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ABSTRACT
Emerging video surveillance, environmental monitoring applica-
tions, and constantly evolving large scientific setups require large,
high-performance, and reliable storage systems with guaranteed
real-time data access. These systems are often implemented us-
ing redundant arrays of independent disks (RAID). In this paper
we investigate the effectiveness of preemptive disk-scheduling al-
gorithms to achieve better quality of service (QoS) in RAID sys-
tems. We present an architecture for QoS-aware RAID systems
that use Semi-preemptible IO for servicing internal disk IOs. We
showwhenandhow to preempt IOs to improve the overall perfor-
mance of the RAID system. We evaluate the benefits and estimate
the overhead of our approach using a preemptible RAID simulator
that we have implemented.

1. INTRODUCTION
Emerging applications such as video surveillance, large-scale

sensor networks, and virtual reality require high-capacity, high-
bandwidth RAID storage to support high-volume IOs. In addition
to high throughput performance, increasing numbers of applica-
tions require real-time data delivery or short access time (response
time). The deployment of high-bandwidth networks promised by
research projects such as OptIPuter[18] will further magnify the
access-time bottleneck of RAID. For applications with mission-
critical, high-bandwidth data requirements, access-time reduction
will inevitably become increasingly important.

What is the worst-case access time, and how can it be mitigated?
On an idle disk, the access time is composed of a seek and a rota-
tional delay. However, when the disk is servicing an IO, a new IO
must wait at least until after the on-going IO has been completed.
If the current IO involves a large volume of data transfer, the ac-
cess time can be excessive. One solution to reduce the access time
is to divide a large IO into a number of small IOs, and permit a
high-priority IO to preempt the current IO. Indeed, a priority-based
scheduling policy can reduce the access time for a mission-critical
IO request. However, priority-based scheduling, if not performed
carefully, can incur excessive overhead and thereby degrade the
disk throughput unnecessarily.

In this paper, we introduce preemptive RAID scheduling, orPraid.
Praid providespreemptionmechanisms to allow an on-going IO
to be preempted [4] andresumptionmechanisms to resume a pre-
empted IO on the same or a different disk. In addition to the mecha-
nisms, we propose scheduling policies to decide whether and when
to preempt, for maximizing theyield, or the total value, of the
schedule. Since the yield of an IO is application- and user-defined,
our scheduler maps external value propositions to internal yields,
producing a schedule that can maximize total external value for all
IOs, pending and current.

1.1 Illustrative Example
The purpose of this example is to show how preemptive schedul-

ing works, and why it can outperform a traditional priority-based
scheduling policy.

Suppose that the disk is servicing a large sequential write IO
when a higher priority read IO arrives. The new IO can arrive at
either timet1 or t2, as depicted in Figure 1. If the write IO has been
buffered in a non-volatile RAID buffer1, the IO can be preempted
to service the read IO request. The preempted write IO is delayed,
to be serviced at some later time. When the write IO is resumed,
additional disk overhead is incurred. We refer to this overhead as a
preemption overhead.

t2t1

timedisk d1 seek data transfer

Figure 1: Sequential disk access.

Now, a priority-based scheduler will preempt the long sequen-
tial write access (and incur a preemption overhead) regardless of
whether the read IO arrives at timet1 or t2. However, preempting
the write IO att2 may not be profitable, since the write IO is nearly
completed. Such a preemption is likely to be counter-productive—
not gaining much in response time, but incurring preemption over-
head. OurPraid scheme is able to discern whether and when a
preemption should take place.2

The above example shows just one simple scenario where ad-
ditional mechanisms and intelligent policies can yield further per-
formance gains for RAID systems. In the rest of the paper, we
will detail our preemption mechanisms and policies. Our experi-
ments reported in Section 4 show that ourPraid is indeed helpful
in improving access time while maintaining high throughput, out-
performing traditional schedulers.

1.2 Contributions
In addition to the overall approach, the specific contributions of

this paper can be summarized as follows:

• Preemption mechanisms.We introduce two methods to pre-
empt disk IOs in RAID systems—JIT-preemption and JIT-
migration. Both methods are used by the preemptive sched-
ulers presented in this paper to simplify decisions about the
IO preemption.

1Most current RAID systems are equipped with a large non-volatile
buffer. Write IOs are reported to the operating system as serviced,
as soon as the data for the write IO is copied into this buffer.
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• Preemptible RAID policies.We propose scheduling meth-
ods which aim to maximize the total QoS value (each IO is
marked with its yield function) and use greedy approaches to
decide whether the IO preemption is beneficial or not.

• System architecture of the preemptible RAID system.We
present an architecture for QoS-aware RAID systems that
use Semi-preemptible IO [4] for servicing their internal disk
IOs. We implement a simulator for preemptible RAID sys-
tems (PraidSim).

The rest of this paper is organized as follows: Section 2 intro-
duces the preemption methods used for preemptive RAID schedul-
ing. Section 3 presents the preemptible-RAID system architecture
and the scheduling framework. In Section 4, we present our exper-
imental environment and evaluate different scheduling approaches
using simulation. In Section 5 we present related research. We
make concluding remarks and suggest directions for future work in
Section 6.

2. PREEMPTION METHODS
Applications that access data sequentially, typically issuing large

disk IOs of the order of megabytes, are candidates that can ben-
efit from IO preemption capability. Examples of such applica-
tions are real-time audio/video streaming, background jobs like
disk defragmentation/backup, high data-volume scientific applica-
tions, and virtual reality systems.

In this section we introduce methods for IO preemption and re-
sumption. In the next section, we explain how to decide when the
IO preemption is desirable and when it is not (scheduling deci-
sions).

IO2

IO1 IO2
timedisk d1

arrives

Figure 2: No preemption.

Figure 2 depicts the case when the disk scheduler decides that an
ongoing IO (IO1) should not be preempted.IO2 can be serviced
only afterIO1 completes. During the service of large IOs, a better
schedule may become feasible, and IO preemption can lead to bet-
ter overall performance of a RAID system. The preempted IO may
be completed later on the same disk or a different one. Also, the
scheduler may choose to drop the ongoing IO request entirely, since
its completion may not be necessary or useful in the future (for ex-
ample, unsuccessful speculative read, cache-prefetch operation, or
a missed deadline for the preempted IO).

2.1 Semi-preemptible IO
Semi-preemptible IO[4] maps each IO request into multiple fast-

executing (and hence short-duration) disk commands using three
methods. (The ongoing IO request can be preempted between these
disk commands.) Each of these three methods addresses the reduc-
tion of one of the following IO components:Ttransfer (denoting
transfer time),Trot (denoting rotational delay), andTseek (denot-
ing seek time).

1. ChunkingTtransfer. A large IO transfer is divided into a num-
ber of small chunk transfers, and preemption is made possible be-
tween the small transfers. If the IO is not preempted between the
chunk transfers, chunking does not incur any overhead. This is
due to the prefetching mechanism in current disk drives.

2. PreemptingTrot. By performing just-in-time (JIT) seek for
servicing an IO request, the rotational delay at the destination
track is virtually eliminated. The pre-seek slack time thus ob-
tained is preemptible. This slack can also be used to perform
prefetching for the ongoing IO request, or/and to perform seek
splitting.

3. Splitting Tseek. Semi-preemptible IO splits a long seek into
sub-seeks, and permits preemption between two sub-seeks.

IO1 IO2
timedisk d1

regions
Fully preemptible

Preemption points

...

Figure 3: Possible preemption points for semi-preemptible IO.

Figure 3 shows the possible preemption points while servicing a
semi-preemptible IO. Preemption is possible only after completion
of any disk command or during the disk idle time. The regions
before the JIT-seek operation are fully preemptible (since no disk
command is issued). The seek operations are the least preemptible,
and the data transfer phase is highly preemptible (preemption is
possible after servicing each chunk, which is on the order of0.5
ms).2

2.2 Delaying Preempted IOs
When the employed disk scheduler decides that preempting and

delaying an ongoing IO would yield a better overall schedule, the
IO is preempted usingJIT-preemptionand another IO is scheduled.
This is a local decision, meaning that a request for the remaining
portion of the preempted IO is placed back in the local queue, and
resumed later on the same disk (or dropped completely).

2.2.1 The Method
Definition 2.2: JIT-preemptionis a method for the preemption
of an ongoing semi-preemptible IO at the points that minimize
the rotational delay at the destination track (for the higher-priority
IO which is serviced next). The scheduler decides when to pre-
empt the ongoing IO using the knowledge about the available JIT-
preemption points (these points are roughly one disk rotation apart).

Preemption:
The method relies on JIT-seek (described in Semi-preemptible

IO [4]), which requires rotational delay prediction also used in
other disk schedulers [10, 12]. JIT-preemption is similar to free-
prefetching [12]. However, if the preempted IO will be completed
later, then the JIT-preemption always yields useful data transfer
(prefetching may or may not be useful). The second difference is
that it can also be used for write IOs, although its implementation
outside of disk firmware is more difficult for write IOs than it is for
the read IOs [4].

IO2

IO1 IO2
timedisk d1

arrives

T rot

Figure 4: Possible JIT-preemption points.

2If we know in advance when to preempt the ongoing IO, we can
choose the size for the last data-transfer chunk before preemption,
and further tune the desired preemption point.
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Figure 4 depicts the positions of possible JIT-preemption points.
If IO1 is preempted between these points, the resulting service time
for IO2 would be exactly the same as if the preemption is delayed
until the next possible JIT-preemption point. This is because the
rotational delay at the destination track varies depending on when
the seek operation starts. The rotational delay is minimal at the
JIT-preemption points, which are roughly one disk rotation apart.

IO1 IO2

IO2

timedisk d1

JIT−seek

IO1’
Preemption
overhead

arrives

Figure 5: JIT-preemption during data transfer.

Figure 5 depicts the case when the ongoingIO1 is preempted
during its data transfer phase in order to serviceIO2. In this case,
the first available JIT-preemption point is chosen. The white re-
gions represent the access-time overhead (seek time and rotational
delay for an IO). Since JIT-seek minimizes rotational delay for
IO2, access-time overhead is reduced for the case with JIT-preemption
(compared to the no-preemption case depicted in Figure 4).

Resumption:
The preemption overhead (depicted in Figure 5) is the additional

seek time and rotational delay required to resume the preempted
IO1. Depending on the scheduling decision,IO1 may be resumed
immediately afterIO2 completes, at some later time, or never (it is
dropped and does not complete). We explain scheduling decisions
in detail later in Section 3.3.

2.3 Migrating Preempted IOs
RAID systems duplicate data for deliberate redundancy. If an

ongoing IO can also be serviced at some other disk which holds a
copy of the data, the scheduler has the option to preempt the IO and
migrate its remaining portion to the other disk. In the traditional
static-level RAIDs, this situation can happen in RAID levels 1 and
0/1 [1] (mirrored or mirrored/striped configuration). However, it
might also happen in reconfigurable RAID systems (for example,
HP AutoRAID [25]), in object-based RAID storage [13], or in non-
traditional large-scale storage [8, 17].

2.3.1 The Method
When a scheduler decides to migrate the preempted IO to an-

other disk with a copy of the data, it can choose to favor the on-
going IO (which will be preempted and migrated) or the higher-
priority IO. The former usesJIT-migrationand the latter uses JIT-
preemption with migration, introduced earlier.

Definition 2.3: JIT-migration is a method for the preemption and
migration of an ongoing semi-preemptible IO in a fashion that min-
imizes the service time for the preempted IO. The ongoing IO is
preempted only when the destination disk for the migration is ready
to perform data-transfer for the remaining portion of the IO.

Preemption:
Depending on the scheduling decision, we identify two different

approaches: (1) use JIT-migration to preempt and migrate the on-
going IO only if it does not increase its service time, and (2) use
JIT-preemption to preempt the ongoing IO and migrate its remain-
ing portion to a disk with a replica of the data.

Figure 6 depicts the case when the ongoing IO (IO1) is more
important than the newly arrived IO (IO2). However, if the disk
with the replica is idle or servicing less important IOs, we can still
reduce the service time forIO2. As soon asIO2 arrives, the sched-

IO1 IO2

IO2

timeddisk 2

timedisk d1

IO1’

Preemption overhead

JIT−migration

arrives

(queueing time and access time)

Figure 6: Preemption with JIT-migration.

uler can issue a speculative migration to another disk with a copy
of the data. When the data transfer is ready to begin at the other
disk, the scheduler can migrate the remaining portion ofIO1 at the
desired moment. Since the disks are not necessarily rotating in uni-
son, theIO1 can be serviced only at approximately the same time
when compared with the no-preemption case. The preemption de-
lay for IO1 depends on the queue at the disk with the replica. If
the disk with the replica is idle, the delay will be of the order of 10
ms (equivalent to the access-time overhead).

IO1 IO2

timeddisk 2

Preemption

timedisk d1

Preemption overhead

IO1’

Figure 7: JIT-preemption with migration.

Figure 7 depicts the case when it is possible to use JIT-preemption
to promptly serviceIO2, while migratingIO1 to another disk. Pre-
emption overhead is in the form of additional seek time and rota-
tional delay required for the completion ofIO1 at the replica disk.

Resumption:
In the case of JIT-migration,IO1 is not preempted until the disk

with the replica is ready to continue its data transfer. In the case
of JIT-preemption with migration, the resumption is at a later time
on the replica disk. In both cases, the preemption overhead exists
only at the replica disk. This suggests that both these methods are
able to improve the schedule in cases when it is hard to achieve an
efficient load balancing.

3. PREEMPTIVE RAID SCHEDULING
In this section, we first present a high-level system architecture

for RAID systems with the support for preemptive disk scheduling.
We then explain the global (RAID) and local (single-disk) schedul-
ing approaches.

3.1 PRAID System Architecture
Figure 8 depicts a simplified architecture of preemptible RAID

systems. The main system components are the RAID controller,
the attached disks, and the IO interface for servicing external IO
requests. The components of the RAID controller are the RAID
scheduler, the single-disk schedulers (one for each disk in the ar-
ray), the RAID reconfiguration manager, and the RAID cache (in-
cluding both the volatile read cache and the non-volatile write buffer).

External IOsare issued by the IO scheduler external to the RAID
system (for example, the operating system’s disk scheduler). These
IOs are tagged with their QoS requirements, so that the RAID
scheduler can optimize their scheduling. The external IOs may also
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Figure 8: A simplified Preemptible RAID architecture.

be left untagged, making them best-effort IOs. We have extended a
Linux kernel to enable such an IO interface.

TheRAID schedulermapsexternal IOsto internal IOsand dis-
patches them to appropriate single-disk scheduling queues. Inter-
nal IOs are also generated by the RAID reconfiguration manager
for various maintenance, reconfiguration, or failure-recovery pro-
cedures.

Internal IOsare IOs which reside in the scheduling queues of
individual disks. They are tagged with internally generated QoS-
value functions, and serviced usingSemi-preemptible IO. The RAID
scheduler and the local single-disk schedulers reside on the same
RAID controller, and communication between them is fast and cheap.3

Single-disk schedulersmake local scheduling decisions for in-
ternal IOs waiting to be serviced at a disk. Internal IOs are semi-
preemptible, and single-disk schedulers can decide to preempt on-
going internal IOs. Since the communication between individ-
ual disk schedulers is efficient, single-disk schedulers in the same
RAID group cooperate to improve the overall QoS-value for the
entire system.

The RAID cacheconsists of both volatile memory for caching
read IO data and non-volatile memory for buffering write IO data.
The non-volatile memory is usually implemented as battery-backed
RAM (hence, it does not lose its contents if the power is turned
off). Today, most large-scale RAID systems invariably contain a
large battery-backed RAM cache.

The RAID reconfiguration managercontrols and optimizes the
internal data organization within the RAID system. For instance,
in the HP AutoRAID system [25], the reconfiguration manager can
dynamically choose between RAID 0/1 and RAID 5 configurations
for selected data to optimize IO performance. Another important
function of the reconfiguration manager is to migrate data to a hot-
swap in case of a disk failure. These operations of the RAID re-

3The assumption of efficient communication between the single-
disk schedulers holds for most RAID systems implemented as a
single box, which is typically the case for current RAID systems.
We use this assumption for efficient migration of internal IOs from
one disk to another.

configuration manager are also a source of internal IOs within the
RAID system.

All the scheduling methods presented within this framework are
designed to be implemented in the firmware for hardware RAID
controllers or in the driver for software RAID systems.

3.2 Global RAID Scheduling
The global RAID scheduler is responsible for mapping external

IOs to internal IOs and for dispatching internal IOs to appropriate
single-disk scheduling queues.

3.2.1 External IOs
In this paper we refer to IO requests generated by a file system

outside of the RAID system as external IOs. They can be tagged
with the application-specified QoS class or can be left as regular,
best-effort requests.4

Our approach for providing QoS hints to the disk scheduler is to
enable applications to specify desired QoS parameters per each file
descriptor. Internally, we pass the pointer to these QoS parameters
along with each IO request in the disk queue. After theopen()
system call, file accesses get assigned the default best-effort QoS
class. We introduce several newioctl() commands which enable
an application to set up different QoS parameters for its open files.
These additionalioctl() commands are summarized in Table 1.

Ioctl command Argument Description
IO GET QOS struct ucsb io * Get file’s QoS
IO BESTEFFORT Set best-effort class
IO QOSCLASS int *class Set IO’s QoS class
IO PRIORITY int *priority Set IO’s priority
IO DEADLINE int *deadline Set IO’s deadline

Table 1: Additional ioclt() commands.

yield

time

yield

time

response time

time

(c) (d)

(b)(a)

yield

time
Max. acceptable

response timeresponse time

Max. acceptable

Latest optimal

Latest optimal
response time

yield

Max. acceptable
response time

Figure 9: Yield functions: (a) interactive real-time IO, (b) hard
real-time IO, (c) interactive best-effort IO, and (d) best-effort
IO.

The yield function attached to an external IO determines the QoS
value added to the system upon its completion. Figure 9 depicts
four possible yield functions that we use in this paper. Functions (a)
4Most commodity operating systems still do not provide such an
interface. However, several research prototypes have implemented
QoS extensions for commodity operating systems [14, 19, 20, 5]
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and (b) represent the case when a hard deadline is associated with
servicing the IO. If the deadline is missed, the IO should be dropped
since its completion does not yield any value.5 Servicing best-effort
IOs always yields some QoS value, and these IOs should not be
dropped. We must point out that the yield functions presented here
are not the only possible ones. The framework enables specifying
one “user-defined” yield function for each QoS class.

To customize the yield function for each external IO (vext(t)),
we use the generic yield function for each QoS class (yield(t) de-
picted in Figure 9) and the four additional parameters. The addi-
tional parameters are: the time when the external IO is submitted
(tstart), the IO size (size), the IO priority (p), and the IO deadline
(Tdeadln). In this paper we use a linear approach, giving more value
to a larger and higher-priority IO. We customize the yield functions
according to the following equation (Pdef denotes the default pri-
ority):

vext(t) = size× p− Pdef

Pdef
× yield

�
t− tstart

Tdeadln

�
. (1)

3.2.2 RAID Scheduler
The most important task that the RAID scheduler performs is

mapping external IOs to internal IOs. Internal IOs are also gener-
ated by the RAID reconfiguration manager, and scheduled to ap-
propriate local-disk queues by the RAID scheduler. Each external
IO (parent IO) is mapped to a set of internal IOs (child IOs). To
perform this mapping, the RAID scheduler has to be aware of the
low-level placement of data on the RAID system.

The RAID scheduler has a global view of the load on each of the
disks in the array. For read IOs, the internal IO can be scheduled to
any disk containing a copy of the data. The scheduler can choose
the least-loaded disk or use a round-robin strategy. However, for
write IOs, the internal IOs are dispatched to all disks where dupli-
cate copies are located. To maintain a consistent view, the non-
volatile RAID buffer is not freed until all internal IOs complete.

The RAID scheduler makes the following scheduling decisions
to dispatch internal IOs to corresponding local-disk scheduling queues:

• Read splitting.To further reduce response time for interac-
tive read requests, the RAID scheduler may split the read
request into as many parts as there are disks with copies
of the data, issuing each part to a different disk. The read
request might be completed faster by utilizing all possible
disks. However, this involves more disk-seek overhead.

• Speculative scheduling.Apart from dispatching read requests
to the least-loaded disk, the RAID scheduler might also dis-
patch the same request with best-effort priority to other disks
which hold a copy of the data requested. This is done in the
hope that if a more loaded disk manages to clear its load ear-
lier, then the read request can be serviced sooner. The first
speculative read IO to finish removes (or preempts) all other
internal IOs for the same data from the other disks’ queues.

3.3 Local Disk Scheduling
Using a local disk scheduling algorithm, the single-disk sched-

ulers dispatch internal (semi-preemptible) IOs and decide about IO
preemptions.

5The option of dropping an IO request at the storage level is not
widely used in today’s systems. Additional handling might be
needed at the user level. However, the current interface need not be
changed, since systems can use the existing error-handling mecha-
nisms.

3.3.1 Internal IOs
We refer to IO requests generated inside the RAID system as

internal IOs. These IOs are generated by the RAID firmware and
managed by the RAID system itself. Usually, multiple internal IO
requests (for several disks) must be issued to service each external
IO. The requests related to data parity management, RAID auto re-
configuration, data migration, and data recovery are independently
generated by the RAID reconfiguration manager, and they are not
associated with any external IO. Each internal IO is tagged with its
own descriptor. The internal IO descriptor is summarized in Ta-
ble 2. The deadline and the yield function for the parent IO are
used to (1) give more local-scheduling priority to earlier deadlines
and (2) drop the internal IO after its hard deadline expires.

Attribute Description
Starting block Logical number for1st data block
IO Size The internal IO size in disk blocks
Parent’s IO value The external IO value (from Eq. 1)
Parent’s deadline The external IO deadline
Parent’s IO size The remaining external IO size

Table 2: Internal IO descriptor.

3.3.2 Single-disk Scheduler
For external IOs whose value deteriorates rapidly with time, a

disk scheduler may benefit if it preempts less urgent IOs. In tra-
ditional systems this is usually accomplished by bounding the size
of disk IOs to relatively small values and using priority scheduling.
However, this approach has two important shortcomings. First, it
greatly increases the number of disk IOs in the scheduling queue,
which complicates the implementation of sophisticated QoS-aware
schedulers. Second, the schedulers rarely account for the overhead
of disrupting sequential disk access, since they do not actuallypre-
emptthe low-level disk IOs.

Here, we present a scheduler that uses an explicitly preemptible
approach, and hence does not need to bound the low-level disk IO
size. This approach can reduce the number of IOs in the schedul-
ing queue by one or two orders of magnitude (for example, when
the preemption is implicit, a single 8 MB IO would be split into
eighty 128 kB low-level disk IOs). Also, since IOs are serviced us-
ing Semi-preemptible IO, if the scheduler chooses to preempt the
ongoing IO, the expected waiting time will be substantially shorter
than in the case of traditional schedulers with a bounded size for
non-preemptible IOs [4].

The single-disk scheduler maintains a queue of all internal IOs
for a particular disk. The components of the internal IO response
time arewaiting timeand service time. The waiting time is the
amount of time that the request spends in the scheduling queue.
The service time is the time required by the disk to complete the
scheduled request, consisting of the access latency (seek time and
rotational delay) and the data transfer time.

Internal scheduling values:
When an internal IO is serviced, its completion yields some QoS

value. However, it is hard to estimate this value. First, external
QoS value is generated only after the completion of the last internal
IO due for a parent external IO. Second, when performing write-
back operations for buffered write IOs, their external QoS value
has been already harvested. However, not servicing these internal
IOs implies that servicing future write IOs will suffer when the
write buffer gets filled up. Third, internally generated IOs must be
serviced although their completion does not yield any additional
external QoS value.
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Although we do not know the QoS value generated due to in-
ternal read IO, we can estimate it using the following approach.
When the scheduler decides to schedule the internal IO, it predicts
the IO’s service time (Tservice).6 Let vext(t) be the value function
for the parent IO, as defined in Equation 1. Letsizeint denote the
size of the internal IO, andsizeremain denote the remaining size
of the parent IO. Then, we can estimate the scheduling value for
the internal read IO (vint read) using the following heuristic7:

vint read = vext(t + Tservice)× sizeint

sizeremain
. (2)

Figure 10 depicts the dynamic nature of scheduling value for in-
ternal write IOs. Unlike internal read IOs, the scheduling value of
internal write IOs do not depend on the value of the corresponding
external IOs. Whenever the system services a new external write
IO, less space is available in the non-volatile write buffer, and per-
forming write-back operations becomes more important. Hence,
the scheduling value for write IOs increases. Whenever the last in-
ternal write IO for a particular external IO completes, its data is
flushed from the non-volatile buffer, making more space available.
This reduces the importance of write-back operations, and thereby
decreases the scheduling value for internal write IOs.

available
More write buffer

Less write buffer
available

v

time

int_wr

Figure 10: Scheduling value for internal write IOs.

In estimating the scheduling value for internal write IOs, we need
to consider both the available non-volatile buffer space and all the
pending external write IOs when the buffer is full. LetIwr(space)
denote the value of freeing space in the non-volatile buffer (it is a
function of the buffer utilization). Letvi

ext(t) denote the value of
theith external write IO waiting to be buffered. Letsizeremain wr

denote the remaining size of all of the internal IO’s siblings (re-
quired to flush parent’s data from the non-volatile buffer). We use
the following heuristic to estimate the scheduling value of the in-
ternal write IOs:

vint wr =
(sizeint)

2

sizeremain wr
×(Iwr(space)+Max{vi

ext(t)}) . (3)

Iwr(space) should assign a low value to write IOs when the
buffer is nearly empty, giving higher priority to read IOs. When the
buffer is nearly full,Iwr(space) should give high value to write
IOs, giving higher priority to write-back operations. We use the
maximum value of all pending external write IOs to further increase
the priority of internal write IOs when the non-volatile buffer is full.

Scheduling:
Scheduling IOs whose service yields various values and incurs

differing kinds of overhead is a hard problem. In this paper we do

6Performing this prediction is free since it is already required for
successfully implementing Semi-preemptible.
7As is usually the case with heuristics, this is just one of several
possible.

not intend to ascertain which scheduling method is best. We choose
a simple greedy approach which, when servicing common IO re-
quest types, converges to well-known schedulers. For scheduling
decisions, the greedy method uses the scheduling value to calculate
theaverage yieldof an IO (yavg), defined as

yavg =
vint {read/wr}

Tservice
. (4)

Thus, the average yield is computed taking into consideration
the total time required to service the IO, including the access delay.
Figure 11 depicts the average yield (solid line) for two internal IOs
serviced by the same disk. The dotted line denotes the yield for
the same IOs when distributed over the useful data transfer periods
latency. When the scheduler must choose an IO to service next
from the queue, it services the IO with the maximum average yield.
When all IOs are the same, this greedy approach gives the same
schedule as the shortest-access-time-first (SATF) scheduler [10].
When all deadlines are the same, it converges to rate-monotonic
scheduling [16].

IO1
IO2

y
avg

time

Figure 11: Average yield.

Preemption:
Whenever a new IO arrives, the scheduler checks whether pre-

empting the ongoing IO (using the preemption methods introduced
in Section 2), servicing the new IO, and immediately resuming
the preempted IO, offers a better average yield than would be ob-
tained without preemption. To calculate the average yield in either
case, we must consider the yields due to both IOs. Let the ongo-
ing IO be denoted asIO1 and the newly arrived IO asIO2. Let
T 1

service−remain denote the time required to service the remaining
portion ofIO1 irrespective of whether it is preempted or not.8 In
either case, we use the following formulation to give us the average
yield due to both IOs:

yavg =
v1

int + v2
int

T 1
service−remain + T 2

service

. (5)

Notice that although we consider only the remaining time left
to service the ongoing IO, we still include its entire yield, as op-
posed to including only the yield corresponding to the remaining
portion of the IO. Indeed, the ongoing IO yields any valueonly if it
is serviced entirely. We now present two preemption approaches -
conservative preemptionandaggressive preemption- that optimize
for the long-term and short-term respectively.

Conservative Preemption:
The conservative approach makes a decision based on a long-

term optimization criterion. Only if the preemption of the ongo-
ing IO yields an overall average yield in the long term (given by
8The value ofT 1

service−remain will be different depending on
which case gets instantiated. It will include the preemption over-
head in case the IO is preempted.
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Figure 12: Conservative preemption.

Equation 5) greater than the no preemption case, the ongoing IO
is preempted. Figure 12 depicts the case when even though the
newly arrived IO (IO2) offers a greater average yield than that of
the remaining portion of the ongoing IO (IO1), the conservative
approach chooses not to preempt the ongoing IO. By not preempt-
ing the ongoing IO, an overall greater yield is obtained after both
IOs have been serviced.

Aggressive Preemption:
Although the current IO offers a lesser average yield than the

newly arrived IO, the conservative approach might conceivably choose
not to preempt it. This happens because the conservative approach
considers the overall average yield for servicing both IOs before
making a decision, taking into consideration the preemption over-
head. When the preemption overhead is considered within the
framework of Equation 5, by not preempting the current IO (and
thus eliminating preemption overhead) we obtain an overall better
yield on the completion of the two IOs.

IO2

y
avg

IO1 IO1IO2

arrives

time
remaining

Figure 13: Aggressive preemption.

However, it is also conceivable that additional IO requests arrive
in this period with higher priority than the ongoing IO. In this case,
the best schedule might be simply to service all the higher priority
IOs in the queue before finally servicing the ongoing IO. The ag-
gressive preemption approach preempts the ongoing IO as soon as
another IO with a higher average yield arrives. Figure 13 depicts
the case when the aggressive approach preempts the ongoing IO in
a greedy manner to immediately increase the average yield.

Finally, to support cascading preemptions, we simply return the
preempted IO to the scheduling queue. The predicted average yield,
according to Equation 4, increases for the remaining portion of pre-
empted IOs for which the data has been partially transfered before
preemption. This is necessary in order to maintain the feasibility of
the greedy approach, since actual value is generated only after the
whole IO completes. This approach also prevents thrashing due to
cascading preemptions. Cascading preemptions happen only when
the average yield for all IOs in the cascade is maximum.9

9Since we use a greedy approach, starvation is possible. To han-

4. EXPERIMENTAL EVALUATION
In this study we have relied on simulation to validate our pre-

emptive scheduling methods.Semi-preemptible IO[4] shows that
it is feasible to implement preemption methods necessary for pre-
emptive RAID scheduling outside of disk firmware. In this study
we used the previous work in disk modeling and profiling [4, 7,
11] to build an accurate simulator for preemptible RAID systems
(PraidSim). We evaluate the PRAID system using several mi-
crobenchmarks and for two simulated real-time streaming appli-
cations.

4.1 Experimental Setup
We usePraidSim to evaluate preemptive RAID scheduling al-

gorithms.PraidSim is implemented in C++ and uses Disksim [7]
to simulate disk accesses. We do not use the RAID simulator im-
plemented in Disksim, but write our own simulator for QoS-aware
RAID systems based on the architecture presented in Section 3.
PraidSim can either generate a simulated workload for external IOs
or perform a trace-driven simulation. We have chosen to simulate
only the chunking and JIT-seek methods fromSemi-preemptible
IO. The seek-splitting method only helps in reducing the maxi-
mum IO waiting time. The chunking method relies only on op-
timal chunk size for a particular disk, which is easy to profile for
both IDE and SCSI disks [4]. JIT-seek is used for JIT-preemption
and has been previously implemented in several schedulers [4, 11].

Parameter name Description
RAID level RAID 0, RAID 0/1, or RAID 5
Number of disks Number of disks in the disk array
Mirrors Number of mirror disks
Disksim model Name of the parameter file for Disksim disks
Striping unit Size of the striping unit in disk blocks (512 B)
Write IOs Write IO arrival rate and random distribution
Read IOs Read IO deadlines, arrival rate and rand. dist.
Interactive IOs Interactive IO arrival rate and rand. dist.
Scheduling SCAN or FIFO for each IO class
Preemption Preempt writes, reads, or no preemption
Interactivity Preemption criteria for interactive IOs
Write priority Buffer size and dynamic QoS value for writes
Chunk size Chunk size forSemi-preemptible IO

Table 3: Summary ofPraidSim parameters.

Table 3 summarizes the configurable parameters inPraidSim.
Internal RAID configuration is chosen by specifying the RAID
level, number of disks in the array, number of mirror replicas, stripe
size, and the name of the simulated disk for Disksim. For this pa-
per we used the Quantum Atlas 10K disk model. The IO arrival
rate is specified with the arrival rate and random distribution for
write IOs, deadline read IOs, and interactive read IOs; or by speci-
fying a trace file. The next set of parameters is used to specify the
PraidSim scheduling algorithm for non-interactive read and write
IOs, the preemption decisions, methods for scheduling interactive
reads, and dynamic value for internal write IOs. The chunk size pa-
rameter specifies the chunk size used to schedule semi-preemptible
IOs. For all experiments in this paper we used chunk size of20 kB.

4.2 Microbenchmarks
Our microbenchmarks aimed to answer the following questions:

• Doespreemptingnon-interactive IOs always improve the qual-
ity of service?

dle starvation, we can make a simple modification to our internal
scheduling value, forcing it to increase with time.

7



• How doespreemptionhelp when interactive operations con-
sist of several IOs in a cascade?

• What is the overhead of preempting and delayingwrite IOs
to promptly service read requests?

4.2.1 Preemption Decisions
In order to show that decisions about preempting sequential disk

accesses are not trivial for all applications, we performed the fol-
lowing experiment. We varied the size of non-interactive IOs and
measured both the response time for interactive IOs and the through-
put for non-interactive IOs. We fix the arrival rate for interactive
IOs to 10 req/s, and keep disk fully utilized with non-interactive
IOs. The size of the interactive requests is100 kB.
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Figure 14: Average response time for interactive IOs vs. non-
interactive IO size.

Figure 14 depicts the average response time for interactive IOs
for preempt-never and preempt-always approaches. For small IO
sizes the benefit of preemption is of the order of5− 10 ms. How-
ever, for large non-interactive sequential IOs, the preemption yields
improvements of the order of100 ms. The preemptive approach
also provides less variation in response times, which is very im-
portant for interactive systems. Figure 15 shows the difference
in throughput between the preempt-never and preempt-always ap-
proaches. The main question is whether the trade-off between im-
proved response time and reduced throughput yields better quality
of service.
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Figure 15: Disk throughput vs. non-interactive IO size.

Figure 16 depicts the improvements in aggregate interactive value
(for all external interactive IOs) of the preempt-always over the
preempt-never approach. We use a yield function for interactive
real-time IOs from Figure 9(a) in Section3.2.1. If non-interactive
IOs are small, the preempt-always approach does not offer any im-
provement, since all interactive IOs can be serviced before their

deadlines even without preemptions. For large sizes of non-iteractive
IOs and short (100 ms) deadlines, preempt-always yielded up to
2.8 times more value than the non-preemptive approach (180% im-
provement). However, even for large non-interactive IOs, if the
deadlines are of the order of200 ms, then the preempt-always ap-
proach makes only marginal improvements over the preempt-never
approach.

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  0.5  1  1.5  2  2.5  3  3.5  4

Im
pr

ov
em

en
ts

 in
 a

gg
re

ga
te

 v
al

ue
 (

%
)

Non-interactive IO size (MB)

max. accept. response = 100 ms
max. accept. response = 200 ms
max. accept. response = 400 ms

Figure 16: Improvements in aggregate interactive value.

Figure 17 shows the deference in aggregate values for all ser-
viced IOs between the preempt-always and the preempt-never ap-
proaches. For cases when the non-interactive requests yield the
same as or greater value than the interactive IOs, the preempt-
always approach degrades the aggregate value when a disk services
small non-interactive IOs (up to approximately2 MB in this exam-
ple). For cases when interactive requests are substantially more
important than the non-interactive ones, the difference in aggregate
value for all IOs converges to the curve presented in Figure 16.
Simple priority-based scheduling cannot easily handle both cases.
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Figure 17: Differences in aggregate values for all IOs between
the preempt-always and preempt-never approaches: (a) non-
interactive and interactive IOs are equally important and (b)
non-interactive IOs are more important (their value is five
times greater).

4.2.2 Response Time for Cascading Interactive IOs
In order to show how preemptions help when an interactive oper-

ation consists of issuing multiple IO requests in a cascade10, we per-
formed the following experiment. The background, non-interactive
workload consists of both read and write IOs, each external IO be-
ing 2 MB long. We use the RAID 0/1 configuration with 8 disks.

10In case when an application cannot issue the next IO unless it gets
the data for the previous one. A typical example for applications
where multiple queries must be performed for a single interactive
operation is video surveillance.
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The sizes of internal IOs are between0 and2 MB and the interac-
tive IOs are100 kB each. As soon as one interactive IO completes,
we issue the next IO in the cascade, measuring the time required
to complete all cascading IOs. Figure 18 depicts the effect of cas-
cading interactive IOs on average response time for the whole op-
eration. If the maximum acceptable response time for interactive
operations is around100 ms, the preemptive approach can service
six cascading IOs, whereas the non-preemptive approach can ser-
vice only two.

1 2 3 4 5 6
0

50

100

150

200

250

300

A
ve

ra
ge

 r
es

po
ns

e 
tim

e 
(m

s)

Number of IOs in cascade

No preemption
Preemption

Figure 18: Response time for cascading interactive IOs.

4.2.3 Overhead of Delaying Write IOs
In order to show the overhead of preempting and delaying write

IOs (to reduce the latency for read IOs), we performed the follow-
ing experiment. We varied the arrival rate for read requests and
plotted the overhead in terms of reduced RAID idle time and in-
creased buffering requirements. We compared the following three
scheduling policies: (1) SCAN scheduling without priorities, (2)
SCAN scheduling with priorities for reads but without preemp-
tions, and (3) SCAN scheduling with write preemptions.
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Figure 19: RAID write-buffer requirements.

Figure 19 depicts the RAID write-buffer requirements for dif-
ferent read arrival rates. In this case, we used RAID level 0/1,
4+4 disks, each external read IO was1 MB, and the external write
rate was50 MB/s (100 MB/s internally). We can see that indepen-
dently of the scheduling criteria, if the available disk idle time is
small, then the required buffer size increases exponentially. This
is a well-known property of real-time streaming systems. The ad-
ditional write-buffer requirement is acceptable for a range of read
arrival rates in the system with preemptions. The real system needs
to control the number of preemptions as well as the read/write pri-
orities depending on available RAID idle time. Figure 20 depicts
the average disk idle-time for different read arrival rates.
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Figure 20: Average RAID idle-time.

4.3 Write-intensive Real-time Applications
In this section we discuss the benefits of using the preemptive

RAID scheduling for write-intensive real-time streaming applica-
tions. We generated a workload similar to that of a video surveil-
lance system which services read and write streams with real-time
deadlines. In addition to IOs for real-time streams, we also generate
interactive read IOs. We present results for a typical RAID 0/1 (4+4
disks) configuration with a real-time write rate of50 MB/s (inter-
nally 100 MB/s) and a real-time read rate of10 MB/s. Interactive
IO arrival rate is10 req/s. The external non-interactive IOs are2
MB each, and interactive IOs are1 MB each. The workload cor-
responds to a video surveillance system with50 dvd-quality write
video streams,20 real-time read streams, and10 interactive opera-
tions performed each second.
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Figure 21: Average interactive read response times.

Figure 21 depicts the improvements in the response times for in-
teractive IOs and the overhead in reduced RAID idle time. The
system was able to satisfy all real-time streaming requirements in
all four cases. Using the JIT-preemption method, our system de-
creased the interactive response time from110 ms to60 ms, by re-
ducing the RAID idle-time from7.2% to 6.5%. The read-splitting
method from Section3.2.2 further decreases the response time
(by reducing the data-transfer component on a single disk) with
the substantially larger effect on reduced average disk idle time.

4.4 Read-intensive Applications
Figure 22 depicts the average response times for interactive read

requests for read-intensive real-time streaming applications. The
setup is the same as for write-intensive applications in the previ-
ous section, but the system services only read IOs. The stream-
ing rate for non-interactive reads is129 MB/s. The interactive IOs
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Figure 22: Average interactive read response times.

are1 MB each, and their arrival rate is10 req/s. The improve-
ments in average response times were similar to those in our write-
intensive experiment. The JIT-preemption with migration didn’t
substantially improve the average response for interactive IOs, but
the better load-balancing compensated for the JIT-preemption re-
duction in idle time.

5. RELATED WORK
Before the pioneering work of [3, 14, 21], it was assumed that

the nature of disk IOs was inherently non-preemptible. Preemptible
RAID scheduling is based on detailed knowledge of low-level disk
characteristics. A number of scheduling approaches rely on these
low-level characteristics [4, 9, 11, 15]. RAID storage was the focus
of a number of important studies including [2, 6, 21, 22, 25]. In his
recent keynote speech at FAST 2003, John Wilkes et al. [23, 24]
stressed the importance of providing quality-of-service scheduling
in storage systems.

While most current commodity operating systems do not pro-
vide sufficient support for real-time disk access, several research
projects are committed to implementing real-time support for com-
modity operating systems [14, 19]. Molano et al. [14] presented
their design and implementation of a real-time file system for RT-
Mach. Sundaram et al. [19] presented their QoS extensions for
Linux operating system (QLinux).

6. CONCLUSION
In this paper we have investigated the effectiveness of IO pre-

emptions to provide better disk scheduling for RAID storage sys-
tems. We first introduced methods for preemptions and resump-
tions of disk IOs—JIT-preemption and JIT-migration. We then pro-
posed an architecture for QoS-aware RAID systems and a frame-
work for preemptive RAID scheduling. We implemented a simu-
lator for such systems (PraidSim). Using simulation, we evaluated
benefits and estimated the overhead involved with the preemptive
scheduling decisions. Our evaluation showed that using IO pre-
emptions can provide better overall system QoS for several impor-
tant applications.

We plan to further this work in the following two directions.
First, based on the existing Linux QoS extensions, we plan to im-
plement the preemptive scheduler for software RAIDs. Second, we
plan to investigate the effectiveness of preemptive scheduling ap-
proaches in cluster-based storage systems.
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