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Despite the increases in disk capacity and decreases in me-
chanical delays in recent years, the performance gap between
magnetic disks and CPU continues to increase. To improve disk
performance, operating systems and file systems must have de-
tailed low-level information (e.g., zoning, bad-sector positions,
and cache size) and high-level information (e.g. expected read
and write performance for different access pattern) about the
disks that they use. In this paper, we present Diskbench, our
tool for extracting such information. Diskbench uses both in-
terrogative and empirical methods for extracting various disk
features. We present our extraction methods and results for
several testbeds. From our empirical study, we conclude that
intelligent data placement and access methods can be devised to
improve disk performance, by exploiting low-level disk knowl-
edge. Diskbench has benefitted our video storage research
in the implementation ofSemi-preemptible IOand guaranteed
real-time scheduling.
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I. I NTRODUCTION

The performance gap between hard drives and CPU-memory
subsystems is steadily increasing. In order to bridge this gap,
the operating system must use intelligent disk management
strategies [4], [5], [6], [7], [8]. Most strategies assume that
detailed disk parameters, such as zoning, bad-sector locations,
and disk latency, can be obtained from the disk manufacturers.
However, the information they provide can be imprecise and
static. For instance, disk vendors usually give out only the max-
imum, minimum, and average data transfer rates and seek time.
In addition, some dynamic information such as the locations of
bad sectors cannot be known prior to actual use. As a conse-
quence, the effectiveness of most traditional disk management
strategies can be compromised.

For optimal disk performance, it is necessary to tune disk
accesses to the requirements of the application by extracting
the necessary disk features. For example, a multimedia stream-
ing server must predict the hard disk performance to maintain
real-time streaming requirements without under-utilizing disks.
However, disk abstractions (e.g., SCSI and IDE interface) hide
low-level device characteristics from the operating system and
virtualize the access to the device in the form of logical blocks.
Such device abstractions make the task of tuning disk operation

to match application requirements (and thus improving IO effi-
ciency) difficult. In this chapter we present Diskbench, a tool
for the extraction of disk features. Diskbench consists of two
applications, Scsibench and Idextract. Scsibench [9] runs in
user space on Linux systems and accesses SCSI disks through
the SCSI generic interface provided by Linux. It uses interrog-
ative and empirical methods for feature extraction similarly to
the previous work in disk profiling [10], [11], [12], [13]. Idex-
tract uses Linux raw disk access and empirical methods to ex-
tract features from any disk-like device (the approach used by
Patterson et al. [12]). Scsibench is open source and available
for download [14].

Using Diskbench, we can obtain many low-level disk fea-
tures including 1) rotational time, 2) seek curve, 3) track and
cylinder skew times, 4) caching and prefetching techniques, and
5) logical-to-physical block mappings. Diskbench also exctract
several high-level disk features useful for real-time disk sched-
ulers. In this paper we present two important high-level fea-
tures: optimal chunk size and admission control curves. In
addition, we show that the access time (including seek time
and rotational delay) between two disk accesses can be pre-
dicted with high accuracy. Scsibench also supports the exe-
cution of disk traces by providing an intuitive interface for ex-
ecuting primitive SCSI disk commands (e.g., read, write, seek,
enable/disable cache, etc.) with an accurate timing mechanism.
Using knowledge about disk features and the trace support, sys-
tem or application programmers can obtain the precise distribu-
tion of times spent by the disk performing various operations.
Bottlenecks can thus be identified, and disk scheduling can be
adjusted accordingly to utilize the disk more efficiently. Two
such systems which currently benefit from using Diskbench are
XTREAM and Semi-preemptible IO.

The XTREAM multimedia system [1] provides real-time
video streaming capability to multiple clients simultaneously.
For video playback, the disk management must guarantee that
all IOs meet their real-time constraints. If the system does not
have information about low-level disk features, it must assume
the worst-case IO time or use statistical methods. These pes-
simistic and statistical estimates of disk drive performance lead
to sub-optimal performance of the entire system. In contrast,
XTREAM uses Diskbench to obtain the required disk features
for making accurate admission control decisions.

Semi-preemptible IO [3], [2] is an abstraction for disk IO,
which provides preemptible disk access with little loss in disk
throughput. Preemptible IO relies on an accurate disk-access
prediction. The implementation of Semi-preemptible IO was
made feasible due to Scsibench, which extracts essential disk
information for accurate disk-performance modeling.
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II. RELATED WORK

Several previous studies have focused on the problem of disk
feature extraction. Seminal work of Worthington, Ganger, et
al. [13], [10] extract disk features in order to model disk drives
accurately. Both studies rely on interrogative SCSI commands
to extract the LBA-to-PBA mapping from the disk. Patterson
et al. [12] present several methods for empirical feature ex-
traction, including an approximate mapping extraction method.
In [11], the authors propose methods for obtaining detailed tem-
poral characteristics of disk drives, including methods for pre-
dicting rotational delay. Diskbench was first implemented in
early 2000, based on the ideas from Worthington et al. [10].
The main difference at the time was our empirical extraction of
disk mappings, which showed possibility of accurate mapping
using approaches similarly to Patterson et al. [12]. Our main
contribution (apart from providing Scsibench to community as
open source) is investigation of several high-level disk features
and using those features to provide semi-preemptible IO and
implement real-time disk admission-control algorithms.

Scheduling algorithms in [4], [5], [6], [7] assume the abil-
ity to predict the rotational delay between successive requests
to the disk. In [15], [8] authors implemented their scheduler
outside of disk firmware relying on their disk profiler [13].
This study is similar to work by Schindler et al. [13] and in-
cludes both interrogative and empirical methods for the accu-
rate extraction of disk mapping information. The empirical
methods can be used for disks that do not support interrogative
commands in order to extract disk mapping information. Us-
ing empirical extraction, we can obtain accurate disk mapping
information, including precise positions of track and cylinder
boundaries. However, empirical methods are slower than in-
terrogative ones. To predict rotational delay between disk IOs,
Diskbench uses an approach that is similar to the approach pre-
sented in [11]. Methods in [11] are continuously keeping track
of the disk head position. We concentrate on predicting rota-
tional distance between two LBAs and do not require the head
position knowledge, as explained in Section IV-B.2 and Sec-
tion V-H. Such prediction capability can be used for scheduling
requests in real systems, where requests are known to arrive in a
bursty fashion [16]. Diskbench can extract all the disk features
that are required in order to predict disk access times with high
accuracy (we have used the prediction in [3], [2]).

Scsibench is open source and available for download [14]. At
this time, we are not aware of any other disk feature extraction
tool which is currently available for download as open source,
and which runs on a widely available operating system without
any kernel modifications.

III. D ISK ARCHITECTURE

Before we get into the details of disk features that are of in-
terest when designing high performance systems, we provide a
brief overview of the disk architecture. The main components
of a typical disk drive are:
• One or moredisk plattersrotating in lockstep fashion on a

sharedspindle,
• A set ofread/write headsresiding on a shared arm moved

by anactuator,

• Disk logic, including the disk controller, and
• Cache/buffer memorywith embedded replacement and

scheduling algorithms.
The data on the disk drive is logically organized into disk

blocks(the minimum unit of disk access). Typically, a block
corresponds to one disksector. The set of sectors that are on
the same magnetic surface and at the same distance from the
central spindle form atrack. The set of tracks at the same dis-
tance from the spindle form acylinder. Meta-data such as error
detection and correction data are stored in between regular sec-
tors. Sectors can be used to store the data for a logical block, to
reserve space for future bad sector re-mappings (spare sectors),
or to store disk meta-data. They can also be marked as “bad” if
they are located on the damaged magnetic surface.

The storage density(amount of data that can be stored per
square inch) is constant for the magnetic surfaces (media) used
in disks today. Since the outer tracks are longer, they can store
more data than the inner ones. Hence, modern disks do not have
a constant number of sectors per track. Disks divide cylinders
into multipledisk zones, each zone having a constant number of
sectors per track (and hence having its own performance char-
acteristics).

The rotational speedof the disk is constant (with small ran-
dom variations). Since the track size varies from zone to zone,
each disk zone has a differentraw bandwidth(data transfer rate
from the disk magnetic media to the internal disk logic). The
outer zones have a significantly larger raw disk bandwidth than
the inner ones.

When the disk head switches from one track to the next, some
time is spent in positioning the disk head to the center of the
next track. If the two adjacent tracks are on the same cylinder,
this time is referred to as thetrack switch time. If the tracks are
on different cylinders, then it is referred to ascylinder switch
time. In order to optimize the disk for sequential access, disk
sectors are organized so that the starting sectors on two adja-
cent tracks are skewed. This skew compensates for the track or
cylinder switch time. It is referred to astrack skewandcylinder
skewfor track and cylinder switches respectively.

The seek timeis the time that the disk arm needs in order
to move from its current position to the destination cylinder. In
the first stage of the seek operation, the arm accelerates at a con-
stant rate. This is followed by a period of constant maximum
velocity. In the next stage, the arm slows down with constant
deceleration. The final stage of the seek is the settle time, which
is needed to position the disk head exactly at the center of the
destination track. Since the disk seek mainly depends on the
characteristics of the disk arm and its actuator, the seek time
curve does not depend on the starting and destination cylinders.
It depends only on the seek distance (in cylinders).

The disk magnetic surfaces contain defects because the pro-
cess of making perfect surfaces would be too expensive. Hence,
disk low-level format marks bad sectors and skips them during
logical block numbering. Additionally, some disk sectors are
reserved as spare, to enable the disk to re-map bad sectors that
occur during its lifetime. The algorithm for spare sector allo-
cation differs from disk to disk. In order to accurately model
the disk for intelligent data placement, scheduling, or even sim-
ple seek curve extraction, a system needs detailed mapping be-
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tween the physical sectors and the logical blocks. In addition
to mapping, a system must be able to query the disk about re-
mapped blocks. Re-mapping occurs when a disk detects a new
bad sector.

Thedisk cacheis divided into a number ofcache segments.
Each cache segment can either be allocated to a single sequen-
tial access stream or can be further split into blocks for indepen-
dent allocation. In this paper, the cache parameters of interest
are the segment size, the number of cache segments, the seg-
ment replacement policy, prefetching algorithms, and the write
buffer organization. Prefetching is used to improve the perfor-
mance of sequential reads. The write buffer is used to delay the
actual writing of data to the disk media and enable the disk to
re-schedule writes to optimize its throughput.

IV. D ISK PROFILING

In this section, we present methods for extracting certain
disk features. We use a combination of interrogative and em-
pirical methods. Interrogative methods use the inquiry SCSI
command [17], [18] to get required information from the disk
firmware. Empirical methods measure completion times for
various disk access patterns, and extract disk features based on
timing measurements.

A. Low-level Disk Features

We now present the methods Diskbench uses to extract low-
level disk features. In some of our extraction methods we as-
sume the ability to force access to the disk media for read or
write requests (hence, avoiding the disk caching and buffering).
Most modern disks allow turning off the write buffer. In the
case of SCSI disks, this can be done by turning off the disk
buffers, or by setting the “force media access bit” in a SCSI
command [18].

1) OS Delay Variations: In order to estimate variations in
operating system delay for IO requests, we use the following
method. First, we turn off all disk caching and disk buffering.
Then, we read the same block on disk in successive disk rota-
tions, as in the empirical method for extractingTrot. We mea-
sure completion times for each read request. For current disks,
variations in the rotational periodTrot are negligible. Because
of this, variations inTi − Ti−1 from Equation 2 give us the
distribution of∆TOS delayi,i−1 = TOS delayi − TOS delayi−1 .
Thus, by measuring variations inTi+1 − Ti from Equation 2,
we can estimate variations in the operating system delay.

2) Rotational Time:Since modern disks have a constant ro-
tational speed, if the interrogative SCSI command for obtaining
rotational period (Trot) is supported by the disk, it will return
the correct value. In the absence of the interrogative command,
we can also use the following empirical method described in
Worthington et al. [10] to obtainTrot: First, we ensure that
read (or write) commands access the disk media. Next, we per-
form n successive disk accesses to the same block, and measure
the access completion times. The absolute completion time for
each disk access is

Ti = Tend reading + Ttransfer + TOS delayi . (1)

Tend reading is the absolute time immediately after the disk
reads the block from the disk media.Ttransfer is the trans-
fer time needed to transfer data over the IO bus.TOS delayi

is
the time between the moment when the OS receives data over
the IO bus, and the moment when the data is transfered to the
user level Diskbench process. Since the disk need to wait for
one full disk rotation for each successive disk block access, we
can write the following equations:

Ti+1 − Ti = Trot + (TOS delayi+1 − TOS delayi
); (2)

Tn+1 − T1 = n× Trot + (TOS delayn+1 − TOS delay1). (3)

The rotational period for current disks is much greater than OS
delays and other IO overheads (not including the seek and rota-
tional times). Thus, we can measure the rotational period as

Trot measured = Trot +
∆TOS delayn+1,1

n
=

Tn+1 − T1

n
. (4)

For largen, the error term (
∆TOS delayn+1,1

n ) is negligible.
3) Mapping from Logical to Physical Block Address:Most

current SCSI disks implement SCSI commands for address
translation (Send/Receive Diagnostic Command [18]) which
can be used to extract disk mapping. However, in the case of
older SCSI disks, or for disks where address translation com-
mands are not supported (e.g. ATA disks), empirical methods
are necessary.

Interrogative Mapping:For interrogative mapping, we use
an algorithm based on the approach described in Worthington
et al. [10]. Using the interrogative method, a single address
translation typically requires less than one millisecond. But,
since the number of logical blocks is large, it is inefficient to
map each logical block. Fortunately, modern disks are opti-
mized for sequential access of logical blocks. Additionally,
most disks use the skipping method to skip bad sectors (in-
stead of re-mapping them) during the low-level format. Due to
this, logical blocks on a track are generally placed sequentially.
Thus, we can extract highly accurate mapping information by
translating just one address per track, except when we detect
anomalies (tracks with bad blocks).

Since the number of re-mapped blocks is small compared to
total number of blocks, we propose using two data structures
to store mapping information obtained using the interrogative
method. In the first data structure, we store the mapping in the
form the disk had immediately after the low-level format. Since
there are no re-mapped blocks, we simply store the starting log-
ical block number and the track size (in blocks) for each track.
The second data structure is used to store information about the
re-mapped blocks. This way, we only need to update the second
structure periodically, using the inquiry SCSI command.

Figure 1 presents a simplified algorithm for the interroga-
tive extraction used in Diskbench. Using the SCSI command
for physical-to-logical address translation, we extract the LBA
for the first sector (sector zero) of each track. If sector zero is
marked as bad, we continue performing address translation for
subsequent sectors until we obtain a valid logical block num-
ber. When we come across a cylinder in which the number of
sectors that lack a valid LBA (bad or spare blocks) is above a
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Procedure:Interrogative Mapping
• Variables:

1) cyl num : Total number of cylinders
2) track per cyl : Number of tracks per cylinder
3) i : Cylinder number
4) j : Track number
5) cyl info[i] : data structure for cylinderi info
6) cyl info[i].logstart[j] : Starting LBA for track j on

cylinder i
7) cyl info[i].logsize[j] : Track j’s size in blocks

• Execution:
1) for i = 0 to cyl num do
2) for j = 0 to track per cyl do
3) for k = 0 to Kthreshold do
4) cyl info[i].logstart[j] = physto log(i,j,k)
5) if valid(cyl info[i].logstart[j]) then break
6) if not valid(cyl info[i].logstart[j]) then
7) mark trackbad.
8) sort bycyl info[i].logstart[j]
9) calculatecyl info[i].logsize[j]

Fig. 1. Interrogative method for disk mapping.

fixed threshold (Kthreshold, we mark that cylinder as logically
bad. We do not use these cylinders in our seek curve extrac-
tion method. Tracks which have a substantial number of blocks
without a valid LBA are usually the ones containing mostly
spare sectors.

Empirical Mapping: Empirical methods for the extraction
of mapping information are needed for disks that do not sup-
port address translation. Our empirical method is essentially
similar to approach presented in Patterson et al. [12]. Our im-
provements include using the first derivative of access times
for mapping and heuristics to prune the mapping errors near
the track boundaries. The empirical extraction method used in
Diskbench follows. In the first step, we measure the time de-
lay in reading a pair of blocks from the disk. We repeat this
measurement for a number of block pairs, always keeping the
position fixed for the first block in the pair. In successive exper-
iments, we linearly increase the position of the second block in
a pair. Using this method, our tool extracts accurate positions of
track and cylinder boundaries. We now emphasize this method
in detail. TimeT (i) defined in Equation 5 is the completion
time measured at the moment when the user process receives
data for logical block addressi. (The variables on the right side
of Equation 5 are defined in Section IV-A.2.)

T (i) = Tend reading + Ttransfer + TOS delay. (5)

The access time (Ta(x, 0) = Tend reading(x) −
Tend reading(0)) is the time needed to access blockx af-
ter accessing block0. It includes both seek time and rotational
delay, but does not include transfer time and OS delay.
Equation 7 presents the first derivative of∆T (x, 0) defined in
Equation 6.

∆T (x, 0) = T (x)− T (0);

∆T (x− 1, 0) = Ta(x− 1, 0) + (TOS delayx−1 − TOS delay0);

∆T (x, 0) = Ta(x, 0) + (TOS delayx
− TOS delay0′ ). (6)

∆ = ∆T (x, 0)−∆T (x− 1, 0);

∆ = Ta(x, 0)−Ta(x−1, 0)+(∆TOS delayx,0′−∆TOS delayx−1,0).
(7)

When the OS delay variations are small, and both blocks
x − 1 and x are on the same track,∆ is small, and propor-
tional to Trot/tracksize. When the access can be performed
without any additional rotational delay after seek, or with de-
lay of a full Trot, ∆ is proportional to−Trot + Trot/tracksize.
The sign of∆ depends onTOS delay. If x andx − 1 are on
different tracks, or cylinders,∆ is proportional to skew time
Tskew, whereTskew is the track or cylinder skew time. Since
the cylinder skew is usually larger than the track skew, we can
use the positions of the skew times in∆ in order to find out
accurate track and cylinder boundaries. We define normalized
first derivative in Equation 8. This way we eliminate the−Trot

factor from Equation 7, which helps us to automatically extract
accurate disk mapping.

norm(∆) = (∆T (x, 0′)−∆T (x− 1, 0)) mod Trot. (8)

Thenorm(∆) is useful for automatic extraction only if the
OS delay is small compared to the skew times. Since the OS
delay is a random variable, we perform several measurements
whenever|∆| is greater than a specific threshold (0.02 × Trot)
and stop the measurement when the difference between two
consecutive∆’s is less than a specific threshold (5%).

4) Seek Curves:Seek time is the time that the disk head
requires to move from the current to the destination cylinder.
We implement two methods for seek curve extraction. The first
method uses the SCSI seek command to move (seek) to a des-
tination cylinder. The second one measures the minimum time
delay between reading a single block on the source cylinder and
reading a single block on the destination cylinder to obtain the
seek time. In order to find the minimum time, we can measure
the time between reading a fixed block on the source cylinder,
and reading all blocks on one track in the destination cylinder.
The seek time is the minimum of the measured times. Since
LBAs increase linearly on a track, we also implement an effi-
cient binary-search method in order to find the minimum ac-
cess time or seek time.Tseek(x, y) returns seek time (inµs)
between logical blocksx andy. This function is symmetrical,
i.e.,Tseek(x, y) = Tseek(y, x). This seek time also includes the
disk head settling time.

5) Disk Buffer/Cache Parameters:Most disk drives are
equipped with a read cache. Read caches improve disk per-
formance by allowing for data prefetching. We now present
methods to extract the cache segment size, the number of seg-
ments, and the segment replacement policy.

Read Cache Segment Size:The method for extracting the
cache segment size consists of three steps. First we read a few
sequential disk blocks from a specific disk location. Next we
wait for a long enough period of time (several disk rotations)
to allow the disk to fill up the cache segment with prefetched
data. Finally we read consecutive disk blocks occurring imme-
diately after the first read and measure the completion time. If
the block is in the cache, the completion time includes only a



5

block transfer time from the cache to the OS through the IO bus
and a randomTOS delay. If the block is not in the cache, the
completion time also includes seek time and rotational delay,
as well as data transfer time. The seek time and rotational delay
are the dominant factors in the IO completion time if present.
We can thus detect the size of a cache segment by detecting the
moment when the completion time includes mechanical seek
and rotational delays.

Number of Cache Segments:In order to extract the number
of disk cache segments, we need to be able to clear the cache.
We clear the cache by performing a large number of random
sequential reads for different logical blocks, which effectively
clear the cache by polluting it. In this extraction method we
linearly increase the number of sequential streams accessing the
disk. In each iteration we do the following: For each stream we
read a few blocks (from locations which are not used in cache
pollution). Then we wait a sufficient amount of time so that
the disk can fill the cache segment with prefetched data. After
this step, we assume that the disk cache has allocated one cache
segment for each stream.

We perform read requests for all streams and measure com-
pletion times. If the completion times are smaller than a specific
threshold, we assume that all blocks were in the cache, and that
the number of cache segments is greater than or equal to the
number of streams in this iteration. When we detect that one
read request requires an amount of time that exceeds the thresh-
old, we repeat the entire experiment to confirm that the exces-
sive time is not caused by a large random OS delay. On confir-
mation, we deduce that the number of cache segments is equal
to the number of streams in the previous iteration. By chang-
ing the access pattern in the previous experiment, and noting
which streams are not serviced from the cache, we can deduce
the policy used for the cache segment replacement.

Write Buffer Parameters:Most disk drives are equipped with
a write buffer to improve the disk write performance. If the disk
has sufficient space in the write buffer, then the write command
will be completed as soon as data is transferred to the disk’s
write buffer. The disk writes this data to the disk surface in an
optimal manner at some later time.

Figure 2 presents an empirical method for extracting the
write buffer size. Between iterations, we allow the disk to purge
the contents of the write buffer to the disk media. Before issu-
ing the write request, we also seek to a cylinder far away from
the write request’s destination. When the write request size is
smaller than the write buffer, we expect that the write comple-
tion times will increase linearly, proportional to the throughput
of the IO bus. When the write request size is greater than the
write buffer, the completion time will incur seek and rotational
delays. We can detect this using simple heuristics.

B. High-level Disk Features

Most real-time schedulers rely on simple disks models to re-
duce problem complexity. In this section, we present several
high-level disk features that are used for data-placement algo-
rithms, rotationally-aware schedulers [4], [5], [6], preemptible
schedulers [2], and admission control methods [1].

Procedure:Write Buffer Size
• Variables:

1) max size : Maximal estimated write buffer size
2) start : Starting LBA for write request
3) far : LBA for a block with largeTseek(start, far)
4) i : Write request size iteration
5) T1, T2, Tprev: Time registers

• Execution:
1) Tprev = 0
2) for i = 1 to max size do
3) disk seek(far)
4) wait(20× Trot)
5) T1 = get time()
6) disk write(start, i)
7) T2 = get time()
8) if T2 − T1 − Tprev > Trot

10 then
9) returni− 1

10) Tprev = T2 − T1

Fig. 2. Empirical method for extracting write buffer size.

1) Disk Zones: Using the extracted disk mapping,
Diskbench implements methods for the extraction of zoning
information, including precise zone boundaries, the track and
cylinder skew factors for each zone, the track size in logical
blocks, and the sequential throughput of each zone. The al-
gorithm used to extract zoning information scans the cylinders
from the logical beginning to the logical end based on the disk
mapping table. Due to the presence of bad and spare sectors,
some tracks in a zone may have a smaller number of blocks
than the others. Since we store only the track size (in logical
blocks) for each track, we may detect a new zone incorrectly.
In order to minimize the number of false positives, we use the
following heuristics. First, we ignore cylinders with a large
number of spare sectors. Second, during the cylinder scan, we
detect a new zone only if the maximum track size in the current
cylinder differs from the track size of the current zone by more
than two blocks. Third, we detect a new zone only when the
size of the new zone (in cylinders) is above a specific threshold.

2) Rotational Delay: In order to optimize disk scheduling,
the OS may use both seek and rotational delay characteristics
of a disk [5], [7], [6], [19]. We can predict rotational distance
between two LBAs using the following:

• mapping information extracted in Section IV-A.3, and
• skew factors for the beginning of each track, relative to a

chosen rotational reference point.

We choose the disk block with LBA zero as the reference point.
Let ci be the track’s cylinder number,tj the track’s position in a
cylinder, andtracksize(ci, tj) the track’s size in logical blocks.
Let LBAstart(ci, tj) be the track’s starting logical block num-
ber, and T(LBA) the time after access to a specific LBA is com-
pleted. The skew factor of a track is defined as

sci,tj = [T (LBAstart(ci, tj))− T (LBA0)] mod Trot. (9)

If the number of spare and bad sectors is small, we can accu-
rately predict the rotational distance between two LBAs (x and
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y) using the following equations:

X = Trot× [x− LBAstart(cx, tx)] mod tracksize(x)
tracksize(x)

+scx,tx
;

(10)

Y = Trot× [y − LBAstart(cy, ty)] mod tracksize(y)
tracksize(y)

+scy,ty
;

(11)
Trot del(y, x) = (Y −X) mod Trot. (12)

Using the seek timeTseek(y, x) defined in Section IV-A.4
and the rotational delay prediction from Equation 12, we can
predict the access time to a disk blocky after access to a block
x, Ta(y, x) as

Ta(y, x) = Trot del(y, x)+Trot×
⌈Tseek(y, x)− Trot del(y, x)

Trot

⌉
.

(13)
3) Sequential Throughput and Chunking:The maximum

IO size in current schedulers in commodity operating systems
is bounded to reasonable small values (approximately between
128 and256 kB). Since large files are usually placed sequen-
tially, the sequential access is divided into “chunks” [20], [2].
In this section, we present a method to extract optimal chunk
size for the sequential disk access. Figure 3 illustrates the ef-
fect of the chunk size on the disk throughput using a mock disk.
The optimal chunk size lies betweena andb. For chunk sizes
smaller thana, due to the overhead associated with issuing a
disk command, the IO bus is a bottleneck. Pointb in Figure 3
denotes the point beyond which the performance of the cache
may be sub-optimal. Pointsa and b in Figure 3 can both be
extracted using Diskbench.
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Fig. 3. Effect of chunk size on disk throughput.

4) Admission Control Curves:Equation 14 offers a simple
model for disk utilization (U ) which depends on the number
of IO requests in one cycle (N ). The transfer time (Ttransfer)
is the total time that the disk spends in data transfer from disk
media in a time cycle. The access time (Taccess) is the average
access penalty for each IO request, which includes both the disk
seek time and rotational delay.

U =
Ttransfer

N × Taccess + Ttransfer
(14)

Since the disk utilizationU depends only on the number of re-
quests and the total amount of data transfered in a time cycle, it

can be expressed as a function of just one parameter: the aver-
age IO request size (Savg).
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Fig. 4. Disk throughput vs. average IO size.

We use our disk profiler tool to measure the disk-throughput
utilization. The profiler performs sequential reads of the same
size from random positions on the disk. Figure?? depicts the
achieved disk throughput depending on the average IO request
size.

V. EXPERIMENTAL EVALUATION

Before we present our experimental results, we first provide
an overview of Diskbench. Diskbench consists of two sepa-
rate tools:Scsibenchand Idextract. Scsibenchruns as a user-
level process on Linux systems. It uses our custom user-level
SCSI library to access the disk over Linux SCSI generic inter-
face [21], [18]. Using the command line interface, a user can
specify features to extract, or traces to execute.Idextractruns
as a user-level process using Linux raw disk support for access-
ing any disk. All extraction methods in Idextract rely only on
read and write disk commands.

A. Methodology

We now present experimental results for each disk feature
described in Section IV on three testbeds. The first testbed is
a dual Intel Pentium II800MHz machine with1GB of main
memory and a9GB Seagate ST39102LW10000 RPM SCSI
disk (12 disk heads). The second testbed is an Intel Pentium III
800MHz machine with128MB of main memory and an18GB
Seagate ST318437LW7200 RPM SCSI disk (2 disk heads).
The third testbed is Intel Pentium 41500MHz with 512MB of
main memory and an40GB WD400BB-75AUA17200 RPM
IDE disk.

The first configuration is a typical SMP server system with a
fast SCSI disk and a large number of tracks per cylinder. The
second configuration is a typical workstation, with a large but
slower hard disk (lesser rotation speed). The third configuration
is slightly newer PC workstation with IDE disk. We present
results for the IDE disk only for methods which differ from
SCSI disk methods.
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Disk Trot(in µs) RPM Interrog.
1. ST39102LW 5972.56 10045.94 10045
2. ST318437LW 8305.83 7223.84 7200

TABLE I
ROTATIONAL TIME FOR TWO TESTBED DISKS.

B. Rotational Time

Using Equation 4 to calculate the time required for a single
rotation of the disk, we obtained rotational times for the two
testbed configurations. These are presented in Table I.

C. Variations in OS Delay

Based on Equation 2, we note that the variation in operating
system delay for disk accesses is proportional to the variation
in completion times for the same request. Using the trace exe-
cution described in Figure 5, we measured variations in request
completion times (and thus, the distribution of operating system
delay variations) for the two testbed configurations. These are
presented in Figures 6 and 7.

B 0 ; Turn off all disk buffering
R 0 1 ; Read one sector starting from LBN 0
T 2 ; Store current time to registerT2

; repeat the following:
R 0 1 ; Read one sector starting from LBN 0
T 3 ; Store current time to registerT3

- 0 3 2 ; PrintT3 − T2

- 2 3 0 ;T2 = T3 − 0
· · ·

Fig. 5. Sample trace file to findTOS delay variations.
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Figure 6 shows the results for our first testbed configuration.
We can see that the variations in OS delay are of the order of
10µs. Figure 7 shows results for our second testbed configura-
tion. Here the OS delay variations are of the order of40µs, with
greater variations in OS delay as compared to the first testbed.
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D. Mapping from Logical to Physical Block Address

1) Interrogative Mapping: Sample results from the map-
ping extraction for our testbed2 configuration are presented in
Figure 8. In each line we print the mapping information for
one cylinder. AfterC we print the cylinder number, the starting
LBA, and the cylinder size (in logical blocks). Then we print
information for individual tracks after T, namely the track num-
ber, its startingLBA, and size (in logical blocks). We print this
information for all tracks.

Diskbench stores the startingLBA and the size of each disk
track. If the number of bad sectors in a track is greater than
the number of spare sectors allocated per each track, then the
track size is smaller than the size of a regular track in that zone
(cylinders718− 721 in Figure 8).

1) C 0 0 1500 T 0 0 750 1 750 750
2) C 1 1500 1500 T 0 2250 750 1 1500 750
3) C 2 3000 1500 T 0 3000 750 1 3750 750
4) C 3 4500 1500 T 0 5250 750 1 4500 750
5) C 4 6000 1500 T 0 6000 750 1 6750 750
6) C 5 7500 1500 T 0 8250 750 1 7500 750
7) C 6 9000 1500 T 0 9000 750 1 9750 750
8) ...
9) C 718 1077000 1499 T 0 1077000 750 1 1077750 749

10) C 719 1078499 1499 T 0 1079248 749 1 1078499 750
11) C 720 1079998 1499 T 0 1079998 750 1 1080748 749
12) C 721 1081497 1499 T 0 1082246 749 1 1081497 750
13) ...

Fig. 8. Sample LBA-to-PBA mapping for Seagate ST318437LW.

2) Empirical Mapping: We present results for the empirical
extraction of mapping information for testbed1 in Figures 9-12.
This disk has 12 tracks per cylinder. In Figure 10 we present
the access time∆T (x, 0) (defined in Equation 6) between disk
blocks0 andx. The rotational period of the disk (Trot) is ap-
proximately6ms. We detail our results in Figure 9, which is an
enlargement of small section of Figure 10.

We can see that for small values ofx, the access time
∆T (x, 0) is larger thanTrot. When TOS delay (defined in
Section IV-A.2) is larger than the rotational distance between
blocks0 andx, the second read request (to the logical block
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Fig. 10. The time∆T (x, 0) needed to read logical blockx (on the X-axis)
after readingLBA0 for the ST39102LW.

x) has to be serviced during the next disk rotation. When
∆T (x, 0) is greater thanTOS delay, an additional disk rotation
is not needed.∆T (x, 0) increases linearly for all blocks on the
same track. When blocksx − 1 andx are located on different
tracks,∆T (x, 0) increases by the track (or cylinder) skew time
(after which∆T (x, 0) continues to increase linearly). In our
example this happens at logical block number254.

When the access time to the blockx− 1 requires a rotational
delay of nearlyTrot, and the access tox does not require any
rotational delay after seek,∆T (x, 0) decreases byTrot. This
happens at block number262 for the first time. At the next
track boundary (508), a skew time increase and aTrot decrease
overlap. Figure 10 shows the∆T (x, 0) curve for the distances
up to5000 logical blocks.

Figure 11 shows the first derivative of the∆T (x, 0) curve
(∆) defined in Equation 7. We can see that, sinceTOS delay is
a random variable,∆T (x, 0) can also incur a sudden increase
of Trot in successive measurements. In this experiment, it oc-
curs atx = 2758. This happens when the difference between
TOS delay in successive measurements is substantial, so that
∆T (x, 0) incurs one disk rotation more than∆T (x − 1, 0).
A positive Trot increase in∆T (x, 0) is always followed by a
negativeTrot decrease in the next few accesses.

In order to perform the empirical mapping automatically,
we use several heuristics to find the normalized value for
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Fig. 11. First derivative (∆) of access time(∆T (x, 0)) for ST39102LW.
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Fig. 12. Normalized first derivative (norm(∆)) for ST39102LW.

∆ (norm(∆)) defined in Equation 8. Figure 12 presents
norm(∆) for our testbed1, where we capture only the track
and cylinder skew times. The positions of the track and cylin-
der skew times on the x-axis are exact positions of the track
and cylinder boundaries (occurring every 254 blocks in Fig-
ure 12). The track and cylinder skew times for this disk are
approximately 880µs and 1100µs respectively. The skew times
to switch from an odd to an even track, and from an even to an
odd track, are also slightly different (880µs and 800µs respec-
tively).

Figure 13 presents the empirical mapping results for testbed
2. The disk used in this configuration has two tracks per cylin-
der. Results from Section V-C show that variations in operation
system delay, and hence the noise in the measurednorm(∆), is
much higher than for the first testbed configuration. However,
sinceTOS delay is a random variable, we can repeat the experi-
ment to limit the noise level and extractnorm(∆) accurately.

Figure 14 presents the empirical mapping results for testbed
3. We can see that Idextract results are similar to Scsibench
ones. For this particular disk we are not able to find out the
number of tracks per cylinder since the track skew is nearly
identical to the cylinder skew time.

E. Seek Curves

In Figure 15 we present the seek curve for our first testbed
(ST39102LW). We can see that the difference between the ro-
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tational period and the maximum seek time is less than a factor
of two. Since the variations in the seek curve are negligible, we
can also deduce that the seek time depends mainly on the seek
distance in cylinders, and not on starting or destination cylin-
der positions. Figure 16 presents the seek curve for the second
testbed.

F. Read Cache

Figures 17 and 18 present results for the extraction of the
cache segment size, using the method explained in Section IV-
A.5. Both disks stop prefetching when they fill up the first cache

Zone Cylinders tsize T R T Rmax γ(1) H

1 0-847 254 18.85 21.77 1108 884
2 848-1644 245 18.02 21.01 1108 885
3 1645- 2393 238 17.51 20.40 1098 876
4 2394- 3097 227 16.70 19.45 1114 891
5 3098- 3758 217 15.99 18.60 1115 890
6 3759- 4380 209 15.43 17.91 1105 885
7 4381- 4965 201 14.84 17.23 1100 876
8 4966- 5515 189 13.98 16.20 1123 901
9 5516- 6031 181 13.39 15.52 1125 903

10 6032- 6517 174 12.89 14.92 1107 885
11 6518- 6961 167 12.38 14.31 1118 899

TABLE II
DISK ZONE FEATURES FORST39102LW.

Zone Cylinders tsize T R T Rmax γ(1) H

1 0- 4553 750 31.07 46.24 977 652
2 4554- 6582 687 28.94 42.35 985 654
3 6583- 8247 678 28.48 41.80 987 648
4 8248-11554 666 27.92 41.06 1134 651
5 11555-14597 625 27.13 38.53 981 646
6 14598-17370 600 26.00 36.62 983 652
7 17371-19908 583 25.44 35.94 987 657
8 19909-22226 550 24.49 33.91 982 648
9 22227-26338 500 22.74 30.82 982 650

10 26339-28170 458 21.04 28.23 1159 654
11 28171-29850 437 20.24 26.94 990 663

TABLE III
DISK ZONE FEATURES FORST318437LW.
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segment. The extracted sizes for testbeds1 and2 are561 and
204 blocks respectively. We also note that both disks continue
prefetching into the next available cache segment, when they
detect a long sequential access.

Using the extracted cache segment size, we can find out the
number of cache segments in the disk read cache, as explained
in Section IV-A.5. Using this method, we detected three cache
segments for testbed1, and16 segments for testbed2.
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Fig. 19. Write request completion times for ST39102LW.

G. Write Buffer

Figures 19 and 20 present the results for write buffer size
extraction using the method presented in Section IV-A.5.

The write buffer size for testbed1 and testbed2 were mea-
sured to be561 and204 blocks respectively. Comparing these
to the cache segment sizes extraction presented in Section V-F,
we can see that both disks use exactly one cache segment as a
write buffer.

Using these measurements we can also measure the write
throughput, both to the disk write buffer (slope of the curve for
write request sizes that fit into write buffer), and to the disk plat-
ter (slope for request sizes greater than the write buffer size). In
the future we plan to extract the number of cache segments that
can be used as write buffers. We believe that we can use a
method similar to the method we used for detecting the number
of read cache segments presented in Section IV-A.5.
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Fig. 20. Write request completion times for ST318437LW

1) Disk Zones: Tables II and III present the zoning in-
formation extracted for the Seagate ST39102LW and Seagate
ST318437LW disks respectively.tsize denotes the track size
in logical blocks. T R is the transfer rate measured for long
sequential reads that span multiple cylinders.T Rmax is the
calculated theoretical maximum transfer rates for read requests
which incur no seek, rotation or switching overheads.H and
γ(1) are the track and cylinder switch times in microseconds.
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Fig. 21. Disk bandwidth depending on data location for two SCSI disks.

Figure 21 depicts the disk bandwidth for large sequential ac-
cesses depending on the starting LBA for testbed1 and2. For
modern disks, the difference between the maximum and mini-
mum sequential disk bandwidth is usually a factor of two. Fig-
ure 22 presents the disk zone bandwidths for testbed3.

H. Rotational Delay Prediction

From Equation 12, in order to predict the rotational delay
accurately, we need to extract the skew factor (defined in Equa-
tion 9) for each track. Sample results for the extracted skew
factors (in µs) are presented in Table IV, wherein we also
present theLBAs for blocks residing on the same disk radius
(LBArot0).

In Figure 23, we plot the skew times against track numbers.
We notice a distinct trend in skew times, a property which en-
ables us to compress this information effectively and to reduce
its space requirement. In Figure 23, we also notice a slight de-
viation from the normal trend for tracks12, 24 and36. This is
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Cyl Track Skew(µs) LBArot0

0 0 0 0
0 1 755.15 475
0 2 1595.02 694
0 3 2352.35 915
0 4 3191.09 1134
0 5 3949.03 1356
0 6 4788.61 1574
0 7 5546.36 1796
0 8 414.31 2268
0 9 1170.86 2490
0 10 2009.76 2708
0 11 2767.37 2930
1 0 3829.42 3139
· · · · · · · · · · · ·

TABLE IV
ROTATIONAL DELAY MODELING FOR ST39102LW (THE TRACK SIZE FOR

THE FIRST ZONE IS254). DISK BLOCKS WITH LBArot0 ARE ON THE

SAME DISK RADIUS.

due to cylinder skew, which occurs when the next track falls on
an adjacent cylinder instead of the same cylinder. The experi-
mental disk had exactly12 surfaces. Hence, we expect a trend
deviation on tracks that are multiples of12 to account for an
increased switching overhead.

Based on Equation 12 and the compressed information about
skew times above, we were able to predict the rotational delay
between two disk accesses. In Figure 24, we present the error
distribution of rotational delay predictions for a large number
of random request-pairs. We note that for the SMP-like testbed
(testbed1), which has a very predictable distribution of OS de-
lay variations (Figure 6), our prediction is accurate within25 µs
for 99% of the requests. Even for the workstation-like testbed
(testbed2), which has less predictable OS delay variations (Fig-
ure 7), our prediction is accurate within80 µs for 99% of the
requests. These errors are negligible compared to variations in
seek time, which are of the order of a millisecond. We thus
conclude that with detailed disk parameters, systems can im-
plement very accurate mechanisms for predicting rotational de-
lays. We used seek time and rotational delay predictions from
Diskbench to predict disk access times in the implementation
of [3].
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I. Sequential Throughput and Chunking

As regards chunking, the disk profiler provides the optimal
range for the chunk size. Figure 25 depicts the effect of chunk
size on the read throughput performance for one SCSI and
one IDE disk drive. Figure 26 shows the same for the write
case. Clearly, the optimal range for the chunk size (between
the pointsa andb illustrated previously in Figure??) can be
automatically extracted from these figures.

VI. SUMMARY

We have presented Diskbench, a user-level tool for disk fea-
ture extraction. Diskbench uses both interrogative and empir-
ical methods to extract disk features. The empirical methods
extract accurate low-level disk features like track and cylinder
boundaries, track and cylinder skew times, the number of tracks
per cylinder, the track sizes (in logical blocks), and the read and
write buffer parameters. Diskbench also extracts high-level disk
features necessary for advanced scheduling methods like our
Semi-preemptible IO [2] or rotationally-aware schedulers [4],
[5], [6], [7], [15], [8].

We believe that this work can be used by system and applica-
tion programmers to improve and guarantee real-time disk per-
formance. Using knowledge about disk features provided by
Diskbench, system or application programmers can fine-tune
disk accesses to match application requirement and can pre-
dict the disk performance, which is necessary for real-time disk
scheduling.
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Fig. 25. Sequential read throughput vs. chunk size.
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