
 

 

SPARSITY-BASED DECONVOLUTION OF LOW-DOSE BRAIN PERFUSION CT 
IN SUBARACHNOID HEMORRHAGE PATIENTS 

 
Ruogu Fang1, Tsuhan Chen1, Pina C. Sanelli2 

 
1Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA 

2Department of Radiology, Weill Cornell Medical College, NY, NY, USA 
 

ABSTRACT 
 
Functional imaging serves as an important supplement to 
anatomical imaging modalities such as MR and CT in 
modern health care. In perfusion CT (CTP), hemodynamic 
parameters are derived from the tracking of the first-pass of 
the contrast bolus entering a tissue region of interest. In 
practice, however, the post-processed parametric maps tend 
to be noisy, especially in low-dose CTP, in part due to the 
noisy contrast enhancement profile and oscillatory nature of 
results generated by current computational methods. In this 
paper, we propose a sparsity-based perfusion parameter 
deconvolution approach that consists of a non-linear 
processing based on sparsity prior in terms of residue 
function dictionaries. Our simulated results from 
numericaldata and experiments in aneurysmal subarachnoid 
hemorrhage patients with clinical vasospasm show that the 
algorithm improves the quality and reduces the noise of the 
perfusion parametric maps in low-dose CTP, compared to 
state-of-the-art methods. 
 

Index Terms— sparse representation, residue function, 
truncated singular value decomposition (TSVD), perfusion 
computed tomography (CTP), aneurysmal subarachnoid 
hemorrhage 
 

1. INTRODUCTION 
 
Low-dose computed tomography (CT) has attracted 
increasing attention in recent years, especially in perfusion 
CT (CTP) imaging, which has higher radiation dose due to 
its cine scanning technique resulting in repetitive imaging 
on a focused region of the body. CTP provides functional 
information complimentary to the standard imaging 
modalities in modern medicine to characterize hypo-
perfused tissue. CTP has been useful in quantitatively and 
qualitatively assessing hemodynamic parameters, including 
cerebral blood flow (CBF), cerebral blood volume (CBV) 
and mean transit time (MTT). These quantities can provide 
insights into, for instance, the degree to which hypo-
perfused brain tissue is at risk of infarction and irreversible 
recovery. However, several recent reports of radiation over-
exposure has raised significant concerns to patients and 
radiologists regarding its usage. The method to obtain high-

quality post-processed parametric maps from a low-dose 
scan remains a challenge for this technique. 
Conventionally, truncated singular value decomposition 
(TSVD) is used to estimate the impulse residue function 
(IRF) via deconvolution [1, 2], which has been shown to 
have an oscillatory nature [3]. In case of low-dose CTP, the 
increased noise in the CT data combined with the potentially 
oscillatory TSVD creates parameter maps that are very 
noisy. Most state-of-the-art noise reduction approaches for 
low-dose CTP are based on preprocessing of CT data before 
applying algorithms to determine perfusion parametric 
maps. Numerous works have been proposed and have 
successfully improved the quality of CBF maps, including 
bilateral filtering, non-local mean, nonlinear diffusion filter, 
and wavelet-based methods [4-7]. However, these works do 
not take the convolution flow model of perfusion CT into 
consideration. Therefore we sought to develop a new 
deconvolution method that can learn from the high-dose 
data to improve the quality of low-dose perfusion parametric 
maps. 
    In this paper, our goal is to improve low-dose CTP 
parametric map computation. The approach is to impose a 
sparsity prior on low-dose dynamic 3D CT data, in terms of 
a dictionary D obtained from high-dose CTPresidue 
function. A linear transform from the dictionary is 
performance to restore the high quality perfusion parametric 
maps based on the property that residue functions in low-
dose CTP can be well approximated by a linear combination 
of just a few columns from the high-dose residue functions 
in D. The transform is adapted to the observed low-dose 
dynamic CT data with convolution flow model and the data 
statistics from the training set. Sparsity-based method has 
been applied on sonogram and CT data before perfusion 
maps computation, but to the best of our knowledge, its 
direct application on improving perfusion parametric 
deconvolution in CTP has not been explored yet. 
    Our major contributions in this work are two-fold: First, 
we propose a novel framework for deconvolution of 
perfusion CT data using sparsity prior in terms of high-dose 
residue function dictionary. Second, the algorithm improves 
the low-dose CTP quantification by learning from the data 
and computing the perfusion parameters “on the fly”, 
instead of a pre-assume any explicit noise model.  
 



 

 

2. APPROACH 
 

2.1 Perfusion Parameter Estimation 
In a dynamic contrast enhanced imaging study, 
!! ! represents the venous time-enhancement curve and 
!!(!)represents the artery input. !"#  is the cerebral blood 
flow and !(!)is the tissue impulse residue function, which 
measures the mass of contrast media remaining in the given 
vascular network over time. At the beginning (! = 0), a unit 
of contrast material (!(0) = 1) is injected as a bolus at an 
arterial input, and after a finite duration, as contrast material 
begins to leave the vascular network, ! drops to zero. The 
amount of contrast in a region is characterized by 

 !! ! = !"# ∙ !! ! ! ! − ! !"
!

!
 (1)  

 
2.2 Sparsity Residue Representation (SRR) 
We propose a deconvolution method aiming to achieve 
robust estimation of perfusion parameters in low-dose/noisy 
CTP data. Instead of assuming any parametric model of 
perfusion statistics, we propose to incorporate residue prior 
on-the-fly through sparse representation. More specifically, 
we have the following sparsity observation: Given a large 
repository of residue functions computed from high-dose 
CTP data of an organ, the residue functions in the low-dose 
CTP data of the same organ can be approximated by a linear 
combination of a sparse set of instances in the residue 
function repository.  
    We define a spatial-temporal patch as a 3D patch along 
with its temporal data.  Let !! !, !, !, ! ∈ ℝ!!×!represent 
the input tracer concentration in the tissue of the voxel 
!, !, ! !  from a spatial-temporal patch of size N×N×N 

pixels and ! time points, and! !, !, !, ! ∈ ℝ!!×!represent 
the remaining tracer concentration of the voxel !, !, ! ! at a 
given time point t, where x, y and z are the respective row, 
column and slice coordinates of the data. The approximation 
of patch-wise residue functions ! is then formulated as an 
optimization problem: 

 argmin
!

! ! s. t. !! − !!!" ≤ ! (2)  
where !! ∈ ℝ!×!  is an arterial input in block-circulant 
version, as shown in Section 2.1. ! ∈ ℝ!×!!×! is a 
dictionary which is obtained from high-dose CTP data, 
which is comprised of 4D elements of the residue functions 
in a voxel of interest (VOI). The residue functions of the 
spatial-temporal patch !  is approximated by!" , where 
! ∈ ℝ! denotes the coefficient/weights of linear 
combination to encode the observed residue function from 
low-dose CTP data in terms of D.  The !! norm ! ! is the 
number of non-zero elements in x and ensures a sparse set of 
residue function instances can be used to approximate the 
input tracer concentration, which prevents the overfitting to 
error from missing/misleading tracer concentration. ε is the 
prescribed error tolerance of representation error. The 
constraint ensures fidelity to the observation.  

    (2) is an NP hard problem owing to the non-convent 
!! norm. Thanks to the recent proof of the sparse 
representation theorem [8], L1 norm relaxation can be 
employed to make the problem convex while still preserving 
the sparsity property.  
 argmin

!
!! − !!!" !

! + ! ! ! (3)  
where  !is the sparsity parameter that controls the number of 
non-zeros elements in x. Since (3) now becomes a typical 
linear inverse problem, it can be solved using existing 
solvers[9]. !"is then computed as a refined version of the 
residue functions of the input patch-wise tracer 
concentration, which imposes the residue priors on-the-fly. 
Here we use block-circulant version of !!  matrix in our 
implementation [2]. 
 

3. EXPERIMENTS AND RESULTS 
In this section, we first show our results from simulation-
based experiments, followed by results from our clinical 
evaluations.  
 
3.1 Simulations 
 
The AIF is simulated using a gamma-variant function: 
 !! ! =

0 ! ≤ !!
!(! − !!)!!!(!!!!)/! ! > !!

 (4)  
where t0 is bolus arrival time to any given region. 
    Transport function  ℎ(!; !), with ! as the model parameter, 
is simulated using the family of gamma distributions 
 ℎ !;!,! =

1
!!Γ(!)

!!!!!!!/!              !,! > 0 (5)  
Here ! = !"/(! ∙ !")  to ensure the central volume 
theorem. The residue function can be derived from the 
transport function ℎ(!) by 
 

! ! = 1 − ℎ ! !"
!

!
 (6)  

The tissue enhancement curve within the given VOI is 
generated using 
 

!! ! = !"# ⋅ !! ! ! ! − ! !"
!

!
 (7)  

We set ! = 1, ! = 3, ! = 1.5, !! = 0 to generate the AIF. 
CBV=4 mL/100g, and CBF values varies from 20 to 80 
mL/100 g/min in 10mL/100g/min increments. 
Correspondingly, MTT=CBV/CBF and ranges from 3 to 12 
seconds. For residue function, ! = 10 , ( ! = !""/α ). 
Gaussian noise ε  ~  N(0, σ!)is then added to the noise-free 
tissue time-enhancement curve generated using (7). Peak 
signal-to-noise ratio (PSNR) is calculated by dividing the 
peak value of the tissue time-enhancement signal by the 
noise standard deviationσ.s 
 

!"#$ = 10 log!"
!!"#!

!!
 (8)  

where   !!"#  is the peak value of the tissue time-
enhancement signal. The dictionary !  is simulated using 
residue functions generated at various CBF values from 1 to 
100 mL/100 g/min, with CBV constant at 4 mL/100 g. 



 

 

 
Fig. 1. Recovery of residue functions by cTSVD and sparse residue 
representation methods. The parameters used for the simulation is 
BV=4 ml/100g. In the first row, PSNR=20 and BF=20 ml/100 
g/min; in the second row, PSNR=40 and BF=80 ml/100 g/min. 
Column (a): True residue function. Column (b): Restored residue 
function by cTSVD. Column (c): Restored residue function by 
sparse residue representation. 
 
3.2 Simulation Results 
Residue Function Recovery: The residue function 
recovered by cTSVD and SR deconvolution methods are 
shown in Fig. 1. Under both circumstances of PSNR=20 and 
PSNR=40, the residue functions in Fig. 1 (1c) and (2c)are in 
agreement with the true residue best. On the other hand, the 
curves in Fig. 1 (1b) (2b) for cTSVD show relatively large 
baseline oscillations and less accurate peak values.  
 
CBF Estimation: From the recovered residue function, 
CBF can be estimated at t=0. Now we examine the accuracy 
of CBF estimates at various noise levels. We use single 
voxel to compare the performance of cTSVD and sparse 
residue representation. The comparison is carried out at 
different values of CBF and at both low and high noise 
levels. The simulations are repeated 25 times with random 
noise realizations. 
    Fig. 2 shows the CBF values as estimated by cTSVD and 
sparse residue representation, for two different noise levels. 
SR can be visually observed to be more accurate and robust. 
To further summarize Fig. 2, we compute the mean squared 
error (MSE) !as defined by 
 

! =
1
!

(!! − !!)!
!

!!!

 (9)  

where !!and!!, ! = 1,2, ,… , !, are the true and estimated 
CBF values, respectively. The MSEs of cTSVD and sparse 
residue representation are 47.1007 and 2.4974, respectively, 
at PSNR=10, and 9.1072 and 0.1536 at PSNR=40. 
 
3.3 Clinical Applications 
In this section, we describe the results from comparing our 
approach with cTSVD on four subjects – two with ischemia 
related to vasospasm. The presence and location of the 
perfusion deficits were identified by board-certified 
neuroradiologists. 

 
Fig. 2. Comparison of the accuracy in estimating BF by cTSVD 
and sparse residue representation methods for different BF values. 
(a) PSNR = 10, MSE = 2.4974 for sparse residue representation 
and MSE = 47.1007 for cTSVD; (b) PSNR = 40, MSE = 0.1536 
for sparse residue representation and MSE = 9.1072 for cTSVD. 
 
There is a standard scanning protocol for CTP using GE 
Lightspeed or Pro-16 scanners (General Electric Medical 
Systems, Milwaukee, WI) with cine 4i scanning mode and 
45 second acquisition at 1 rotation per second using 80 kVp 
and 190 mA. 

To estimate the perfusion parametric maps in high-dose 
CTP, we use cTSVD to compute the residue functions in 
high-dose data and build a dictionary D by randomly 
choosing 10,000 residue functions from the training data 
using 3 independent patient cases.  
    For cTSVD, a threshold of 6% of the maximum singular 
value is used, in accordance with parameter tuning in our 
experiments. The regularization parameter for sparse residue 
representation is set λ = 0.1 . Gaussian noise was added to 
each dataset to simulate low-dose CTP data with PSNR=20. 
Processing is performed on a computer with Intel Core 2 
Duo CPU, E8400@3.00GHz and 3.00GHz, 3GB of RAM. It 
takes approximately 300 seconds to process a ROI of 
80Í60 voxels by sparse residue representation method, and 
approximately 0.2 seconds by the cTSVD method.  
    CBF maps were calculated for each dataset at both high 
dose and low dose using cTSVD and sparse residue 
representation deconvolution.  First, we evaluated the 
qualitative appearanceof the estimated CBF maps. As shown 
in Fig 3visible noise in the estimated CBF maps of the two 
patients are greatly reduced by our approach. The low CBF 
caused by ischemia related vasospasm is more evident due 
to improved spatial resolution and contrast resolution. This 
conclusion can be further validated by calculating and 
comparing the contrast to noise ratio and standard deviation 
of CBF values over the regions of interest (ROI) in each 
map which are sampling the anterior cerebral artery territory. 
Table 1 shows that the variations (standard deviations) of 
the CBF values estimated via our sparse representation 
method are highly improved compared to those estimated 
via TSVD on simulated low dose dataset. Meanwhile, since 
we have the ground truth data of CBF maps at high dose of 
190mA, we also compute the mean-square-error (MSE) of 
the estimated CBF maps using sparse residue representation 
and TSVD with the high dose CBF maps. 
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Fig. 3. BF maps and zoomed-in regions of a vasospasm patient (above row) 
and normal patient (below row) using (a) high-dose TSVD (b) low-dose 
TSVD and (c) low-dose sparse residue representation. 

Table 1. BF variations (ml/100g/min) and mean square error (MSE) over 
certain ROIs estimated by sparse residue representation and TSVD. 
 
In addition, by aggregating all voxels (within the ROI) from 
the two normal patient data sets into a single “normal” 
group, and two ischemia patient data sets into an “abnormal” 
group, we have 2 clusters of voxels – one containing n1 
samples of CBF values from normal anterior cerebral artery 
territory, and other containing n2 samples of CBF values 
from vasospasm voxels in the anterior cerebral artery 
territory. In our case, n1=2000 and n2=2000. To quantify the 
separability between normal and ischemic CBF values, we 
define the distance between these two clusters as: 
 ! =

!! − !!
!!! !! + !!! !!

 (10)  

where!! , !! are the means, and!! , !! are the standard 
deviations of CBF in the normal and ischemic clusters 
respectively. We expect our sparse-residue representation 
deconvolution algorithm to produce larger distance d as 
defined in Eq. (10), that is, to more definitely differentiate 
between normal and ischemic patients. Fig.4 show scatter 
plots of normal vs. ischemic clusters. It is apparent that the 
two clusters are more separable in data processed via sparse 
residue representation deconvolution than TSVD. 
 

4. CONCLUSION 
 
In conclusion, we have presented a sparse residue 
representation deconvolution method to calculate CTP 
parametric maps for low dose CTP. The experimental 
results show that by learning a dictionary ofresidue 
functions from the high-dose CTP data, our method 
outperforms TSVD inboth reducing the variance within 
local homogeneous regions and enhancing the color contrast 
of CBF valuesbetween normal and ischemic patients, 
potentially improving the differentiation of ischemia related 
to vasospasm in these patients. 

 
                       (a)                                          (b) 
Fig. 4. (a) Two clusters of normal vs. abnormal generated by TSVD method. 
The distance d between two clusters is 118.08. (b) Two clusters of normal 
vs. abnormal generated by our sparse residue representation method. The 
distance d between two clusters is 148.57. 
 
    In our proposed method, when the learning procedure is 
accomplished in an off-line training, the resulting algorithm 
can benefit from both low computational cost of non-
iterative data processing and improved performance due to 
the learning. More importantly, this adaptive deconvolution 
method can be supplemented with all existing preprocessing 
approaches on CT data [4-7] and improved deconvolution 
algorithms to compute perfusion parameters [10]. 
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Subjects Variations MSE 
SRR TSVD SRR TSVD 

1 23.96 38.06 179.38 745.68 
2 26.68 46.40 263.42 545.38 
3 28.23 33.99 201.38 865.492 
4 18.46 34.29 229.45 715.59 


