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Abstract and current solutions can be classified at the high-level int
exploit-based penetration detectifitb, 33, 16] oranomaly-
Host intrusion prevention systems for both servers anghased misbehavior detectipf, 14, 32, 3]. It is well-accepted
end-hosts must address the dual challengescotiracyand  that while the former approach can be susceptible to falge ne
performance Researchers have mostly focused on addressitives, the latter must deal with (often large number oBdal
ing the former challenge, suggesting solutions basedmithe positives. However, little research exists on how we can-com
exploit-based penetration detection or anomaly-basetdenis bine these complementary techniques to effectively irserea
havior detection, but yet stopping short of comprehensive s accuracy. Solutions focusing on accuracy also often target
lutions that leverage merits of both approaches. The secong specific subsystem. Systems such as StackGuard [6], Trip-
challenge, however, is rarely addressed; doing so comprehe wire [17], Snort [28], and Bro [25] rely on monitoring a siegl
sively is important for practical usability, since thesst®mns  subsystem (e.gmemoryor filesystefito derive inferences.
can introduce substantial overhead and cause system slowtowever, as we shall exemplify later on, many intrusions as
down, more so when the system load is high. well as post-intrusion misbehavior involve a sequence ef-op
We present Rootsense, a holistic and real-time intrusiontions affectingnultiple subsystems. Finally, most solutions
prevention system that combines the merits of misbehaviogddressing the former challenge attempt to deadicintru-
based and anomaly-based detection. Four principles goversions in the system, while some focus on detectow do-
the design and implementation of Rootsense. First, Rosésenmainintrusions only [14, 19, 34]. This choice can impact the
audits events within different subsystems of the host tipgra  efficiency, accuracy, and usability of the system.
system and correlates them to comprehensively capture the

global system state. Second, Rootsense restricts thetidatec relatively less attention. If not addressed comprehehsive

domﬁmté) roc()jt.compromlzeztnlyt;_domg S0 reducestrl;mr;tme performance can be the roadblock to large-scale adoption
overhead and increases detection accuracy (foot behasior lof real-time intrusion prevention solutions. Specificatlye

more easily modeled than user _behavior)._ Third, ROOtsenS(?\/erhead associated with monitoring (e.g., data collagtio
adopts a dual approach to intrusion detection +omt pene- analysis (e.g., signature-matching), and response, mster
tration detectodetects activities that exploit system vulnera—of their impac:[ to foreground tasks ;are not well understood
biIiti.es to penetrate the. security perimeter, andoat misbe- Here, theresponse time distributiois a key metric that cap-
havior detectotracks misbehavior by root processes. Fourth,tures both theaverage response timandjitter experienced

Rootsentse”|s (j_esutgr?ed totbe c%nflggrztalblte f(;r ?Verh;ad maBy foreground tasks. What is required is a control mechanism
agement aflowing the system administrator to tune the oVera, ; \i aliow the system administrator to monitor and tune

h?fadt?haractenjt;cs kOf thfe Intrusion AF\) Lgvent!on Isystea[’;:h the response time distribution (to whatever extent posktbl
affect foreground task performance. inux implementetio ¢t overall system performance goals.

of Rootsense is analyzed for both accuracy and performance, i i i
In this paper, we present Rootsense, a real-time intru-

using several real-world exploits and a range of end-host an X X - ]
sion prevention system, which monitarailtiple subsystems

server benchmarks. = _
to get comprehensive information about the global state of
. the host, focuses on the restricted but critical domain of
1 Introduction root intrusions and employs alual approachfor detecting
Intrusion detection and prevention systems must addred®th vulnerability-specific exploits as well as anomalotes p
two challenges comprehensivefccuracyandperformance  cesses. Rootsense actively reports on the performancetimpa
Accuracy is concerned with botlalse positivesas well as to foreground applications to the system administrator, by
false negativesf the intrusion detection mechanism, while continuously monitoring the distribution of foregrounghka
performance is measured by impact to the foregroundreask response times. Without sacrificing its accuracy, Rootsens
sponse time distributiarEach of these metrics affect the end- also provides overhead tunability that the system admmézist
user experience and are critical factors determining wereth tor can use to control the execution behavior of the intnusio
the solution is practical for use in production systems. prevention system. Consequently, the administrator can co
There has been substantial research on addressing accura} impact on foreground performance, specifically allogvi

The latter challenge, namelyerformance has received



a trade-off between foreground task average response timequires the detection of several events with associat¢a da
and jitter. across two different processes.
The design of Rootsense addresses several challenges, in-
cluding minimizing overhead and exporting control over theExample 2.2 Rootkits typically modify system binaries (e.qg.,
system overhead characteristics, addressing the scomkeand | s, ps, etc.) to conceal their presence [34]. For exam-
tail of the information collected, correlating the colledtin-  ple, modification of th€ bi n/ | s root-domain file can be
formation within and across subsystems, generating &ctivi interpreted as anomalous activity indicating presence of a
signatures of interest at the right level of abstractionnais rootkit [9]. However, the package updaters (eygum may
such signatures for accurate and efficient intrusion dietect also modify system programs includih@i n/ | s, a benign
and creating a timely and configurable response mechanisirevent. Differentiating between these two anomalous éietvi
The design, implementation, and a detailed performanceequires context information and correlation of bailhocess
analysis of Rootsense are the subject of the remainder of thibsystem antllesystemactivity. This knowledge must be
paper. Section 2 discusses the design principles adopted dombined with a mechanism that allows for exceptions when
Rootsense and gives a high-level description of its archite dealing with “apparently anomalous” events.
ture. Section 3 defines the fundamental conceptsvents
activities andsignatures Section 4 describes the intrusion  The justification of Principle A is straightforward and is il
detection algorithms used by Rootsense. Section 5 presentstrated by both the above examples. Detecting the exploit
an experimental evaluation of Rootsense. Section 6 dissussExample 2.1 requires time-sensitive correlation of evatad
related work and we conclude in Section 7. across two processes, while Example 2.2 necessitates corre
lation across events in the process subsystene¢ of yum)
2 Design Principles and System Architecture  against a filesystem anomalous eventi(t e of / bi n/ | s).
Principle B is probably more controversial; its justifica-
tion involves considerations of both importance and feksib
ity. First, root intrusions are much more important thanruse

A. Holistic monitoring. We gain a more comprehensive levelintrusions—rootintrusions can cause unlimited dgena
view of the global system state by monitoring four sub-While user-level intrusions cannot affect other users. - Sec
systems: Process, File System, Memory, and Networkond, root intrusions are more feasible to detect than wsest|

and by correlating events generated by multiple procestrusions, because root behavior is more constrained (and
executions. hence more predictable) than user behavitor instance, a

B. Focus onroot intrusions. Rather than trying to deteefl 00t Process modifyingbi n/ 1 s is in itself suspicious, un-
possible intrusions, we focus only on root domain intry-like a user process modifying a user file. Further, the diffycu
sions of accurately modeling “normal” user behavior could easily

. . : : lead to an unacceptable false positive rate [2].
C. Separate detection of penetration and misbehavior. . . ; . : .
. ) In addition, focusing on root intrusions is more feasible
We employ two detectors that run in parallel: r@ot

: : - from the standpoint of efficiency in two respects — we reduce
penetration detector which looks for activities that the analysis overhead of user-level ev&rsd more impor-
exploit system vuIner.abiIities.to penetrate .the securitytamly, we substantially reduce signature-matching oseth
perlmgter, an(_j &0t misbehavior detectg_)r/vh|ch |OQkS by eliminating signatures corresponding to the large papul
for misbehavior by root processes without trying totion of user-level exploits.
knpw the caus_e. _ Justification of Principle C relies on the observation that

D. Design for real-time response with overhead control. 44t domain intrusions can be detected in two distinct ways:
We focus on making the intrusion response systemy) by ohserving activity that exploits known vulnerabii to
real-time, bl_Jt at the same allow the system adm'”'sm?‘t%enetrate root protections, and (2) by simply observing mis
to tune the impact to the foreground task response timgenayior in root processes, even if the cause of the misbehav
distribution. ior is unknown. These two approaches are complementary:

Several real-world exploits guided these design prinsiple Penetration detection is less prone to false positivesesin

We illustrate with two examples. relies on specific signatures, while misbehavior detedson

less prone to false negatives, since it can be effective even

Example 2.1 To exploit a time-of-check to time-of-use against intrusions that exploit unknown or unavoidable vul

(TOCTTOU) vulnerability [S], an attacker process performs nerabilities, such as compromised root passwords. A npvelt

two operationsyemoveand replace between the check and in Rootsense post-intrusion misbehavior detection liehén
use operations of the vulnerable process. Tipenpackage
manager (runs as root) in Linux contains gopen, open> 1Thif detection domain can be potentially expanded to ircltbn-
TOCTTOU pair [36]. An attacker process can replace theUman" privileged user accounts (e.g., apache, sshdmaajletc.) with
. ! . . . . constrained behaviors that can be easily modeled.

file created in the firsbpen with a file of her choice, before 2To respond to privilege-escalating penetration attacksyeier, some

it is opened again for execution. Detecting such an exploituser-event analysis is still needed.

2.1 Design Principles
Rootsense’s design is directed by four key principles:




ability to specify exceptions that help reduce false pes#ito  space within a Rootsense user-space daemon cRitexd-

address situations such as in Example 2.2. sensedThis separation ensures that the resource-hesry
Finally, justification of Principle D primarily harbors on itoring and analysismodules do not consume scarce kernel

practical usability of the intrusion prevention system.- In space resources. However, this separation complicates tim

formation about and control over the response time distritiness of intrusion response and interactivity control arief

bution of foreground task response times can help the syggound tasks; we address these detail in Section 4.2.

tem administrator evaluate the suitability of such a sohuti

in her current environment. The ability to trade-off averag 3 Concepts and Terminology

response-time for jitter (and vice-versa) is built into the _ . _ . .
In this section, we introduce the basic concepts in Root-

sign of Rootsense; this ability we believe is valuable inda includi ific terminol that hall i th
ing Rootsense behavior in varied environments, such as 3ENSE, Including Specilic terminology that we shafl use én

jitter-sensitive desktop environment or a throughputsgtemr rest of the paper.
server environment.

[ Subsystem [ Sample events |

Process create process, process exit, load executable, [sig-
2.2 System Architecture nal process
Memory allocate memory, free memory, map memory, yn-
3 map memory

9.
A d\'@/ System Administrator Filesystem | open file, make directory, change permis-

sions/owner, symlink, read/write

Response Knowledge Network create socket, listen, connect, close
Mechanism Sources
, Table 1. Sample events for each subsystem.
Detector Detector Benign . ey . . . . .
Modules A Definition 3.1 An eventis a significant occurrenceithin a
Monitoring -
Modules

single subsystem and due to a single process. An event de-
Sensors at ‘Syscall Sensor‘ ‘3“1 Party Sensor H —
Touchpoints

scription comprises key pieces of information relatinghte t
occurrence including a unique event ID, its invocation time

. et subsystem, process-id, user-id, effective user-id, dypet
Seeaiam and additional arguments that further define the event, j an
Figure 1. Rootsense system architecture. An event description in Rootsense is represented using the

As illustrated in Figure 1, Rootsense uses a layered archi®!lowing format:

tecture composed of five distinct layers. THenitored Sub- [event 1D [tinestanmp] [subsysteni [pid] [uid]
systemgorm the lowest layer and encapsulate the four mairi evi d] [event type] [arguments]
subsystems—Process, File Sy_ste_m, _Memory, and NetWork_Event IDs are incremented for each new observed event. Ta-
that together compose the holistic view of the system. Th

Sensors at Touchpoinpgovide an abstraction layer on top of Ble 1 lists example event types that may occur within each
. . i ) . subsystem.

the detailed sensing mechanisms incorporated inside the mo

itored subsystems. Tt&yscall Sensdntercepts selected Sys- 557 1752538450 P 25631 0 0 exec /usr/bin/yum 22

tem calls as well as other kernel events along with assatiate| 643 1246434546 F 25631 0 0 wite /bin/ls 211

data and forwards them for processing; third-party sercors

also be plugged into this layer (e.g., Snort events or a gmpl

sensor for network bandwidth usage). TWenitoring Mod-

ules perform aggregation, filtering, and escalation functiond?€finition 3.2 Anactivity is a sequence of events. The events

on intercepted events before analysis. in an activity need not occur consecutively; other events ca
The next layer is composed @fnalyzing Moduleshat ~ De interleaved arbitrarily.

use input from the monitoring modules and tkerowledge - . . . .

Sourcedo analyze the current state of the system. The fol- A useful activity monitored in Rootsense typically cor_@st

lowing databases comprise the Knowledge Sourceddl)- .Of asequence m‘orrelatedeyents. An example of an activity

cious Activity Signaturegii) Benign Activity Signaturesind IS shqwn n Flggrg 2. .Not|ce that the event IDs are not se-

(iii) Anomalous Event Signaturéd/e describe these concepts quential, L€, th|_s lsa fllte_red sample of th? observedesyst

in detail in Section 3. Finally, in the topmost layer of this a events. This aCt'\_/'ty consists of two events: .

chitecture is thdResponse Mechanismvhich acts to stop an Event 521. At time 1122538450, process with PID 25631

ongoing “detected” intrusion attempt and notifies the syste Wh'(.:h Is running with both real and effective UID of root
administrator, (0) invokes aProcesssubsystemExec event to load the

In the current implementation of Rootsense, tbach- [usr/bin/ yu.mexecutable, and
point sensorsand theresponse mechanismeside in kernel ~ Event 643. At time 1246344546, the above process (same

space, while the remaining layers are implemented in userP“_D)/, E?US/‘?S tilesystenevent of typeWrite; the file written
tois/bin/ls.

Figure 2. An example of an activity



Notation Description (p) and the UID (u) must exactly match those of the event
l'ower-case letter | Variable matching event signature 1. The remaining arguments are
upper-case | etter | Predefined Sef “don’t-cares”

X Member of X o .

1 (E) Nstn,]z ero A subtlety in this signature is that we want te@mepro-

* Don't-care cess p to participate in both events. But it is conceivaldé th

the process with PID p might exit and that another process

Table 2. Notations in signature specification. ; )
with the same PID p could later be created; our signature

<begin signature> matching would not want to match this signature in this case.
<extern Updat eSet: U> Our implementation deals with this by aborting the matching
<extern ProtectedSet: P> of any activity signatures waiting for an event involvingrap

F i 0exee UK, cess with PID p if that process exits.

<end si gnat ur e> Rootsense uses three kinds of signatures within its pene-
tration and misbehavior detectorMalicious activity signa-
turesare intended to capture the behavior of a system while a
vulnerability is being exploited, allowing the detectiohit-
trusions “at entry” Anomalous event signaturdsscribe sin-

Definition 3.3 An event signatureis a generic event which gle root events that are apparently malicious; these are use
does not include timestamp information and allows vari-to detect intrusions “post entry”. An example is a file in the

ables and wildcards (don't-cares) in various event degisip  / bi n/ » ProtectedSet being written to. Finalbenign activ-
fields. ity signaturesare intended to describe scenarios in which ap-

) ) parently malicious events are actually innocent. (Exargie
In other words, an event signature is not a system ocCUjescribes such a scenario.) As indicated in Figure 1, Root-

rence but is used to represent a class of actual system gve : .
allowing for system variants such as their time of occureencrganse uses three databases, one with each of the above kinds

associated process ID, etc. Table 2 lists the notationsafior v Of signatures. We explain how Rootsense uses these dasabase
ables and wild-cards that are used in Rootsense for spegifyi to detect intrusions next.
event signatures. An example of an event signature is shown

below: . .
" 4 Intrusion Detection and Response

In this section, we describe the dual approach to intrusion
The above event-signature represents the class of acertkev detection in Rootsense, addressing the challenges atesbcia
which occur in therocessubsystem (P), caused by a processwith maintaining and updating the signatures databases. We
with effective user ID (EUID) root (Q)with the event-type follow this with a description of the real-time intrusion-re
exe¢ and wherein the executable loaded by exec is a membsponse mechanism and also describe how a system adminis-
of the externally-specified s&t of executables. The process trator can control Rootsense overhead to better matchrsyste
ID (p) and the user ID (u) are specified as variables, and thend-goals.

arguments of exec are “don’t-cares”. We eliminate the event

Figure 3. An activity signature corresponding for the
specific activity in Figure 2.

PpuOexec :U~x* =

ID and timestamp for brevity of the event signatures. 4.1  Dual Detection in Rootsense
Definition 3.4 An activity signature is a sequence of event ~ Rootsense employs a dual approach to intrusion detection,
signatures and describes classes of activities. using both aoot penetration detectoas well as aoot mis-

behavior detectar The penetration detector looks for activi-
Figure 3 is an activity signature that captures the behauies that exploit system vulnerabilities to penetrate gwusity
ior of the activity described earlier in Figure 2. The adtivi perimeter, while the misbehavior detector looks for atigsi
signature first specifies that there are two externally ddfineby root processes that constitute misbehavior. Both detect
sets,U andP, that are used in the activity signature. Next, theengines run continuously, in parallel.
main signature body is specified and it consists of two event For monitoring the global system state continuously, each
signatures: detector independently monitors and correlates evengs rel
Event Signature 1requires that a matching event bpra-  vant to its operation. The detectors do not correlate arud tra
cesssubsystenexecevent, invoked by a process with EUID all activities; they use their associated signatures @astedbto
0 and executable loaded is an element of the UpdatéSet, determine important activities that must be tracked. By ob-
The remaining arguments to exec are “don’t-cares”. Theserving the system activity in real time, each detectorksac
process ID (p) and the user ID (u) are specified as variablegglevant transitions in the global system state to make-infe
implying that although they are not specified, their valuesnces about the system’s intrusion status.
are significant connecting information for subseque@nts  Root Penetration Detector.
that contribute to aactivity signaturematch. Theroot penetration detectanonitors all system activities to
Event Signature 2requires a matching event to béilasys- monitor the “entry points” for intrusions, which are the sys
tem write event to a file in the ProtectedSet The PID  tem vulnerabilities. It continuously monitors all events f



<begi n si gnat ure>
<extern CheckSet: &
<extern RenoveSet: R>
<extern CreationSet:L>
<extern UseSet: U>
FpuO:Cf «
F!p+*!10:Rf =
Fl!p=*=10:LTf =
FpuO: :Uf «

<end si gnat ure>

matches with activity signatures in tmealicious signatures
databasea match indicates an intrusion attempt and triggers
the response mechanism.
Although the root penetration detector is intended to detec

root domain intrusions only, it still must monitor all adgties
by both users and root. This is required because several in-
trusions of the root domain are due to privilege escalatiag e
ploits (e.g., a TOCTTOU vulnerability exploit) wherein aeus
process acts maliciously to obtain root privilege. To tramk
portant activity in the system, the detection engine penfor
the following actions for each event observed:

1. For each malicious activity signature whd#ast event

signature matches the observed event, creaaetvity state e simultaneously checking whether the event matches

machinewhich will track the specific activity pattern. The some anomalous event signature.

state machine is populated with event-specific informatior the event matches an anomalous event signature, then we
to replace a subset of the variables in the activity Signaregard it as malicious and invoke the response mechanism
ture. The state machine is then sewait-for an eventthat | pjessat least one benign activity state machine was able to
matches theeconcevent signature in the activity signature. ,o1e progress on the event, in which case we judge the event
2. For each state machine whasait-for event signature to be benign.

matches the observed event, transition the state machine to One might wonder about a situation in which a benign
the next state by setting it to wait-for an event that matcheactivity signature igartially matched, but never completed.
thenextevent signature in the activity signature. Before do-Might this cause an anomalous event to be wrongly judged
ing so, populate the state machine with event-specificinforbenign? We actually believe that this situation will never
mation to replace any additional variables it may have inarise, because we conjecture that it suffices to use benign ac
stantiated. If a state machine terminates due to this evertiyity signatures containing jusine anomalous event signa-
invoke the response mechanism ture, which always occutast. If this is so, then whenever a

3. If the event belongs to therminatingclass of events, benign activity signature “salvages” an apparently malisi
abort all of the affected state machines. For example, with §vent, that actually completes the match of the benigniactiv
state machine whoseait-for event is an event with process signaturé.
with PID 16909, termination of that process will disable theSignatures Databases.
state machine. One of the key challenges in Rootsense is the generation and
The root penetration detector cannot detect all root peneontinuous updating of the signatures databases. To make th
etrations. Specifically, it cannot detect intrusions in fible  task of signature specification more efficient and pragtma
lowing three scenarios: (i) an unknown system vulnerabilit approach buildgenericclasses of malicious, anomalous, and
is exploited, (ii) a known vulnerability is exploited, butis  benign activity. To keep the signature count tractable, lag-c
not possible to detect the exploit with within the frameworksify both subjects as well as objects using the set concept to
of Rootsense, and (iii) the intruder makes a “legal” enttpin aggregate specific vulnerabilities into classes. Setinéion
the system, using a compromised root password. Detectirgssociated with an activity signature is specifiecedzrnal

Figure 4. An activity-signature corresponding to the
TOCTTOU serialization vulnerability class [21].

on this event, and

such intrusions is the job of th@ot misbehavior detector
which we describe next.

Root Misbehavior Detector.
The root misbehavior detectomonitors only the activity

of processes with effective user ID (EUID) root to detect

privileged-mode misbehavior. It works by looking for siagl
events that match thenomalous event signaturelatabase.

information that can potentially be shared by several @gtiv
signatures.

The current Rootsense prototype consists of hand-coded
signature sets for modeling malicious activity. To obtaiam
licious activity-signatures, we started with the combifiad-

ings of classification proposals for software vulneraietitoy
Neumann [24], Landwehr et al. [21], and Bishop [4]. We ana-

Recall that such events are apparently malicious. HowevelP,'ZeOl each vulnerability class to determine if generic epl

there may be scenarios in which such events are actually i
nocent; to recognize those situations, we must simultasigou
track matches within thbenign activity signaturedatabase.
More precisely, the root misbehavior detector processels ea
event that it observes by

r(f_ould be specified independent of context and associatad dat

The identified exploits were then encoded into signatures in
terpreted by Rootsense. For instance, a generic expleit sig
nature for the serialization TOCTTOU vulnerability (ass:la
sified in [21]) is specified in Figure 4. Set specification is
borrowed from the recent work on understanding TOCTTOU

e creating and/or advancing state machines (i.e., do stepsviInerabilities in file systems by Wei et al. [36]

and 2 of theoot penetration detectavperation) for any

SNote that this conjecture thus far holds true for all the beractivity

of the benign activity signatures that can make progressignatures used in the current Rootsense prototype.



The anomalous event signatures database is a collection
event signatures for EUID root processes, each of which b
itself constitutes a potential anomaly in root behavioreJé

Application i

i syscall(s)

h

g Event Event
Reader Analyzer
BEEEE B

Rootsense

: P B e —mmm— = — s = = - — = ‘ Syscall _interface F - - Userland
event signatures are specified manually, and include eventsver malicious Kernel
such as a process with effective UID root writing to /bin/* or |
exec’ing a shell. User %

ProcesdlEll| upon notify malicious:
wait ﬁ return unprocessed syscall
queu g (OPtionally terminate process

An example of a benign activity sighature was introducedread
earlier in Figure 3. While these are manually specified in our™™
prototype, in the future, however, we envision obtaining th
class of activity signatures automatically. This can beatc

Kernel
plished by first running the system in a protected envirortmen release invoke syscall implementation

upon release:

pointer

guaranteed to be free of malicious activity (similar to tbeht-
nigues used in studies such as [10] for learning normal pro-
gram behavior) and monitoring for anomalous events. An au-
tomatic process for determining correlated events to féren t
activity and another process for deriving a generic sigmatu
that considers activity invariants might then be used.

‘ LegendH [ currently processing [l awaiting processing [ ] free slot

Figure 5. Rootsense kernel-space sensing/response
and userland interactions.

put to sleep in th@rocess wait queueThe Rootsense mon-
Efficient Signature Matching in Rootsense. itoring component is implemented aga&vent readewhich

In Rootsense, the events are analyzed in parallel bRt  consumes from the event buffer withgaevent granularity.
Misbehavior Detectoand theRoot Penetration Detectofhe  The g events are then analyzed, followed by consuming of
detection engines employ the following hash-table datastr the nextg events from the kernel event buffer. (More on
tures to speedup the pattern matching process: ¢§igpaa- this shortly). Rootsense’s intrusion response mechargsm i
tures hash-table for fast look-up oBignaturegvalue) whose invoked each time the analyzer concludes that a requested sy
first events conform to the:subsystem,event-typgkey) of  tem event is potentially malicious. The analyzer notifies th
the observed event, (i) state machines hash-tablgfor fast  response mechanism the associateeht |Dof the potentially
look-up of state machinegsalue) whose wait-for events con- malicious event, which is used to wake up the corresponding
form to the <subsystem,event-type(key) of the observed process from the process wait queue. This process is then ei-
event, and (iii) armnomalous event signatures hash-tabje therterminatedor its system call request is denied, depending
for fast look-up ofevent signature@rsalue) conforming to the on the administrator-specified policy for handling suspéct
<subsystem,event-typgkey) of the observed event. The ter- malicious events, and the system administrator is notified.
mination status of the state machine determines the state nélly, each time the user space component consumes a new
the system and whether or not the response mechanism is iget ofg events, processes associated with the prexjavent
voked. Due to space constraints, further details on impfeme IDs from the process wait queue are woken up and allowed to
tation optimizations is provided in an extended versiorhift continue executing their respective system calls, sinoseth
paper [27]. events are implicitly identified as non-malicious by the re-
sponse mechanism.

4.2 Intrusion Response Controlling Overhead Characteristics.

Timely response to intrusion attempts, before they camntrusion detection and prevention systems necessatiig-in
perpetrate damage, is necessary to ensure system securifice system overhead because they must analyze system ac-
Timely response in Rootsense is ensured by analyzing eaghity and such analysis requires system resources. While
system call request, before the actual system call is irioke gptimized implementations can reduce the absolute value of
Doing so naively, however, can introduce unnecessary corsych overhead, the characteristics of such overhead @ oft
text switching between the Rootsense kernel space (ires; se hard to control. The characteristics of system overhead can
ing/response) and user space (i.e., monitoring/analgsis}  pe captured by the distribution of foreground task response
ponents. Consequently, a naive implementation can incur afimes, which can be succinctly representedawerageand
arbitrary amount of system overhead. standard deviatiorvalues. While the average value dictates
Timeliness of Response. overall system interactivity, the standard deviation. (ivari-
Figure 5 depicts the sensing and response mechanisms ahility in response times) dictates user-perceived jitter
Rootsense, including the interactions between the kenkl a Some interactive systems, minimizing jitter may be as impor
user space components. The Rootsense kernel space cd@nt as improving average interactive performance.
ponents (sensing and response) interpose between thensyste Intrusion analysis using@ event granularity was a design
call interface and the actual system call implementation.  choice in Rootsense to control the number of context switche

When an application invokes a system call, this system calbetween user and kernel space as well as the context switches
event is assigned a uniqesent IDand buffered in a circu- between the Rootsense user space and the system foreground
lar kernel event buffefor intrusion analysis; the process is tasks (i.e. applications). The value®is a control parameter



Vulnerability | Symptom Description | Exploit-based | Anomaly-based | Rootsense|

bzip2 [30] bzi p2 chnod, permissions, race condition -+ o+ -+
execve [37] execve/ pt race, race condition -+ o+ -+
tar [29] GNU't ar hostile destination path -+ o+ -+
tOrnkit [9] Malicious modification of bi n/ | s o + -+ -+
X.org [31] Xor g X window server local privilege escalation o + -+ -+
N/A Benign modification of bi n/ | s -+ ) -+
N/A Benign /bin/sh exec by rodtbi n/ bash process -+ ) -+

Table 3. Comparing Rootsense accuracy with exploit-based a nd anomaly-based detectors.

that a system administrator can use to trade-off average-cavention systems is necessarily never-ending. Consegyentl
interactive performance with jitter. Increasi@gimplies that  we restrict this evaluation to merely contrasting the bérav
the Rootsense user space process can analyze a larger niwhRootsense in comparison with generic exploit-based and
ber of events before issuing a system call to consume subsarnomaly-based systems alone.
quent events (i.e., requiring a user-kernel context switéh Table 3 presents a comparative evaluation of exploit-hased
also implies that foreground tasks have an increased cliinceanomaly-based, and Rootsense detection accuracy. Accu-
waiting after, rather than waiting botheforeandafter, they  racy is represented by true (-/+) as well as falséd) pos-
engueue their respective events, thereby reducing centextives/negatives, respectively. For brevity, we only elatie
switch overhead introduced into foreground workldathus, — three specific scenarios from Table 3, the p2 race attack,
a larger value ofc improves interactivity, but also increases the theXor g local privilege escalation, and the benign modi-
jitter. Rootsense exports tunability Gfto the system admin- fication of/ bi n/ I s.
istrator who can observe as well as control this trade-aféba Thebzi p2 race attack [30] has a clearly defined exploit-
on the needs of her system. For instance, the administrator $ignature, requiring the attacking process to interpose an
a data-center hosting web-services may choose to exdysive<unl i nk, | i nk> pair betweeropen andchown operations
prioritize average-case response time, while a systemradmiof bzip2. Both the exploit-based detector and Rootsense are
istrator for an end-user system may choose to prioritirerjit successful in preventing this attack. However, since this a
reduction to keep user experience acceptable. We analigze tfiack does not involve any anomalous behavior bytthiep2
trade-off in detail in the evaluation section. process, the anomaly-based detector makes a false negative
decision. TheXor g privilege escalating attack exploits a
5 Evaluation buffer overflow. It |s WeII-kn,?wp that this _class of attack
cannot be detected “at entry” without architectural change
We deployed Rootsense on an Intel x86 2GHz machingy pinary modification; consequently, exploit-based ditec
with 512MB of memory, running GNU/Linux with a Fedora make a false negative decision. However, post-intrustus, t
Core 5 distribution and 2.6.15.6 kerrtel. The kernel com-  attackexecs a shell, inheriting the privilege ofor g (i.e.,
ponent overwrites theys_cal | _t abl e entries for interposi-  root). An anomaly-based detector which tracks shell erec’i
tion, and exports events via/ar oc extension. Rootsense pehavior (including Rootsense) can detect and prevent this
was evaluated for both accuracy and performance, as we shafimediately after the intrusion. Finally, the benign mauiifi
describe next. tion of the protected binarybi n/ | s by yumresults in false
Rootsense Accuracy.To evaluate accuracy, we used a un-positive decision by the anomaly-based system, but Root-
patched Fedora Core 5 distribution as a testbed, containingsense correctly identifies the activity as benign. This bapa
few root vulnerabilities We installed additional vulnerable ity of coding exceptions to anomalous behavior in Rootsense
root binaries to complete the testbed. Next, exploits eorreis a unique one which enables combining exploit-based and
sponding to these vulnerabilities were carried out to deilee ~ anomaly-based detection without sacrificing accuracy.

the Rootsense response. In addition, we simulated apparenRootsense Performance. In evaluating Rootsense perfor-
anomalous behaviors by benign processes. mance, we focused on three aspects: (a) system overhead, (b)
The objective of our evaluation was not to evaluate deimpact and control over foreground response time distribu-
tection completeness, but rather to demonstrate the sdope g@n, and (c) effect of knowledge base size. Unless otherwis
Rootsense’s capability to distinguish between maliciou & mentioned, the knowledge base contained approximately ten
n0n-ma|ICIOl.JS aCt|V|ty. Itisindeed InfeaSIble to ev«f:lh’.la()r_n- each of malicious activity SignatureS, benign acti\/ityrmg
pleteness, since the duel between intruders and intrusen p tyres, anomalous event signatures, and set definitions.
4The size of the kernel event buffer does not impact overhbadacter- First, to evaluqte system OverheaQ’ We.ran _Severa_l bench-
istics, as long as its value is greater tt@nThis can be intuitively reasoned Marks on three d'ﬁerent system configurations: a vanilta sy
by considering that in steady state, when the rate of evaaiysis is greater tem, a system with Rootsense kernel space component but
than the rate of event generation, process wait events ateotied by event 3 dummy user space component (i.e., no event correlation
consumption behavior which is independent of kernel eveffebsize. We . :
validated this intuition experimentally and report resutt Section 5. and anaIySIS)’ and Rootsen_se (ever)_/th_lng enabled)' Fpr eac
5The only exception was thexecve/ pt r ace exploit for which we benchmark, we presgnt_a b'_'|ef Qescrlptlon next along with th
used a 2.2 kernel. load it generates by indicating its measured event gearati




rate in parentheses (events per second). Lmbench (11575) is
a suit of diverse micro-benchmarks used to measure operat-
ing system performance; it issues various system callgyat hi
rate. UnixBench (784) is a set of micro-benchmarks which
range from system to arithmetic related. lozone (2468) is an
I/O intensive benchmark with mostly disk reads and writes.
Bltk-dev (2910) and Bltk-office (1232) are end-user work-
loads that real world usage such as software developmentan
office related applications, respectively.
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response time distribution of any foreground workload.- Fig
ure 8 depicts the effect of varying the event processingugran
larity (G) on the event wait times when running the Lmbench
benchmark. (Y-axis is shown in logarithmic scale). For a low
value of G=16, most event wait times are distributed in the
10-20 ms range, with low variance. For a moderate G=128,
Figure 6. Benchmark execution times. there is a larger variance with most values lying in the Q2-0

Figure 6 depicts the normalized execution times of thd"S range, but a few that require up to 100 ms. This implies
benchmarks with the three configurations. With Rootsensdelatively larger jitter but lower average wait time. Forigth
the execution time increases by as much as 4% with loadg=256, this variance is even larger but with even fewer out-
such as UnixBench and Bltk-office, and as much as 45o4ers. Thus, exporting control over the value of G to thesyst
with the Lmbench (the highest load) benchmark. This indi-administrator enables fine-grained control over foregdren
cates that the system can slowdown as much as 45% for sm&Ronse time distribution.
knowledge base sizes. For most benchmarks, the interceptgr
component of Rootsense incurs a small amount of overhead; o ‘ ‘ ‘
the bulk of the overhead resides in the analysis phase. 2500
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This phenomenon is further elaborated in Figure 9 where
we depict maximum event wait time as G is varied (left) and
show that average wait time is mostly independent of theteven

To study controllability of response time distribution, we buffer size (K). The maximum event wait times increase pro-
used two system variables - the kereegknt buffer siz¢K)  portionately to the event processing granularity, G, asben
and the user-spa@went processing granularit@). Figure 7 seen in the left graph (note that X-axis uses logarithmite$ca
shows how the number of entries in the event buffer variegmplying that a smaller G can reduce the jitter experienced
over time in the case of high-load and low-load. With low by foreground tasks, confirming earlier deductions. Anothe
load (right figure), Rootsense was mostly waiting for eventsioteworthy point, seen on the right grapth, is that smabér v
to be produced and the event buffer always runs low. Withues of G can degrade average case performance almost expo-
high load (left figure), foreground tasks must wait for egent nentially. Values of G above 500 work well for all values of
to be processed by Rootsense before generating more everis;
consequently, the event buffer is mostly close to full in the Finally, to evaluate the impact of the size of the knowl-
steady state. We also studied the effect of varying the kern@dge base, we populated the knowledge-base by generating
event buffer size and found that it did not affect the exeruti random, but valid, event and activity signatures as require
time of any benchmark (we elaborate on this later in Figure 9.We chose an equal mix of afialicious activity benign activ-

Next, we evaluated the impact to foreground response timity, andanomalous evergignatures. Figure 10 depicts how
distribution by measuring thevent wait time distributiom-  Lmbench execution time varies as thember of signatures
troduced by the Rootsense kernel-space component. This dsnd states-per-signaturare scaled up. There is a relatively
tribution directly measures the impact of Rootsense to-foresmall increase in execution time overall — less than 15% rela
ground task performance, since it gets added to the vanilléve to the 10 signature / 10 states-per-signature case.aWe c

Figure 7. Event buffer entries over time with high
load (left) and low load (right).



contextual information such as configuration files, command
line arguments, and environment variables. Similar to the
above contributions, Rootsense uses control flow as well as
data-flow as a basis for detection. However, in contrast to
the application-specific nature of the above, Rootseneeall
capturing system-wide behavior of multiple interactingpr
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rams.
Signatures P g X . . . .
signature Exploit-Based Penetration Detection. Traditionally, intru-
Figure 10. Lmbench execution time - varying the sion detection techniques have detected either vulnésyabil
knowledge base size. exploiting penetration attacks or post-intrusion anomsalo

also conclude that the overhead depends mostly on the abdf09ram behavior. Porrat al. have proposed STAT [15],
lute number of signatures, rather than the states-peasign & Staté transition analysis tool that models and detects pen
etrations as a series of state changes. Mlo¢ penetration

detectorin Rootsense performs a similar function. In ad-

6 Related Wgrk o dition, Rootsense employs raot misbehavior detectofor
While there exists a large body of work in this space, wedetecting post-intrusion anomalous behavior and propases

only examine those closely related to Rootsense. method whereby the detectors can improve each other. Recent

Specification/Policy Based Approaches. Early work by — work on vulnerability-specific predicates proposed by Josh
Ko et al. [20] proposed specification-based detection that reet al.[16] allows detecting the exploitation of specific known
lies on specifications of intended program behavior, allowvulnerabilities in software both in the past as well as pnese
ing the detection of unknown attacks. Systrace is a systerfi contrast, the signatures used in Rootsense are genetic, b
call policy enforcement framework for restricting the usag ~ also provide for describing specific sets of objects thaspss
kernel services [26]. Minix3, a microkernel-based opati similar characteristics.

system, also implements system call usage policies for (traDthers. Data mining techniques, with the ability to discover
ditionally in-kernel) user-space Minix3 services [13]nfiar  consistent and useful patterns of system features as well as
high-level specifications for restricting program behawte  describing program and user behavior have been used for in-
used in [33]. Basically, manually specifying the behavibr o trusion detection [22]. More recently, Waegal. [35] argue
each program is immensely time-consuming. Moreover, cagfor holistic approaches that are able to correlate alerts du
turing all possible execution sequences in a multi-thrdade ing a multi-step network intrusion. Anagnostakisal. [1]
multi-programmed environment is infeasible. Rootsense afpropose post-processing of anomalous behavior data with
tempts to address efficiency, effectiveness, and praityical shadow honeypots to reduce the false positive rate. We be-
with generic signature-sets that model both vulnerabéity  lieve that signature generation and upkeep in Rootsensé cou

ploits as well as misbehavior, completely bypassing applic greatly benefit by using the techniques presented in these co
tion behavior specification. Rootsense also provides tbe ad tributions.

tional flexibility that policy exceptions can be made by dpec
fying appropriate benign activity signatures. 7 Conclusions and Future Work

System Monitoring and Behavior Modeling. System call Rootsense is a holistic approach for detecting and prevent-
interposition for system monitoring as well as modeling theing host intrusion attempts in real-time. The four design{pr
control flow of programs has been used widely since the earlyiples of Rootsense help towards making it an accurate, ef-
work by Forreset al. [10]. Sekaret al.[33] proposed intru-  fective, and practical intrusion prevention solution. aly,

sion prevention systems that model and enforce correct pr@Rootsense monitors global system state, employs dual-detec
gram behavior through system call interception at progranion of root domain intrusions, reducing false positivesaby
run-time. In more recent work, Mutt al.[23] propose mon- lowing anomaly exceptions, and allows for fine-grained con-
itoring individual applications to derive normal behavior  trol over the impact to the foreground task response-tirae di
terms of both the control flow of system calls and the dataribution. Experiments with a Linux-based Rootsense im-
flow in terms of the arguments supplied and return values olplementation, using several real-world exploits and a €ang
tained. In Rootsense, we suggest monitoring of an entire sysf end-host and server performance benchmarks, show that
tem (in un-compromised) state (rather than each applitatioRootsense can accurately prevent a range of real-worltkatta
individually) to derive benign activity signatures copesd-  with an acceptable level @ontrollablesystem overhead.

ing to specific anomalous event signatures, to reduce false We see several avenues for future work and describe two
positives. Gaet al.[11] propose detecting compromised pro- that we are actively pursuing. First, the current prototypes
grams by comparing theehavioral distancef distinctimple-  a simple language for specifying program behavior; activi-
mentations of the program on the same inputs. Bhatkalfs  ties involving more than one possible sequence of opemtion
data-flow modeling work [3] uses a similar approach. Giffinare modeled using multiple signatures. We are exploring lan
et al. [12] also model a program’s behavior with additional guage frameworks similar to STATL [8] that provide richer

10



capability for modeling system activity. Second, when an in[18] S. T. King and P. M. Chen. Backtracking Intrusiorioc. of

trusion is observed by the root misbehavior detector, the in  the 2003 Symposium on Operating Systems Principles (SOSP)
i i i October 2003.

thIon can be bathrfaCked using th.e tech_n!que proposed lfiIQ] C. Ko, G. Fink, and K. Levitt. Automated Detection of Vul

King et al. [18] to obtain the penetration activity sequeaae

i ticallv. The chall then is to deri lici nerabilities in Priviledged Programs by Execution Moriiigr
omaticatly. € challenge then IS 10 derive a New Malcious — pyoc of the 10th Annual Computer Security Applications-Con

activity signature from the specific activity automatigallhe ference (ACSAGDecember 1994.
root penetration detector would then use this new signature [20] C. Ko, M. Ruschitzka, and K. Levitt. Execution Monitor-
monitor a previously unknown vulnerability class. ing of Security-Critical Programs in Distributed Systens:
Specification-based ApproachProc. of the EEE Symposium
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