 � � < and ���JI �)K <

 *J
 � s.t. #$� K @ � and * G
 � �
12: B��LB � � � �
13: #$� � � �
14: �NMO���NM � � / �
15:

� � � � � � ���
16: �
17: �
18: While ( BC>@ " 8 ! ,.A ) �
19: Choose /P
 B s.t. �7QHR �%K <6 *J
 B
20: Let ST���VU � � � �!� � ��� ���'�!# M � � �)Q �P� �#QWI � � <

��� � ��X�Y 3[Z� IX
IC� "�E� � �! �\�

21: If ( S is empty) �
22: Choose U s.t. �FX�Y 3 Z� IX

I ��]+Y 3 Z� I] <6 _^ 
 � and / G
 �NM
23: If( U @ / 4 ^`^ ) �
24: BE�LB ��� / �
25: #$� Q � A � Q  �	
 
26: goto 18
27: �
28: If ( � M Q @ � ) �
29: �NMO�a�bM � � / �
30: Choose -_
  s.t. # M%c @ �#< - G
 � M < and � c I �)K <

 *d
  s.t. # M K @ � and * G
 � M
31: If( - >@ / 4 ^`^ ) �
32: B��LB ��� / � � � - �
33: # M Q � �
34: # M)c � �
35:

� M � � M � � Q � � c
36: �
37: goto 18
38: �
39: �
40: Else � Choose U 
 S s.t. � X� IX

I ��e� Ie <6 
*J
 S �

41: BE�LB ��� / �
42: # M Q � �
43:

� M � � M � �%Q
44: � M ��� M � � / �
45: �
46: ���a� �1�G�=
  and ��� � � @� I@

� "�E� �Q�! 
and � ����� #$� ��� ��� ��� ������� � ���

47: ! �#"%$'&(")$ �+*�,!�.-%/ � �54;� �#" /6, &("%$ �.*�,!�.-7/
48: �54$�W�#" /6, &("%$ �.*�,!�.-7/ � � -%8 ! 4 , "9&(")$ �+*�,!�.-%/ � #$� ���
49: �
End Algorithm

Figure 2. Dynamic data movement heuristic for
load-balancing storage node accesses.



Input: Current configurations #;� �
Output: � "%$ �.*�,!�.-7/
Begin Algorithm:

1: Let
"� � ��� � 0 = 0 @ 2 @D=)3�=0 @ � I@2: Let � ")$ �.*�,!�+-7/ � �

3:  �	
  �
4: If(

"� � � �! � ��� �10 = � @ =)3�=� I@ ) �
5: � ")$ �.*�,!�+-7/ ��� "%$ �.*�,!�.-7/ � � � #$� �g��� � ���� Y ���	� 
 � I@����
6: �
7: �
End Algorithm

Figure 3. Computing the deviation between
successive solutions of the heuristic.

jects if the attempt to move a smaller object did not succeed
in the previous iteration.

In the next phase (lines 18 through 45), the algorithm
places each object in list � in a storage node such that the the
variance in the bandwidth utilizations is reduced, while con-
sidering node capacity with object size and growth require-
ments as specified in Equation 2. To do so, it maintains the
objects in � sorted by their bandwidth utilizations, choosing
first the object ( * ) with the highest utilization (line 19). It
then creates a target set � of nodes that can house object * ,
given the node utilization threshold constraint according to
Equation 4 (line 20). Lines 21 through 39 address the case
when � is an empty set (described below). Otherwise a node
with least percentage I/O bandwidth utilization in � is cho-
sen to house object * (line 40) and requisite book-keeping is
performed (lines 41 through 44). After all elements in � have
been placed,

�
and the deviation (explained later on) of the

I/O bandwidth utilization of storage nodes are recomputed.
If
�

is found to be non-empty and the deviation of bandwidth
utilization is different than in the previous iteration, this pro-
cess is repeated. Otherwise the algorithm terminates with the
new assignment given by

1 	 � .
To handle the case when � is empty, we choose a storage

node � such that (i) � can accomodate object * given the size
constraint, and (ii) placing object * in storage node � causes
the least increase in percentage bandwidth utilization across
all the storage nodes where the object * was not considered
before for storage node � (line 22). If no such storage node
� is found, we leave the object * to where it was initially
assigned at the beginning of the iteration and go back to the
beginning of the while loop to start iterating for the other
objects in � . If node � currently houses object * (

-�� Z % 7 ),
the algorithm removes * from list � and chooses a different
object (



), which has the least size of the remaining objects in

� , to place in � , and performs requisite book-keeping (lines
28 through 38). To avoid reconsideration of * in the future it
puts the object * into the list

� �
of storage node � .

Computing deviation. The algorithm presented in Figure 3
computes the total deviation of I/O bandwidth utilization
across all storage nodes for which the percentage I/O band-
width utilization exceeds the average percentage utilization

by more than the utilization threshold � M.O . We use this value
to observe how the over-utilization of storage bandwidth de-
creases in each iteration of the algorithm.

A key feature of the proposed algorithm is that it obtains
a solution even in case it is infeasible to achieve an alloca-
tion scheme based on the model. In case the algorithm does
not find a feasible solution wherein the percentage I/O band-
width utilization of all storage nodes are below that thresh-
old value, the algorithm terminates when the deviations in
storage utilization in two consecutive iterations remain un-
changed. Thereby, in cases when the percentage utilization
of I/O bandwidth for each storage node cannot be reduced to
satisfy the utilization bound (Equation 3) and meet the ca-
pacity constraint (Equation 2), the heuristic still provides a
solution that reduces the over-utilization of I/O bandwidth
(i.e. deviation) across the storage nodes.
Heuristic complexity. Due to space constraints, we pro-
vide only a synopsis of the complexity calculation here. The
outer loop (line 7) is repeated at most � times, a positive
integer value that depends on the convergence rate of the al-
gorithm. The outer loop at line 9 will be executed

����� � � �
time. The loop at line 10 is executed on average � ���� ��� times
(average number of objects per storages). Line 11 can be
executed in

������
� � � ���� ��� ��� . Thus the average order of com-
plexity for the loop at line 10 for each iteration of loop at
line 7 is

����� � � � ���� ���
��
� � � ���� ��� � � . The inner loop (line 18) is re-

peated on average � ���� ��� times. Further for each iteration of
the inner loop (line 18), line 19 has the average time com-
plexity of

��� � � � . Line 20 has the complexity of
������
� ��� � � ��� .

One of line 22 or line 40 is executed in each iteration of
the inner loop (line 18), both of which have complexity of����� � � � . Line 30 is executed in small percentage of cases
where

-�� Z % 7 . Let us assume it is executed for � fraction
of total execution of the outer loop (line 18). Line 30 has a
complexity of

������
� � � ���� ��� � � . Line 46, which belongs to the
outer loop has time complexity of

����� � � � . The total aver-
age time complexity of the algorithm is thus computed to be��� ��� ��� � � � ���� ���

��
� � � ���� ��� � � � ���� ���
� � ���� ��� �

� � � � � ��
� � � ���� ��� � �
� � � � � .

Considering that C is a small number (typically around 5-6,
based on experimental data), and

� � � �!� � � (i.e number of
database objects is larger than number of storage nodes, a
typical case) we conclude the total time complexity of the
heuristic algorithm is

����� � � ��
��� � ���� ��� �
� � ���� ��� � � � . Thus, our

heuristic algorithm is low order polynomial and can be run
quickly for large number of database objects and storage
nodes.

6 Monitoring Usage Patterns

In this section we describe how STORM collects usage
statistics of database objects and their storage consumptions
from commercially available databases. These statistics cap-
ture the usage behavior of standard classes of database ob-
jects (tables and indexes) found in DBMSs. Note that these



usage patterns are very often the objects of enquiry for DBAs
becuase they lend significant insight into how database ob-
jects should be placed in various storage devices across the
network. Specifically, STORM collects three base usage
statistics automatically, i.e.,

1. Frequency of access of database objects.
2. Average data access size of queries for a database object.
3. Storage consumption and growth estimate of objects.

In the STORM architecture, as presented in Figure 1, the
DBMON and STMON are profiling modules for the database
and storage system respectively. Both processes are config-
ured with a list of database servers (encompassing all the
database server clusters) to be monitored. For monitoring
database access patterns, the DBMON submits a set of mon-
itoring queries to the database servers, and receives the re-
sults. The DBMON then processes these results to yield
the monitoring information of interest. The STMON also
queries the database servers and the storage devices to ob-
tain dynamic information about space usage for individual
database objects by each database server and static informa-
tion such as storage capacity of individual devices .

The above modules are designed so that they are non-
intrusive. The data queried in the monitoring process is not
application data, but rather system meta-data. As a result, not
only is the total volume of data collected small but also there
is minimal contention with application data access. Further,
the query interval is typically large and also configurable; it
can be made sensitive to database resource availability (e.g.,
can be done during off-peak hours or service down-time).
Finally, once the query results have been received, all other
processing takes place outside the database process.

Next, we describe specific practical techniques to gather
the above information that apply to most commercial off-
the shelf (COTS) databases. We specifically describe our
approach for Oracle and SQL-Server databases, but note that
our scheme can easily be extended to other COTS databases
such as MySQL, DB2, and Sybase.

6.1 Details of Data Gathering Technology

We now describe a specific set of SQL queries that can
be used by DBMON and STMON to derive usage statistics
of database objects and their storage consumption. This ap-
proach is applicable for all COTS databases; however, the
specific SQL queries needed to gather are dependent on the
meta-data architecture of each vendor’s DBMS.

6.1.1 Database Object Access Patterns

Table 2 lists specific queries that DBMON uses to obtain
the frequency of accesses of database table and index ob-
jects. From the output of Query Q1, DBMON can generate a
list of tables (e.g., CUSTOMER) and columns prefaced with
their associated table names (e.g., CUSTOMER.ZIPCODE)
in the database. We call these two lists the TableList and
ColumnList, respectively. From the output of Query Q2,

DBMS Query

Q1 Oracle SELECT TABLE NAME COLUMN NAME FROM DBA ALL TABLES
Q1 SQL-

Server
SELECT DATABASE NAME.DBO.SYSOBJECTS.NAME TABLE NAME,
DATABASE NAME.DBO.SYSCOLUMNS.NAME, COLUMN NAME FROM
DATABASE NAME.DBO.SYSOBJECTS, DATABASE NAME.DBO.SYSCOLUMNS
WHERE
DATABASE NAME.DBO.SYSOBJECTS.ID=DATABASE NAME.DBO.SYSCOLUMNS.ID
AND DATABASE NAME.DBO.SYSOBJECTS.XTYPE = ‘U’

Q2 Oracle SELECT c.INDEX NAME, c.COLUMN NAME, c.TABLE NAME i.NUM ROWS FROM
DBA IND COLUMNS c,
DBA INDEXES i WHERE c.INDEX NAME=i.INDEX NAME

Q2 SQL
Server

SELECT I.NAME INDEX NAME, I.INDID, O.NAME TABLE NAME FROM
DATABASE NAME.DBO.SYSINDEXES I,
DATABASE NAME.DBO.SYSOBJECTS O WHERE I.ID = O.ID AND INDID ��� AND
INDID ������� AND O.TYPE =
‘U’ ORDER BY O.NAME INDEX COL ( TABLE NAME , I.INDID , key id ) /* returns the
column name where key id
is the ID of the key*/

Q3 Oracle SELECT DISTINCT s.SQL TEXT SQL TEXT, s.EXECUTIONS EXECUTION COUNT
FROM V$SQL s

Q3 SQL
Server

SELECT SQL SQL TEXT, USECOUNTS EXECUTION COUNT FROM MAS-
TER.DBO.SYSCACHEOBJECTS,
MASTER.DBO.SYSDATABASES WHERE UID � 1 AND ((CACHEOBJ-
TYPE=‘EXECUTABLE PLAN’ AND
OBJTYPE=‘PREPARED’) OR (CACHEOBJTYPE=‘EXECUTABLE PLAN’ AND OBJ-
TYPE=‘PROC’ AND SQL NOT
LIKE ‘SP %’)) AND SYSCACHEOBJECTS.DBID = SYSDATABASES.DBID AND
MASTER.DBO.SYSCACHEOBJECTS.DBID=DB ID(‘DATABASE NAME’)

Table 2. Database object-usage monitoring
queries.

DBMON generates a list of indexes, where each index is
identified by the table and column it indexes, (e.g., CUS-
TOMER.ZIPCODE INDEX). We call this list the IndexList.

Q3 returns a list of SQL statements executed on the
database, and each statement’s execution count. We call
this list the ExecutedStatementList. Specifically, each item
in this list represents a single statement, and contains the
StatmementText (e.g., Select distinct ZIPCODE from CUS-
TOMER) and an integer StatmentExecCount. For Q3, we
note that some consideration must be given to the query sub-
mission interval. The tables in Oracle and SQL Server that
store executed statements and execution counts are part of
the DBMS’s caching infrastructure, and are flushed at an
administrator-determined interval. The interval between is-
suing Q3 queries must be smaller than this interval.

DBMON can determine database object usage statistics
by aggregating access counts. The pseudocode in Algo-
rithm 1 describes this aggregation process.

Lines 1-6 create a set of aggregation structures: the set
of count M variables store the number of accesses to each
table, and the sets of column variables countIndexUsed Band countIndexNeeded B represent the number of accesses
to columns for restriction purposes, where an index would
be used if available. The restrictionUseHashTable struc-
ture stores restriction uses for specific column values and
RetDataSize M represents the total amount of data returned
from a table on a set of queries. Lines 8-9 parse the
query into tables and restriction columns and column-
values accessed, while lines 12-23 update the count M ,
countIndexUsed B , countIndexNeeded B , and restrictionUse-
HashTable with the execution counts for each query. With
this information, DBMON is now prepared to compute the
usage statistics that will be required by our approach in Sec-
tion 5 for the decision maker of STORM.

The frequency of access of database objects. The count M
and countIndexUsed B value give us the usage statistics for
database objects tables and indexes.



Algorithm 1 Aggregate usage statistics
1: for all tables

,
in TableList do

2: Create a count
�
variable, and initialize it

to 0
3: Create a RetDataSize

�
variable and initial-

ize it to 0
4: for all columns � in ColumnList do
5: Create a countIndexUse 2 variable, and ini-

tialize it to 0
6: Create a countIndexNeeded 2 variable, and

initialize it to 0
7: Create an empty restrictionUseHashTable
8: for all statement � in ExecutedStatementList

do
9: Create three empty lists, tableAccessList,

columnAccessList, and columnValueList
10: Parse � ’s StatementText. Add all ta-

ble names accessed in the WHERE clause to
the tableAccessList, and all column names
accessed in the WHERE clause to the colum-
nAccessList. Add column name-value pairs
for all column values accessed in the WHERE
clause to the columnValueList

11: Based on the range values and selectivity
analysis ([4, 3, 1] DBMON estimates the
size of return data set for each table in
tableAccessList

12: Update RetDataSize
�
based on computed

return data size and StatementExecCount
13: for all tables in the tableAccessList do
14: Increment count

�
by � ’s StatementExec-

Count
15: for all columns in the columnList do
16: if the column name matches an index in

the IndexList then
17: Increment countIndexUsed 2 by � ’s

StatementExecCount
18: else
19: Increment countIndexNeeded 2 by � ’s

StatementExecCount
20: for all items in the columnValueList do
21: if the column-value pair does not exist

in the restrictionUseHashTable then
22: Create a new hash element, with the

column-value pair as the key, and � ’s
StatementExecCount as the value

23: else
24: Increment the hash element value for

the column-value pair by � ’s State-
mentExecCount

25: Return the restrictionUseHashTable, count
�

for all tables, as well as restrictionUse 2 ,countIndexUsed 2 and countIndexNeeded 2 for all
columns

Average data return size of queries for a database ob-
ject. Combining the count M along with RetDataSize M DB-
MON can accurately compute � � , the average bytes/sec re-
trieved from the object (table).

Cache considerations. Modern database systems cache fre-
quently accessed objects in memory. This introduces an er-
ror into our original calculations where we assume that all
data retrieved for query computations are from storage de-
vices. The effect of cache accesses can be taken into account
in the exact computation of the usage statistics in the follow-

ing way. Table 3 shows the query and the system stored pro-
cedures in Oracle and SQL-servers respectively that provide
specific statistics about cache hits. The oracle query gives
list of queries that required disk access along with number
of such disk access. The SQL-Server stored procedure gives
information about the queries that are being served from the
buffer cache, i.e. disk access is not required. These can be
used by DBMON along with previously obtained informa-
tion to accurately compute the average bytes/sec retrieved
( � � ) from various database objects, taking into account the
effect of the database buffer cache.

DBMS Query

Oracle SELECT executions, buffer gets, disk reads, first load time, sql text FROM v$sqlarea ORDER
BY disk reads

SQL-
Server

DBCC MEMUSAGE

Table 3. Cache usage queries.

6.1.2 Storage Consumption Patterns

DBMS Query
De-
scrip-
tion

Query

Q4a Oracle Table-
space
con-
sump-
tion

SELECT df.TABLESPACE NAME, SUM(df.BYTES)
TOTAL SPACE, SUM(fs.BYTES) FREE SPACE,
ROUND(((NVL(SUM(fs.BYTES),0)/SUM(df.BYTES))*100),2) PCT FREE
FROM DBA FREE SPACE fs, DBA DATA FILES df WHERE
df.TABLESPACE NAME = fs.TABLESPACE NAME (+) GROUP BY
df.TABLESPACE NAME ORDER BY df.TABLESPACE NAME

Q4b Oracle Physical
files
asso-
ciated
with
a Ta-
blespace

SELECT FILE NAME, TABLESPACE NAME FROM DBA DATA FILES
WHERE STATUS=’AVAILABLE’;

Q4 SQL
Server

Physical
files
asso-
ciated
with a
File-
group

SELECT FILEGROUP NAME(GROUPID), GROUP NAME, FILESIZE TO-
TAL SPACE, FILEMAXSIZE-FILESIZE FREE SPACE, FILEMAXSIZE,
GROWTH = (CASE SYSFILES.STATUS & 0X100000 WHEN 0X100000
THEN CONVERT(NVARCHAR(3), GROWTH) + N‘%’ ELSE CON-
VERT(NVARCHAR(15), GROWTH * 8) + N’ KB’ END), NAME LOGI-
CAL FILENAME ,FILENAME FROM DATABASENAME.DBO.SYSFILES
WHERE GROUPID � � �

Q5 Oracle Size of
index
and
tables

SELECT sum(bytes)/1048576 Megs, segment name FROM user extents WHERE
segment name = ’object name’ GROUP BY segment name

Q5 SQL
Server

Size of
index
and
tables

EXEC sp spaceused ’table name’ @updateusage = ’true’;

Table 4. Storage consumption queries.

Table 4 lists queries used by STMON to obtain informa-
tion about object storage consumption and storage consump-
tion growth (base usage pattern 3). For Oracle, STMON gen-
erates a list of tablespaces, where each tablespace is associ-
ated with the total space for the tablespace, free space, and
the percentage of free space from the output of query Q4a
in Table 4. We can add the filename(s) associated with the
tablespace from the output of query Q4b. For SQL Server,
all these data elements can be obtained for filegroups from
Q4 for SQL Server. Note that the expression in parenthesis
(CASE...END) in this query is an embedded stored proce-
dure designed to convert binary-format numbers into integer
format. With this information STMON can compute

- 	 � (cur-
rent assignment of database object to storage nodes).

The query Q5 gives us the size of database objects ta-
bles and indexes ( � � ) in Oracle and SQL-Server. Taking a
series of these values over time provides data points which
STMON uses to forecast growth of table size over time (

� �
).



7 Simulation Results

In this section, we experimentally demonstrate the effi-
cacy of our heuristic algorithm in terms of two key metrics
(i) accuracy, and (ii) convergence.

7.1 Accuracy of Heuristic Algorithm

To evaluate the accuracy of the heuristic, we compare the
data movement required by the heuristic solution to that re-
quired for the solution obtained by solving the model P using
CPLEX [12]. Due to the

���
hardness of P, large size prob-

lems (e.g. 100 storages and 3000 objects) cannot be solved
using CPLEX within an acceptable time bound. We there-
fore resort to the alternate approach of calculating the accu-
racy using a lower bound of the problem P. We obtain the
lower bound solution of the problem P by LP-relaxation (re-
laxing the binary constraint of the variable

1 	 � and declaring
it a variable within

�
0,1 � range) and solving the LP-relaxed

version of the problem P. We compute the percentage gap
between the data movement obtained by heuristic and this
lower bound as follows.

���:� - �:*���R � ����R [ %
� �
	 �C(G���G( - / � 
 \ �:�C
 
 	 *�

� 
 \ �:��
 
 	 *� � 7f9;9
We generated feasible problems by varying the size of

database objects (P ) uniformly within 1-100 MB. We var-
ied the � � for database objects following a Zipfian distribu-
tion (following typical notion of 20% of database objects are
accessed in 80% of the cases) within 10-1000 bytes/sec. We
varied the growth rate of database objects uniformly between
0-1000 KBytes/days. For baseline, we set the number of
storage nodes to 100 and the number of objects to 200. Then,
fixing storage nodes to baseline value (100), we varied the
number of objects (500, 1000, 1500, 2000, 2500 and 3000).
Similarly keeping the number of objects to the baseline value
of 2000 we varied the number of storage nodes (50, 75, 100,
125, 150 and 175). We thus obtained 11 cases in total. The
value of � is kept constant at 15 days (2 weeks) and the
threshold value of utilization ( � M.O ) is kept at 5%. For each
of these cases, we generated 3 problem instances by varying
the parameters as described above. In each case, the value of
storage node sizes ( 
 	 ) and maximum bandwidth ( �>�	 ) are
generated randomly within a upper bound and lower bound
computed so that feasible solutions of the model exist. We
then compute the average percentage gap in data movement
for each case.

The variation of the PercentageGap with varying number
of objects and varying number of storage nodes are shown
in Figure 4 and 5 respectively. In both cases, the gap re-
mains within 7% of the lower bound. This also implies that
in cases where feasible solution exists, the heuristic solu-
tion lies within 7% of the optimal solution. Note, however,
that here we compare against the lower bound solution which
may be worse than the optimal solution. So the actual gap
may be lower than those shown in the figures.
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Figure 4. Varying number of objects.
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Figure 5. Varying number of storage nodes.

7.2 Convergence of Heuristic Algorithm

To demonstrate the convergence of the heuristic we plot
in Figure 6 the value of

- 	 �C���:*������
�L(GR��G( 
 * (as computed in
the algorithm) in each iteration. Note how the deviation re-
duces in each successive iteration. The graph shows this de-
viation for three different values of number of objects 1000,
2000 and 3000; the number of storage nodes is kept con-
stant at 50. The values of other parameters are generated as
described in Section 7.1. The values of storage node sizes
are generated based on feasibility of the solution. The value
of maximum bandwidth of storage nodes are generated as a
random number between 15-25 MBytes/sec in each of these
three cases.

As can be seen from the Figure 6, the algorithm converges
in all three cases within at most 5 iterations. In case of 1000
and 2000 objects the algorithm produces a feasible solution
with a final deviation of zero. In case of 3000 objects the al-
gorithm is unable to produce any feasible solution. however,
unlike a model-based CPLEX approach that does not pro-
duce any solution in case of infeasibility, the heuristic actu-
ally reduces the deviation from 4500 to about 600 and stabi-
lizes before exiting within 5 iterations. Thus our heuristic not
only generates a solution that is best at any situation but also



does so within a very small number of iterations. Further, the
efficiency of the heuristic is excellent. The heuristic required
approximately 5 seconds on an average for a run with 3000
objects and 175 storage nodes on a Pentium 2.4 GHz proces-
sor. We therefore believe that the heuristic is practical and
can easily be used for online database storage management
in a data center environment.
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Figure 6. Convergence of heuristic algorithm.

8 Conclusion

In this paper we presented STORM, an automated ap-
proach that can guide effective utilization of storage nodes
used for database storage, in a data center environment. We
developed a math-programming model of the problem and
showed that the the problem is

���
-hard. For the data center

managers we developed a simple greedy heuristic that pro-
vides approximate solutions quickly. By simulation study
we have shown that the greedy heuristic generates a solu-
tion for feasible problem that lies within 7% of the optimal
solution. Further, even in cases where the actual formula-
tion of the problem does not allow feasible solutions, the
heuristic is still effective in significantly reducing the imbal-
ance in bandwidth utilization across the storage nodes. The
time-complexity of the heuristic algorithm is low order poly-
nomial making it an efficient and practical solution for large
number of database objects and storage nodes. In the future,
we intend to extend our work to other storage systems such
as mail systems and file systems.
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