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Abstract

Enhancing perfusion maps in low-dose computed tomography perfusion (CTP)

for cerebrovascular disease diagnosis is a challenging task, especially for low-

contrast tissue categories where infarct core and ischemic penumbra usually

occur. Sparse perfusion deconvolution has been recently proposed to effectively

improve the image quality and diagnostic accuracy of low-dose perfusion CT by

extracting the complementary information from the high-dose perfusion maps

to restore the low-dose using a joint spatio-temporal model. However the low-

contrast tissue classes where infarct core and ischemic penumbra are likely to

occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of

essential biomarkers. In this paper, we propose a tissue-specific sparse deconvo-

lution approach to preserve the subtle perfusion information in the low-contrast

tissue classes. We first build tissue-specific dictionaries from segmentations of

high-dose perfusion maps using online dictionary learning, and then perform

deconvolution-based hemodynamic parameters estimation for block-wise tissue

segments on the low-dose CTP data. Extensive validation on clinical datasets

of patients with cerebrovascular disease demonstrates the superior performance

of our proposed method compared to state-of-art, and potentially improve diag-
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nostic accuracy by increasing the differentiation between normal and ischemic

tissues in the brain.

Keywords: low-dose CT perfusion, tissue-specific, dictionary learning,

ischemic detection, deconvolution

1. Introduction

Cerebral computed tomography perfusion (CTP) imaging has been advo-

cated to detect and characterize the ischemic penumbra, and assess blood-brain

barrier permeability with acute stroke or chronic cerebrovascular disease. In

cerebral studies, perfusion hymodynamic parameters such as cerebral blood flow

(CBF), cerebral blood volume (CBV) and mean transit time (MTT) can be

computed from the time sequence of enhanced CT images to provide important

guidance to clinicians. However, the associated excessive radiation exposure in

the repeated scan during CTP examination is raising a great concern due to

numerous recent reports from patients on over-dosage leading to biological ef-

fects including hair loss, skin burn and increased cancer risk. The issue is that

reducing the radiation dose in CTP will introduce noise and artifacts into the

acquired data and lead to quality deterioration in the perfusion maps that may

mislead interpretation. Thus a key challenge remains in low-dose CTP is to

obtain high-quality perfusion maps for accurate diagnosis.

In this paper, we propose a tissue-specific sparse deconvolution method to ad-

dress the limitations above. Previous methods fail to preserve the low-contrast,

delicate tissue categories which are essential for cerebrovascular disease diag-

nosis. We overcome this difficulty by incorporating segmentation and decon-

volution in the a unified framework and learning different dictionaries for each

tissue category from the high-dose data, as shown in Fig. 1. Our method starts

from segmenting the brain into different tissue classes. A modified version of au-

tomated model-based tissue classification [1] is employed to segment the brain

tissue classes. Then tissue-specific dictionaries are learned from the training

segments of each class. Then this model is propagated to a spatio-temporal
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energy function and minimized iteratively, where we use weighted sparse de-

convolution method to restore each tissue class and stitch them together. The

extensive experiments demonstrate the superior performance of our method. It

is important to note that all the preprocessing methods to denoise the dynamic

CT data can be complimented with our proposed deconvolution algorithm to

achieve better performance.

Figure 1: Tissue-specific dictionary learning and deconvolution overview. The high-dose cere-

bral blood flow (CBF) maps are segmented into four tissue types: vessel, gray matter (GM),

white matter (WM) and cerebrospinal fluid (CSF) and a dictionary is learned from each

repository of tissue segments. Low-dose CBF maps are enhanced using a spatio-temporal

tissue-specific sparse perfusion deconvolution (TS-SPD) algorithm. (Better viewed in color)

Our main contribution is two-fold: (1) Tissue-specific dictionaries for each

tissue class are employed in place of the global dictionary to capture the low-

contrast tissue class and delicate structural details. (2) Weighted sparse de-

convolution based on the probability of the tissue classification is proposed for

a unified reconstruction of the low-dose perfusion maps. In vivo brain acute

stroke and aneurysmal SAH patients data, we demonstrate the superiority of

our proposed method in CBF estimation that leads to better separation between

normal and ischemic tissue.

2. Related Work

Prior art in low-dose CTP perfusion map enhancement is limited. The most

widely clinically adopted computational model to quantify perfusion parameters

in CTP is truncated singular value decomposition (TSVD) [2, 3] and its variants,

such as block-circulant TSVD (cTSVD) [4]. However, the TSVD-based methods

tend to introduce unwanted oscillations [5, 6] and results in overestimation of

CBF and underestimation of MTT. Numerous works have been proposed and

have successfully improved the quality of CT data and therefore CBF maps at

low-dose to some extent, including bilateral filtering, non-local means, nonlinear

diffusion filter, wavelet-based methods, and adaptive statistical iterative recon-
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struction (ASIR). However all these work attempted to remove the noise in the

dynamic CT data and do not specifically consider the deconvolution model in

CTP. The oscillatory nature of TSVD-based methods has initiated research that

introduces different regularization terms to stabilize the deconvolution, and have

shown varying degrees of success in stabilizing the residue functions by enforc-

ing either temporal [5, 7, 8, 9] and spatial regularization [10, 11] on the residue

functions.

The main limitation of these methods is that prior knowledge of regular-

ization is assumed instead of learned from the data, which may fail to capture

the local details of perfusion maps. Sparse perfusion deconvolution (SPD) [12]

was the first to introduce a data-driven approach to learn a dictionary from the

high-dose perfusion maps to enhance low-dose CTP data and has successfully

improved the quantification of perfusion maps and diagnostic accuracy. How-

ever, the dictionary is learned globally from the whole perfusion maps, which is

problematic for two reasons.

First, given the diversity of tissue textures in the perfusion maps, the num-

ber of atoms needed to model their statistical characterization is important.

The global dictionary tends to emphasize the high-contrast tissues such as ves-

sel structure, and has fewer atoms for the low-contrast and fine structures such

as white matter (WM). On top of that, global dictionary is not adequate for

perfusion map modeling since each tissue category has a rather unique charac-

terization, where tissue-specific dictionaries might be feasibly learned.

While most methods use a global dictionary learned from the training sam-

ples. A recently proposed discriminative dictionary learning [13] allows jointly

optimizing sparse reconstruction and class discrimination. Class-specific dictio-

naries have also been studied in other scenarios such as face recognition [14],

medical image segmentation [15], edge detection, image classification and tex-

ture segmentation [16, 17], our scenarios and goals are different from these work.

They aim to predict labels in recognition and segmentation problems, with one

class per example. Our proposed algorithm is for reconstruction purpose. The

category-specific dictionaries are not optimized to be more discriminative, but
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for more accurate reconstruction of each category. Reconstructive dictionaries

allow us to recover the pixels belonging to neighboring tissue classes in the same

patch.

The sparse representation of signals in transformed domains is crucial to

the success of various optimization-based tasks. Sparsity methods have been

widely investigated and sparsity prior has been vastly used in computer vision

and multimedia communities. In medical image analysis, it has been applied to

MR reconstruction [18, 19, 20, 21], deformable segmentation [22, 23, 24], low-

dose CT perfusion [12, 11, 25, 26, 27, 28, 29], image annotation [30] and image

segmentation [31], etc.

3. Methodology

In this section, we will first briefly introduce sparse perfusion deconvolution

(SPD). Tissue-specific dictionary learning and reconstruction algorithms will be

presented afterwards.

3.1. Sparse Perfusion Deconvolution

SPD is designed to improve low-dose CTP deconvolution by combining the

temporal convolution model with the spatial regularization using sparse repre-

sentation of dictionary atoms learned from high-dose perfusion maps. Accord-

ingly, the spatial priors can be incorporated on-the-fly through patch composi-

tion, which is formulated as a sparse optimization problem as follows.

In SPD, a 4D CTP data is represented by C(x, y, z, t) ∈ RN×T composing

of N tissue enhancement curves (TEC) at voxels of interest (VOI) [x, y, z]T

and T time points, where x, y and z are the respective row, column and slice

coordinates of the spatio-temporal data and t is the temporal stamp. The

residue impulse function (RIF) is represented by R(x, y, z, t) ∈ RN×T , indicating

the delaying of the remaining contrast tracer in the VOI. Let us assume f ∈ RN

as the CBF map to be estimated at [x, y, z] and D ∈ RN×K as the learned

dictionary from the high-dose perfusion maps. α ∈ RK is a sparse vector to
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make Dα an approximation to f with certain error tolerance. To learn the

dictionary D of high-dose perfusion map patches, K-SVD [32] is used by solving

min
D,A

N∑
j=1

‖α‖0 , subject to ‖zj −Dαj‖2 ≤ ε, i = 1, 2, . . . , N (1)

Then the approximation of f by D is then formulated as an optimization prob-

lem:

J = µ1‖C−CaR‖22 + ‖f −Dα‖22 + µ2‖α‖0 (2)

where f = R(t = 0) by the definition of residue impulse function [2]. The

first term is based on the indicator dilution theory [33], where C ∈ RT×N is

the contrast concentration curves of the VOI, and Ca ∈ RT×T is the circulant

matrix for the arterial input function (AIF). The second and third terms are

the key idea of SPD. The details of the notation can be found in [25]. Then

Eq. (2) is optimized using an Expectation-Maximization (EM) style algorithm,

which alternatively optimizes α (“E” step) using orthogonal matching pursuit

(OMP) and f (“M” step) as a linear inverse problem.

3.2. Cerebral CTP Segmentation

Patch-based dictionary learning is widely used in computer vision for image

de-noising and enhancement [32, 34, 35]. The key requirement in construct-

ing an effective dictionary is that the dictionary should be universal enough to

represent every possible patch with sufficient accuracy. To achieve this, the dic-

tionary should have enough atoms for every texture category. However, a global

dictionary tends to have more atoms for the high-contrast and edge patches, and

much fewer atoms for the low-contrast and delicate patches.

To solve this problem, we resort to constructing several dictionaries that is

adapted to each tissue category based on a segmentation of CTP images, instead

of a general dictionary for the whole 4D-CT. This allows us to locate sufficient

atoms for each distinct tissue category.

To segment the cerebral CTP data into different tissue categories, we use

the average enhancement (AE). AE is defined as the mean value of TEC in
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Hounsfield Units (HU) over all temporal points. Let us denote M ∈ RN , a

column vector of size N , as the AE of a 4-D CTP data C ∈ RN×T , then

Mi =
1

T

T∑
i=1

Ci,t for i = 1, . . . , N (3)

where Ci,t denotes the HU value at position i and time point t.

Because the tissue enhancement varies depending on the tissue type, we

could segment the brain CT image by thresholding the value of AE into four

categories: vessel, gray matter (GM), white matter (WM) and cerebrospinal

fluid (CSF). Since computational efficiency is very important in our framework

for real-time clinical diagnosis, we choose a simple yet effective segmentation

approach by adapting a tissue classification algorithm for MRI [1].

We first compute the median value for each voxel along the temporal axis

since different tissue classes have different contrast perfusion characteristics.

Expectation-maximization segmentation is employed on the median map to ob-

tain probability maps of GM, WM and CSF, We initialize the bias field to zero

and start the iterations by providing the algorithm with a rough prior estima-

tion of the classification. The prior distribution is derived from a digital brain

atlas that contains spatially varying prior probability maps for the location of

GM, WM and CSF [36]. Affine transformation is employed to warp the prior

distributions into the target CT image space. EM algorithm is used to estimate

the hidden class labels and the parameters of the model, while contexture in-

formation is incorporated by a Markov Random Field (MRF). The reason for

choosing median map as a robust measurement of the tissue contrast in CTP is

because of its higher tissue contrast compared to other statistics in our experi-

ments. Vessel is segmented by thresholding the original CBF value. The vessel

voxels in other tissue probability maps are set to zero to guarantee mutually oc-

clusive segmentations. Tissue probability maps on a representative dataset are

shown in Fig. 2. The following reconstruction does not heavily depend on the

segmentation accuracy, since each tissue dictionary is learned from over 10,000

patches and represents dominant patterns in the training patches.
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Figure 2: Brain tissue classification by the automatic algorithm on the median map. (a) A

slice in the enhanced CTP data (b) Median map. Probability maps of (c) Vessel (d) Gray

matter (e) White matter (f) CSF.

3.3. Tissue-Specific Dictionary Learning

After segmenting the training CTP data into four tissue types using AE

thresholds, we apply the segmentation map of each tissue type to the corre-

sponding high-dose CBF maps to obtain training samples for tissue-specific

dictionary learning. To avoid too much blank area in the training samples, we

remove the training patches with more than half zero-value voxels in the seg-

ments. In this way, we collected four sets of training samples for the four tissue

categories from the high-dose training CTP data.

To learn the tissue-specific dictionary Dm, m=vessel, GM,WM,CSF, we use

the recently developed online learning algorithm [37]. Dictionary learning al-

gorithm such as K-SVD [32] as used in [12] which requires all training sam-

ples available in the dictionary update step. However this can not be satis-

fied in many medical application because of the limited patient data and de-

identification process gradually carried on by different radiologists/technicians.

Learning the tissue-specific dictionary Dm with every batch of new training

samples can be very time consuming and not always feasible. Online dictionary

learning algorithm is therefore employed to tackle this problem.

Online dictionary learning algorithm learns the dictionary by processing one

sample (or a mini-batch) at a time and updating the dictionary using block

coordinate descent with warm restart. Given a set of high-dose CBF patches

Zm = {zmj }Nj=1 for a specific tissue type m, each as a column vector of size N ,

we seek the dictionary Dm that minimizes

min
Dm,A

N∑
j=1

‖zmi −Dmαi‖2 + µ2‖αi‖1, i = 1, · · · , N (4)

Starting from an initial dictionary of DCT, the algorithm iteratively employs two

stages until convergence, sparse coding and dictionary update. Sparse coding
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aims to find the sparse coefficient αi for each signal zmi :

arg min
αi∈RK

‖zmi −Dmαi‖22 + µ2‖αi‖1 (5)

where Dm is the initial dictionary or dictionary computed from the previous

iteration. LARS-Lasso algorithm [38] is employed to solve this step. The dic-

tionary update stage aims to update Dm based on all discovered αi, i ∈ [1,K]:

arg min
Dm

1

K

K∑
i=1

‖zmi −Dmαi‖22 + µ2‖αi‖1 (6)

Based on stochastic approximation, the dictionary is updated efficiently us-

ing block-coordinate descent. It is a parameter free method and does not require

any learning rate tuning. Because it only exploits a small batch of newly coming

data in the dictionary update step, it is therefore much faster than K-SVD or

other off-line learning algorithms. In this way, we can efficiently update the

tissue-specific dictionaries with newly coming data.

3.4. Tissue-Specific Sparse Perfusion Deconvolution

Assuming that a low-dose perfusion map has been divided into overlapping

patches, we use fr, a column vector to denote an arbitrary patch in the low-

dose perfusion image at location r ∈ RX×Y×Z , and mr to denote the mean

AE (mAE) over all voxels in the patch. Since the dictionary is patch-based,

we assign one tissue category to each patch using the AE threshold values in

Section 3.2.

The tissue-specific sparse perfusion deconvolution algorithm computes the

CBF map of low-dose CTP data using both temporal convolution model and

tissue-specific dictionary-based spatial regularization by solving:

J = µ1‖Cm −CaR
m‖22 + ‖fm −Dmα‖22 + µ2‖α‖1 (7)

where Cm, Rm, Dm and fm are the corresponding TEC, RIF, dictionary and

CBF for tissue category m.

Eq. (7) is solved by an EM style algorithm with iterative employment of two

processes: 1) sparse coding process which minimizes with respect to α with f
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fixed, 2) quadratic solver which efficiently minimizes this simplified linear inverse

problem. In the “E” step, f is estimated using the result of the previous step.

The initial value of f is obtained by cTSVD, which applies voxel-independent

deconvolution on the low-dose CTP data. In the “M” step, the following sim-

plified problem is minimized:

arg min
xm

µ1‖Cm −CaR
m‖22 + ‖f −Dmα‖22 (8)

Because fm = Rm(t = 0) , Eq. (8) can be rewritten as

arg min
xm

µ1‖Cm −CaR
m · diag(xm)‖22 + ‖fm −Dmα‖22 (9)

where Rm is the residue functions normalized by xm so that Rm(t = 0) = 1.

Eq. (9) is a quadratic term that has a closed-form solution.

If vec(Bm) denotes the vector formed by the entries of a matrix Bm in

column major order, and define Pm = CaR
m, then

vec
(
Cm −CaR

m · diag(fm)
)

= vec
(
Cm −Pm · diag(fm)

)
= vec(Cm)−Mmfm (10)

where Mm is a TN ×N matrix in form of

Mm =


Pm.,1 0 · · · 0

0 P.,2 · · · 0
...

...
. . .

...

0 0 · · · Pm.,N


where Pm.,i dictates the ith column of matrix Pm in its column vector form.

Eq. (9) can be transformed into the conventional least square problem

arg min
fm

‖(In;Mm)fm − (Dmα; vec(Cm)‖22 (11)

Let Am = (In;Mm) and Bm = (Dmα; vec(Cm)), we get

fm = Am+Bm (12)
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where Am+ is the pseudo-inverse of matrix Am, (.; .) denotes a vector or matrix

by stacking the arguments vertically.

Two procedures are iteratively employed to obtain xm and αm for each

tissue type. Note that theoretically this iterative algorithm might lead to local

minima. However, in our extensive experiments (Section 4), we did not observe

this situation yet. We also observe our results are quite stable with respect to

the training dataset.

Using tissue-specific dictionaries to enhance low-dose CTP perfusion maps

with online learning and tissue-specific deconvolution, SPD obtains three addi-

tional advantages: 1) Segmentation information is incorporated into the dictio-

nary learning and reconstruction to preserve the unique image characteristics

of different tissue types and employ tissue-sensitive parameter settings. 2) The

dictionaries become more robust to variations in the training data due to pre-

segmented data. 3) The run-time efficiency is not sacrificed with more dictionar-

ies to be trained and SPD can be gracefully scaled-up to contain tissue-specific

high-dose perfusion image priors from, theoretically, infinite number of training

shapes.

4. Experiments

In this sections, we evaluate the proposed tissue-specific sparse perfusion

deconvolution (TS-SPD) method in clinical subjects with cerebrovascular dis-

ease and normal subjects, and compare the proposed method with the clinically

adopted cTSVD [4] method, SPD using a global dictionary (Global-SPD) [12],

and two popular image denoising algorithms anisotropic diffusion (AD) [39] and

non-local means (NLM) [40] by applying them to the low-dose CBF maps. The

four baseline algorithms are tuned with optimal parameters to get best possible

performance on the data. Out of 20 subjects, 10 are used as training data (7

with CTP deficits in the brain and 3 normal), and the rest 10 are used for testing

purpose (5 with CTP deficits and 5 normal). A board-certified neuro-radiologist

with 12 years experience reviewed CTP data in a blinded fashion to determine
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the type and location of CTP deficits.

4.1. Experiment Setup

For all experiments of SPD, the dictionary used are of size 64×256 designed

to handle perfusion image patches of 8×8 pixels with 256 atoms in the dictionary.

In all experiments, the denoising process uses a sparse coding of each patch of

size 8× 8 pixels from noisy image. We download the online dictionary learning

for sparse representation code from the authors’ website1. AE thresholding is

determined as: above 70 HU for vessel, between 32 HU and 70 HU for GM,

between 17 HU and 32 HU for WM, and between 0 HU and 17 HU for CSF

[41, 42, 43]. When applying the model, we constantly use the same parameters

values for all CTP data, i.e., µ1 = 0.01, 0.02, 0.04, 0.08 and µ2 = 0.2, 0.4, 0.8, 1

for vessel, GM, WM and CSF.

Repetitive scanning of the same patient at different radiation doses is uneth-

ical. Thereby, Gaussian noise is added to the high-dose CTP data to simulate

low-dose CTP data at I mA following the practice in [44]:

I =
K2 · I0

K2 + σ2
a · I0

(13)

where σa is the standard deviation of the added noise, I0 = 190mA is the

tube current at high-dose, K = 103.09mA
1
2 is a constant. When σa = 25, the

simulated low-dose I = 15.6mA.

The noise model is built on the inverse relationship between the tube current

I (mA) and the noise standard deviation σ in CT images

σ =
K√
I

(14)

The value K is computed by analyzing the Gaussian noise in the CTP images

of 22 patients under I0=190 mA tube current and the average K value is 103.09

mA
1
2 . Assume I is the simulated tube current level in mA, and σ0 is the

1http://spams-devel.gforge.inria.fr/
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noise standard deviation in CTP images scanned under I0 mA. We can rewrite

Eq. (14) as

σ

σ0
=

√
I0√
I

(15)

Because noise distribution is statistically independent, the relationship between

σ, σ0 and the standard deviation of the added Gaussian noise σa is

σ2 = σ2
0 + σ2

a (16)

From Eq. (15) and (16), we can compute the simulated tube current I given

added noise standard deviation σa

I =
I0 · σ2

0

σ2
0 + σ2

a

=
K2

K2

I0
+ σ2

a

=
K2 · I0

K2 + σ2
a · I0

(17)

or compute σa from I

σa = K

(
1

I
− 1

I0

) 1
2

(18)

The corresponding added noise standard deviation or the simulated tube

current levels are computed using Eq. (19) or (18) in this paper.

I =
I0 · σ2

0

σ2
0 + σ2

a

=
K2

K2

I0
+ σ2

a

=
K2 · I0

K2 + σ2
a · I0

(19)

Peak Signal-to-Noise Ratio (PSNR) is widely used in signal and image pro-

cessing to measure the denoising performance. PSNR is defined as the ratio

between the maximum intensity value in the ground truth image Imax and the

power of corrupting noise σ (the average sum of squared difference between the

ground truth and enhanced image) that affects representation fidelity. PSNR is

usually expressed in the logarithmic decibel scale as

PSNR = 20 log

(
Imax
σ

)
(20)

4.2. Visual Comparison

4.2.1. Tissue-Specific Dictionaries

Figure 3 shows the globally learned dictionary using K-SVD and the four

tissue-specific dictionaries using our proposed method. The global dictionary is
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Figure 3: Global and tissue-specific dictionaries. Left: Global dictionaries learned using K-

SVD. Right: Tissue-specific dictionaries of (a) Vessel (b) GM (c) WM and (d) CSF.

trained on a dataset of 40,000 8 × 8 patches of high-dose CBF perfusion maps

randomly sampled from 10 training subjects and initialized with the redundant

DCT dictionary. Each tissue-specific dictionary is trained using 10,000 8 × 8

patches of the corresponding tissue category from the same training subjects.

We could observe from the global dictionary that high-contrast patches with

edges and corners dominate the dictionary atoms, while the atoms needed to

reconstruct the tissue categories with lower contrast and more delicate textures

tend to be omitted. In comparison, the tissue specific dictionaries are trained

specifically for each tissue category and are expected to preserve the texture and

image characteristics for each category, especially for the low-contrast tissues

such as WM and CSF. The stability of the dictionaries are also improved due

to the independent training datasets of the mutually exclusive tissue categories.

4.2.2. CBF Perfusion Map

Figure 4: CBF maps and zoomed-in regions of a 63-year-old female with acute stroke caused

by ischemic penumbra in the right hemisphere of the brain. LMCA and RMCA are enlarged

for comparison. The results given by (a) cTSVD (b) AD (c) NLM (d) Global-SPD (e) our

TS-SPD all at 15.6 mA and (f) cTSVD at 190mA. (color image)

Figure 5: CBF maps and zoomed-in regions of a 35-year-old female with left middle cerebral

artery (LMCA) caused by aneurysmal SAH. LMCA and RMCA are enlarged for comparison.

The results given by(a) cTSVD (b) AD (c) NLM (d) Global-SPD (e) our TS-SPD all at 15.6

mA and (f) cTSVD at 190mA. (color image)

We then compare five methods by visually observing the estimated CBF

perfusion maps of two patients, a 63-year-old female patient with acute stroke

in right hemisphere of the brain and a 35-year-old female patient with left middle

cerebral artery (LMCA) CTP deficit due to aneurysmal SAH (Note in medical

the left and right are opposite on the image). Low tube current of 15.6 mA was
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simulated by adding Gaussian noise with standard deviation of 25 [44]. CBF

maps computed from CTP data obtained at high cube current of 190 mA were

regarded as the reference standard.

As shown in Figs. 4 and 5, among the five low-dose CBF maps, the CBF

maps generated using our proposed TS-SPD algorithm recovers the information

of high-dose CBF maps from the low-dose CTP data with best overall perfor-

mance. The arteries and veins as well as the micro-vessels are more evidently

defined, while the delicate structures of the white matter and CSF are pre-

served. While the noise is greatly suppressed in the low-dose CBF maps for

all four enhancement algorithms, Global-SPD, AD and NLM tend to smooth

the image too much. AD smoothes both the vessel and non-vessel structures to

remove the noise. The vessels in the CBF maps become discontinuous and the

boundaries of the vessels are less clear-cut. NLM performs better at preserving

the edges of the vessels but introduces image artifacts in the CBF map in the

white matter and CSF. Global-SPD does a better job relatively compared to

AD and NLM at preserving a clear-cut boundary of the vessel structures and

not introducing additional artifacts into the CBF map. However the non-vessel

structures still tend to be over-smoothed, since the dictionaries learned from

the high-dose CBF maps are dominated by the atoms for vessel structure re-

construction. And for all these three methods, CSF and WM are overestimated

because of the smoothing effect over the whole image which is contaminated by

Gaussian noise. Our TS-SPD algorithm overcomes these drawbacks and pre-

serves both the vessel boundaries and the low-contrast structures of WM and

CSF with tissue-specific dictionaries and adaptive parameter setting for each

tissue category. PSNR of CBF maps estimated by the five methods for the two

patients in Figs. 4 and 5 are shown in Table 1 as Case 1 and 2.

We report the PSNR values for all testing subjects on the whole brain,

GM and WM in Table 1. GM and WM are the tissue categories in the brain

where acute stroke and chronic cerebrovascular disease mostly effect. The infarct

core (dead tissue) occurs mostly in GM. The ischemic penumbra (risky tissue)

occurs mostly in WM. It is clear that our method achieves highest PSNR values
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Table 1: Quantitative comparison of PSNR (dB) in CBF maps at low-dose are reported for 10

CTP cases by cTSVD, AD, NLM, Global-SPD and our method. Case 1 and 2 are the patients

in Figs. 4 and 5. The best performance is highlighted. The average value is over all 10 cases.

Tissue PSNR Case1 Case2 Case3 Case4 Case5 Average

cTSVD 43.51 34.87 35.36 32.14 31.88 33.565

AD 47.12 37.84 36.78 34.57 34.85 35.934

Brain NLM 47.64 36.62 36.51 34.15 34.4 35.691

KSVD-SPD 46.8 38.11 37.1 34.44 34.83 35.909

Proposed 47.84 38.38 37.45 35.73 35.46 36.654

cTSVD 12.81 15.94 16.3 19.55 18.08 15.912

AD 17.82 18.65 18.64 21.43 21.59 19.137

GM NLM 17.82 18.28 18.15 21.92 20.91 18.863

KSVD-SPD 18.53 19.08 18.79 21.96 21.3 18.884

Proposed 18.92 19.66 19.54 23.47 21.93 19.913

cTSVD 19.99 18.65 17.77 15.61 17.14 17.823

AD 23.96 20.96 19.77 19.26 21.59 20.955

WM NLM 23.93 20.54 19.21 18.77 20.84 20.57

KSVD-SPD 23.8 20.75 19.23 18.65 20.75 20.413

Proposed 25.02 22.56 21.97 20.11 21.94 22.283

Tissue PSNR Case6 Case7 Case8 Case9 Case10

cTSVD 31.92 32.29 34.69 27.02 31.97

AD 34.15 34.15 36.75 28.74 34.39

Brain NLM 33.97 33.97 36.52 28.89 34.24

KSVD-SPD 34.52 34.52 36.73 28.24 33.8

Proposed 35.37 34.77 37.33 29.36 34.85

cTSVD 12.7 15.91 15.66 17.53 14.64

AD 16.12 18.58 18.74 21.15 18.65

GM NLM 16.15 18.22 18.5 20.49 18.19

KSVD-SPD 16 18.96 18.43 19.06 16.73

Proposed 16.91 19.42 19.11 21.32 18.85

cTSVD 19.23 18.66 18.33 16.03 16.82

AD 21.95 20.97 20.71 20.11 20.27

WM NLM 21.92 20.55 20.45 19.49 20

KSVD-SPD 22 20.72 20.3 19.01 18.92

Proposed 24.24 22.80 22.53 20.68 21.25
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in all cases for the whole brain, and achieves even better PSNR in GM and

WM (usually 1∼ 2 dB higher). It is important to note that though the PSNR

gain may not be very significant for some cases, the qualitative improvement is

significant in the WM and GM where the delicate tissue structure is preserved

for cerebrovascular disease diagnosis by the neuro-radiologists, as shown in Figs.

4 and 5.

4.3. Diagnostic Analysis

4.3.1. Asymmetry in acute stroke and SAH patient

Figure 6: Zoomed-in regions of the intensity difference maps between LMCA and RMCA of

the acute stroke (left) and SAH (right) patients estimated by (a) cTSVD (b) AD (c) NLM (d)

Global-SPD (e) TS-SPD at low-dose 15.6mA and (f) cTSVD at high-dose 190mA. Arteries

are delineated in red, CSF in blue.

As shown in Fig. 4 and 5, the intensity difference of CBF values between

LMCA and right middle cerebral artery (RMCA) is more evident in the low-

dose CBF map estimated using our method. To visualize the asymmetry in

the left and right middle cerebral artery of these two patient, we compute the

intensity difference maps between LMCA and RMCA for five methods, as shown

in Fig. 6. We can observe that the intensity different map of cTSVD is too noisy

to identify the asymmetry of LMCA and RMCA vessel structures, while AD,

NLM and Global-SPD blurs the details of the vessel structure. Our proposed

TS-SPD generates the different map with better contrast and spatial resolution

for diagnosis of asymmetry in LMCA and RMCA.

4.3.2. Ischemic Voxels Clustering

By aggregating all voxels (within VOI) from the normal hemisphere into

a single “normal” cluster and the pathologic hemisphere into an “abnormal”

cluster, we have two clusters of n1 normal voxels and n2 ischemic voxels. To

quantify the separability between normal and ischemic CBF values, we define
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Table 2: Quantitative comparison of the normalized distance between ischemic and normal

tissues. The best performance of each column is highlighted.

Method Fig. 4 Fig. 5 All data

cTSVD 42.71 46.03 49.91±5.12

AD 52.45 51.41 53.44±5.33

NLM 55.44 53.44 54.05±4.80

Global-SPD 57.19 53.96 55.62±3.91

TS-SPD 63.25 56.64 59.60±3.82

the distance between these two clusters as:

d =
m1 −m2√
σ2
1

n1
+

σ2
2

n2

(21)

where m1, m2 are the means, and σ1 and σ2 are the standard deviations of

CBF in the normal and ischemic clusters, respectively. We hypothesized that

our TS-SPD algorithm to produce larger distance d as defined in Eq. 21, that

is, to more definitely differentiate between normal and ischemic tissues. Table 2

shows the distance between normal and abnormal clusters for Case 1, 2 and all

subjects with CTP deficits. Both SPD algorithms perform better than cTSVD,

AD and NLM at low-dose and TS-SPD separates the two clusters with largest

distance. More importantly, the other three enhancement methods tend to

overestimate the CBF values of ischemic voxels due to the smoothing effect,

while our proposed TS-SPD method recovers the true values of the ischemic

voxels with better accuracy while removing the noise in the low-dose CBF maps.

4.3.3. Diagnostic Test

Figure 7: ROC curves generated by cTSVD, Global-SPD and TS-SPD deconvolution algo-

rithms. Area under curve (AUC) is 0.9091 for cTSVD, 0.9434 for AD, 0.8962 for NLM, 0.9434

for Global-SPD and 0.9695 for TS-SPD.

Let us define sensitivity as the proportion of samples with abnormal CBF
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values, which test positive, and specificity as the proportion of samples with nor-

mal CBF values that test negative, at a specific threshold. Fig. 7 is the receiver

operator characteristic (ROC) curve drawn based on 828 abnormal samples and

828 normal samples from the ischemic penumbra and its symmetric region of

SAH patient in Fig. 5, in which we examine a spectrum of thresholds. The plot

shows the tradeoff between true positive rate (sensitivity) and false positive rate

(1-specificity). The closer the curve is to the upper left corner, the more accu-

rate the test. Fig. 7 shows that TS-SPD is considerably more accurate than

other four methods, leading to more efficient diagnosis.

5. Conclusion and Discussion

In this paper, we have proposed a novel tissue-specific dictionary learn-

ing and deconvolution approach for CBF perfusion map enhancement in low-

dose cerebral CTP. We take advantage of the distinctive image information of

each tissue category available in the high-dose CBF maps to recover the miss-

ing texture and structural information in the low-dose CBF maps. This is

achieved by performing a spatio-temporal sparse perfusion deconvolution based

on tissue-specific dictionaries learned from high-dose CBF map segmentation.

Our method consistently outperforms the state-of-art methods, especially in

GM and WM where the cerebrovascular disease diagnosis mostly rely.

In spite of the fact that the tissue-specific dictionaries are learned from

the segments of each type, the dictionaries and the deconvolution procedures

do not heavily depend on the segmentation accuracy. This is because each

tissue-specific dictionary is learned from over 10,000 patches and represents

dominant patterns in training patches. The deconvolution will not only consider

the dictionary but also the blood flow convolution model as well. From our in-

vivo experiments, a certain amount of segmentation errors (e.g. >75% dice

similarity of the segmentation accuracy) will not influence the overall quality of

the dictionaries.

The running time for all the comparison algorithms is summarized in Table 3,
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Table 3: Running time for all comparison algorithms. Unit is second.

Method cTSVD AD NLM Global-SPD TS-SPD

Time 4.0 4.3 4.2 27.9 120.6

where the time required for the tissue-specific SPD is about 2 minutes for a

512 × 512 voxel slice of the brain with 119 times points, compared to 28 s for

the KSVD-SPD without tissue class differentiation. This is clinically acceptable

time for post-processing and parameter map computation, taking into account

the improved accuracy and contrast at ischemic areas to assist clinical diagnosis.

There are two sets of parameters in this algorithm: µ1 for the weight of the

temporal convolution term, and µ2 for the weight of the sparsity term. Because

the reconstruction error from the temporal convolution term is larger compared

to the sparsity penalty, a relatively smaller µ1 around 1/10 or 1/20 of the value

of µ2 would be appropriate. For different tissue types, since vessels are more

structured than other tissue types, and the anatomical structural complexity de-

creases for the four tissue types: vessels, gray matter, white matter and CSF, we

give smaller sparsity penalty to the structured tissue types, and larger sparsity

penalty to the smoother tissue type.

In the future, we will evaluate the feasibility of applying our method to

facilitating low-dose radiation therapy in cerebrovascular disease diagnosis and

evaluate its extension to other imaging modalities such as magnetic resonance

perfusion (MRP) and PEC/SPECT.
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