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ABSTRACT
Arterial spin labeling MRI (ASL-MRI) can provide quan-

titative signals correlated to the cerebral blood flow and neu-
ral activity. However, the low signal-to-noise ratio in ASL
requires repeated acquisitions to improve the signal reliabil-
ity, leading to prolonged scanning time. At fewer repetitions,
noise and corruptions arise due to motion and physiological
artifacts, introducing errors into the cerebral blood flow es-
timation. We propose to recover the ASL-MRI data from
the noisy and corrupted observations at shorter scanning time
with a spatio-temporal low-rank total variation method. The
low-rank approximation uses the similarity of the repetitive
scans, and the total variation regularization considers the lo-
cal spatial consistency. We compare with the state-of-art ro-
bust M-estimator for ASL cerebral blood flow map estima-
tion. Validation on simulated and real data demonstrate the
robustness of the proposed method at fewer scanning repeti-
tions and with random corruption.

Index Terms— Low-rank, total variation, arterial spin la-
beling magnetic resonance imaging, cerebral blood flow

1. INTRODUCTION

Arterial spin labeling (ASL) perfusion MRI is a non-invasive
technique that quantifies absolute cerebral blood flow (CBF)
by magnetically labeling the arterial blood water. The
changes in CBF are believed to be directly linked to neu-
ral activity [1]. Compared to the more commonly used blood
oxygenation level dependent (BOLD) contrast-based tech-
nique, which is a complex function of a number of physiolog-
ical variables [2], ASL has the potential to more accurately
reflect the spatial location and magnitude of neural activa-
tion [3]. While ASL is gaining importance in brain-behavior
relationship studies, there are a number of limitations that
prevent its large-scale application. These limitations in-
clude the low signal-to-noise ratio (SNR) (typically less than
half of BOLD), poorer temporal resolution and fewer num-
ber of slices (3-15 slices for ASL compared to 30-40 slices
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in whole-brain BOLD). Among these limitations, the low
signal-to-noise ratio is the most critical issue and requires
repeating the measurements numerous times (usually ≥ 30
pairs) to accumulate enough data for a robust estimation.
It is due to the fact that the labeled blood volume is small
compared to the brain tissues, and the difference between
label/control signals is only around 0.5-2.0% of the control
image magnitude [4].

Efforts have been devoted to improve the spatial SNR
or temporal stability of ASL perfusion signal by using spa-
tial smoothing [5], temporal filtering [6], wavelet denoising
[7], noise regression [8], or robust statistics [9]. These post-
processing methods reduce the spatial or temporal noise by
using the neighborhood information, or rejecting outliers us-
ing statistical analysis. Despite of the efficacy of existing
post-processing methods, these approaches exploit only lo-
cal context in the temporal or spatial domains. Global struc-
ture of the ASL sequences, especially due to its repetitive la-
bel/control (L/C) pairing, can be further exploited to improve
the accuracy at reduced scanning time. Moreover, a single
statistical model of image noise, e.g. addictive white noise,
is usually assumed, which is often violated in practice. Im-
pulse noise and arbitrary corruption due to motion and phys-
iological artifacts can induce detrimental effects in the final
perfusion maps.

Based on the two observations above, we propose a novel
spatio-temproal low-rank total variation (STLRTV) algorithm
to model the structure of ASL sequences by exploiting both
the local and global information in the spatio-temporal do-
main. Low-rank approximation has been increasingly used
in medical image denoising, completion and super-resolution
[10, 11], yet it is mostly used for spatial approximation. ASL
imaging has multiple repetitions of the same structure over
time, and therefore leveraging both the temporal low-rank
and spatial total variation properties would help. The mix-
ture of noise would be removed using low-rank approxima-
tion and local consistency would be preserved via total vari-
ation. We validated this proposed method on simulated and
in-vivo ASL-MRI datasets. The experimental results demon-
strate the effectiveness and robustness of our approach.
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Fig. 1. Overview of our proposed Spatio-Temporal Low-rank
Total Variation system.

2.1. Overview of Spatio-Temporal Low-Rank Total Vari-
ation Restoration Framework

Fig. 1 shows the proposed framework of Spatio-Temporal
Low-rank Total Variation system. We first start with labeling
the brain slices using magnetic tagging, and acquire the label
and control images. Then we perform image preprocessing
including motion removal, co-registration to anatomical im-
age, smoothing, followed by subtraction of the L/C pairs.
The difference or perfusion images in the purple dashed box
are usually only 1% of the signal strength of the total signal.
Although the perfusion images can be directly used for CBF
quantification, the accuracy is an issue due to the low signal
strength of the delivered blood and physiological artifacts.
Therefore, we propose a spatio-temporal low-rank total varia-
tion (STLRTV) method to extract the ground-truth perfusion
images from the noisy data. The low-rank term models the
inherent structure in the temporal repetitions, while the total
variation term takes the local information into account. The
perfusion images of the whole brain are represented as a 4-
D tensor, and the processed tensor using STLRTV is more
robust to random corruption and artifacts occurred at fewer
repetitions. The final CBF maps are estimated from the pro-
cessed tensor to improve estimation accuracy and diagnostic
decision making.

2.2. Spatio-Temporal Low-Rank Total Variation Formu-
lation

In this section, we introduce the spatio-temporal low-rank to-
tal variation method for ASL-MRI data.

The proposed method can be formulated as below:

X = argmin
X

1

2
‖Y −X‖2F + λtv‖X(s)‖TV + λrankrank(X(t))

(1)

where X is the spatio-temporal ASL tensor to be estimated,
Y is the acquired data, ‖X(s)‖TV represents the total vari-
ation regularization for the spatial dimensions, Rank(X(t))
represents the low-rank regularization for the temporal di-
mension. λrank and λTV are the respective weights for the
two terms.

Tensor Total Variation Regularization: The tensor to-
tal variation of the spatial 3D data is defined discretely as

‖X‖TV =
∑
i,j,k

√∑3
d=1(∇dX)2, where ∇d denotes the

forward finite difference operator on the dth coordinate. TV
regularization is remarkably effective at simultaneously pre-
serving edges while smoothing away noise at homogeneous
regions, even at low SNR [12]. Since TV term is also non-
smooth, the problem is difficult to solve. Here we use the
FISTA [13] algorithm to solve the TV optimization problem.

Temporal Low-Rank Regularization: The rank of the
tensor X can be approximated by the trace norm ‖X(t)‖∗,
which is the sum of the singular values of X unfolded in the
temporal dimension. For instance, if the 4D tensor X is with
size of N1 ×N2 ×N3 × T , the unfolded X(t) is a 2D matrix
with size (N1 ×N2 ×N3)× T . The low-rank regularization
can be solved by singular value thresholding according to [14]
using λrank as the shrinkage parameter.

2.3. STLRTV Optimization

The cost function in Eq. 1 can be reformulated as with the
analysis above:

X = argmin
X

1

2
‖Y −X‖2F + λtv‖X(s)‖TV + λrank‖X(t)‖∗ (2)

We use composite splitting technique to solve the problem
in Eq. 2 by dividing it into two subproblems with non-smooth
terms below. We call the algorithm Composite Splitting Re-
covery (CSR).

Initialization: We introduce two new variables Z1 and
Z2 and set their initial values Z0

1 = Z0
2 = Y .

Subproblem 1: Solve the tensor total variation problem
using proximal map [13].

X1 = argmin
X

1

2
‖X − Zk−11 ‖2F + λTV ‖X(s)‖TV (3)

= argmin
X

proxλTV(‖X(s)‖TV )(Zk−11 )

where proxρ(g)(x) := argmin
u
{g(u) + 1

2ρ‖u− x‖
2}.

Subproblem 2: Solve the low-rank problem using singu-
lar value thresholding

X2 = argmin
X

1

2
‖X − Zk−12 ‖2F + λrank‖X(t)‖∗ (4)



as a closed form solution according to [14]:

X = foldt[SV Tλrank
(Zk−12 )] (5)

Subproblem 3: Update Xk:

Xk = (X1 +X2)/2 (6)

Zk1 = Zk−11 +Xk −X1 (7)

Zk2 = Zk−12 +Xk −X2 (8)

Parameters are optimized based on a small set of database.
In this work, we set λrank = 1.0, λtv = 0.5, and the maxi-
mum iteration number is 100. The convergence criterion is
when ‖Xk‖ − ‖Xk−1‖/‖Y ‖ < 10−6.

3. DATA ACQUISITION AND PREPROCESSING

Pseudo-continuous ASL (pCASL) images were acquired ac-
quired with parameters of FOV=21.6 cm, 72 × 72 × 25 ma-
trix, image acceleration factor=2.5, flip angle=90◦, TR=4.5 s,
TE=13.2 ms, slice thickness= 5 mm, labeling duration=2.5 s,
post label delay time=1.25 s. One hundred and twenty eight
label/control image pairs were acquired for each subject. Two
subjects are evaluated in our experiments.

All ASL data preprocessing was performed using the
SPM81 (Statistical Parametric Mapping 8, Wellcome De-
partment of Imaging Neuroscience, University College Lon-
don, UK) Matlab toolbox and batch scripts from ASL tool-
box2 [15]. The image origins were first set to be the AC-PC
line, followed by motion correction customized for ASL MRI.
Coregistration on gray matter between ASL and the structure
images were performed based on normalized mutual infor-
mation. A brain mask was generated to remove extracranial
voxels by thresholding the mean image with a threshold of 20
percentage of the maximum. The label/control ASL volumes
were pair-wise subtracted to obtain a perfusion-weighted
series per subject. A general kinetic model [16] was then
applied to obtain quantitative ASL CBF maps.

4. EXPERIMENTS

Temporal Low-Rank Approximation: To evaluate the low
rank property of the temporal sequences in ASL-MRI im-
ages, we select one subject from the ASL data, with size of
72 × 72 × 25 in spatial dimensions and 128 repetitions as
the temporal dimension. We then perform singular value de-
composition (SVD) on the temporal dimension by stacking
the 3D spatial volume at each repetition time as a long vector
of a new matrix. As shown in Fig. 2, the eigenvalues de-
crease exponentially, with many eigenvalues close to zero at
the end. We reconstruct the ASL volumes from the largest
eigenvalues and compare to the mean volume computed from

1http://www.fil.ion.ucl.ack.uk/spm
2https://www.cfn.upenn.edu/ zewang/ASLtbx.php
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Fig. 2. Low-rank approximation of the ASL data. The left
part shows the formation of the large matrix with each repeti-
tion sequence as a column and the singular value decomposi-
tion. The right part shows the original and recovered volume
of one repetition randomly selected from all repetitions. They
are compared with the ground truth in the middle.

the average of all repetitions, which is regarded as the ground
truth. The most commonly used metric Peak Signal-to-Noise
(PSNR) ratio is computed as PSNR = 20 log10(

max ‖V0‖
‖Vr−V0‖ ),

where V0 stands for the ground truth volume, and Vr is the
recovered volume.

From Fig. 2 we observe that when using the top 50 eigen-
values, the recovered volume has improved PSNR (19.16 dB)
compared to the original volume (17.48 dB) relative to the
ground truth. When comparing with the original volume, the
recovered volume has a high PSNR of 41.56 dB. The result
shows that while using only 50 eigenvalues can well approx-
imate the original volume, the low-rank approximation can
also remove the random error and noise in the single repeti-
tion due to scanning artifacts and white noise, therefore im-
proving the signal fidelity with reference to the ground truth.
Our analysis suggests that the ASL data can be, and will ben-
efit from being represented using the temporal low-rank ap-
proximations.

Reduced Repetitions: To evaluate the performance of
noise removal at fewer repetitions, we use the leave-one-out
experimental setting in [17]. Randomly selected N volumes
out of the 128 repetitions are used as a noisy input and an aver-
age of the remaining 128−N volumes are used as the ground
truth, for N = 1, 2, . . . , 30. These datasets are processed
with the spatio-temporal low-rank total variation (STLRTV)
and Huber’s M-estimator [9]. Huber’s M-estimator uses ro-
bust statistics to deal with the outliers and compute the robust
mean. The filtered datasets are averaged over all repetitions
and compared with the ground truth, with PSNR computed
from the differences as the evaluation metric. Fig. 3 shows
the PSNR of M-estimator and STLRTV at difference N .

The results show that while Huber’s E-estimator saturates
with the increasing N after N ≥ 10, our proposed method



continues to improve the performance when the number of
repetition increases. STLRTV performs remarkably better
than M-estimator, with a margin of at least 5 dB at repeti-
tions fewer than 10, and even larger performance margin of at
least 10 dB when the repetitions are more than 10. The overall
PSNR of the proposed method is always favorable compared
to M-estimator.

Fig. 4 shows the visual result of the average CBF maps
using M-estimator and the proposed method. While the aver-
age image without processing (noisy) and the outcome of the
M-estimator has increased level of random noise and over-
estimated CBF values due to fewer repetitions, STLRTV
method yields CBF map more comparable to the ground
truth.
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Fig. 3. Peak Signal-to-Noise (PSNR) ratio of the average per-
fusion image at 1-30 repetitions using the proposed spatio-
temporal low-rank total variation (STLRTV) and Huber’s M-
estimator.
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Fig. 4. Visual results for an adult scan in recovery from fewer
repetitions with the closed-up view of the selected regions.

Corruption Recovery: In ASL dataset, there are vari-
ous types of corruptions due to the scanning artifacts, motion,
physiological artifacts such as respiratory and pulsation, etc.
In order to access the effectiveness of the proposed method
in corruption recovery, we remove 50% of the data from the
ASL volumes, and recover using the proposed method and

the M-estimator, which is designed for robust estimation in
case of outliers and corruption. Fig. 5 shows that while the
proposed STLRTV method can recover most of the corrupted
information, M-estimator fails at the recovery, when the cor-
ruption is not in the form of uniform noise, as in [9]. Note
that because the 50% missing data is randomly selected from
each repetition, the average corrupted data of all repetitions
in Fig. 5(b) is totally corrupted. Nevertheless, the proposed
STLRTV method could well restore the ASL sequences from
the severely corrupted data, while M-estimator which uses ro-
bust statistics does not well handle the corruption.

a b

c d

Fig. 5. A healthy subject dataset with corruption of 50% of
the volume data. (a) The original average volume. (b) Aver-
age volume of the corrupted dataset. Note that despite only
50% of the data is corrupted in each repetition, the average
of all repetitions resulted in corruption distributed over all
voxels. (c) Average volume of the recovered dataset using
STLRTV. (d) Average volume recovered using M-estimator.

5. CONCLUSION

In this paper we proposed a spatio-temporal low-rank total
variation method to improve the signal quality in arterial spin
labeling MRI. For the first time, we show that the joint spatial
total variation and temporal low-rank regularization is a vi-
able solution to improve SNR in ASL-MRI. The combination
joins the spatial coherence with the temporal similarity for
effective signal recovery. Our method outperforms the state-
of-art robust estimation method in recovery from reduced rep-
etitions and corrupted data. Further comparison with spatial
and temporal filtering methods would be an interesting future
work to validate the effectiveness of this joint method.
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