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ABSTRACT

With the goal of achieving low radiation exposure from
medical imaging, computed tomography perfusion (CTP)
introduces challenging problems for both image reconstruc-
tion and perfusion parameter estimation in the qualitative
and quantitative analyses. Conventional approaches address
the reconstruction and the estimation processes separately.
Since the hemodynamic parameter maps have much lower
dimensionality than the original sinogram data, estimating
hemodynamic parameters directly from sinogram will further
reduce radiation exposure and save computational resources
to reconstruct the intermediate time-series images. In this
work, we propose the first direct estimation framework for
CTP that integrates the time-series image reconstruction,
contrast conversion, hematocrit correction and hemodynamic
parameter estimation in one optimization function, which is
solved using an efficient algorithm. Evaluations on the digital
brain perfusion phantom and a clinical acute stroke subject
demonstrate that the proposed direct estimation framework
boosts the estimation accuracy remarkably in CTP scanning
with lower radiation exposure.

Index Terms— Direct Estimation, Computed Tomogra-
phy Perfusion, Total Variation, Hemodynamic Parameter

1. INTRODUCTION

Computed tomography (CT) remains the most widely used
imaging modality for stroke, the leading cause of long-term
disability and the second leading cause of death worldwide
[1]. However, when coupled with CT perfusion (CTP), the
excessive radiation exposure used in this repetitive scanning
protocol to assess diagnosis and prognosis has the potential
for severe short- and long-term health hazards. Low radiation
dose CTP has been an active area of research [2, 3, 4] with
the goal of reducing radiation exposure and improving med-
ical safety, while maintaining accurate imaging information
for clinical decision-making. The ultimate goal of CTP is to
estimate the hemodynamic parameters (such as Ktrans, ab-
breviated as Kt, and vp in the Patlak Model [5]) from the CT
time-series data, which are reconstructed from the sinogram.
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Fig. 1. Direction hemodynamic parameter estimation for
computed tomography perfusion.

There are mainly two types of classical approaches to
achieve low radiation dose CTP by improving (1) reconstruc-
tion stage, including spatio-temporal filtering and exploiting
sparsity in the time-series images [6]; (2) estimation stage,
such as dictionary-learning [2] and spatio-temporal tensor
total variation on the residue impulse functions [3].

While these methods have achieved different levels of
success, they typically separate the optimization of the two
stages by reconstructing the time-series images first, then
fitting the hemodynamic model to derive the parameter maps.
As the hemodynamic maps have much lower dimensionality
than the original sinogram data, direct estimation of hemo-
dynamic parameter maps from sinogram data will further
reduce the radiation dosage and save computational resources
to reconstruct intermediate time-series images. Recent works
have proposed to directly estimate the hemodynamic param-
eters for dynamic contrast enhanced MRI, Positron Emission
Tomography (PET) and Single-Photon Emission Computed
Tomography (SPECT) [7, 8, 9, 10, 11, 12]. To the best of our
knowledge, direct estimation of hemodynamic parameters in
CTP has not been explored. This work is the first attempt
to integrate the reconstruction and estimation processes for
low-radiation dose CTP.

In this paper, we propose a theoretically novel and com-
putationally efficient optimization framework to directly es-
timate the hemodynamic parameters (Kt and Vp) in CTP, as
illustrated in Fig. 1. Unlike the classical approaches which
reconstruct the time-series CT images first, then estimate the
parameter maps by fitting the Patlak model, we formulate the
problem as a linear model with L1 total variation regulariza-
tion and uses a fast iterative shrinkage-thresholding algorithm
(FISTA) to efficiently find the optimal solution.



2. METHODOLOGY

The conventional hemodynamic parameter estimation starts
with the sinogram from the scanner, where time-series CT
images are reconstructed from each frame of the sinogram.
Then CT values in the time-series images are converted to
contrast concentration by subtracting the baseline image, fol-
lowed by hematocrit correction to account for the total cells
in the blood. Finally the Patlak model is used to estimate the
hemodynamic parameters Kt and Vp from the corrected con-
trast concentration signals by linear regression for each voxel
respectively. The conventional model is summarized in the
left column of Fig. 2.

(1) Contrast concentration curves over 
time C(t) is estimated from the 
hemodynamic parameters (Kt,vp) using 
the Patlak Model, where Ca(t) is 
population-based arterial input function 
(AIF) 
C(t) = P (Kt, Vp) = Kt

Z t

0

Ca(⌧)d⌧ + vpCa(t)

(2) CT signal intensity S(t) is restored 
from the contrast concentration C(t) using 
the baseline image S0 after hematocrit 
correction, where S0 is the pre-contrast 
CT signal from the time-series CT images 
before contrast agent is injected, κ is the 
hematocrit correction factor. 

S(t) = C(t)/ + S0(t)

(3) Sinogram r(t) is the projection of 
signal intensity S(t) using the Radon 
transform (R). 
 
  

r(t) = R(S(t))

Forward Model 

(i) Signal intensity S(t) in the time-series 
images is reconstructed using image 
reconstruction algorithms (iR) (e.g. FBP, 
ASIR, regularized optimization, etc.)   
 S(t) = iR(r(t))

(ii) Contrast concentration C(t) is 
computed from signal intensity S(t) by 
subtracting the baseline image S0 and 
corrected hematocrit factor κ. 
 C(t) = (S(t) � S0(t)) ⇤ 

(iii) Hemodynamic parameters (Kt,vp) are 
estimated with the Patlak Model using 
multi-variant linear regression from the 
contrast concentration C(t) and 
population-based arterial input function 
Ca(t). 
 (Kt, vp) = regress(C(t), [

Z t

0

Ca(t), Ca])

Conventional Model 

Direct Model The difference between the measured sinogram signal r(t) and the 
estimated sinogram signal from hemodynamic parameters (Kt,vp) are 
minimized with spatial regularization of the parameter maps, where 
Reg is the regularization function.  

(Kt, vp) = arg min
Kt,vp2RM⇥N

kr(t) � R(P (Kt, vp)/ + S0(t))k2
F + �Reg(Kt, vp)

Fig. 2. Computational steps in the forward model and the
conventional pipeline of hemodynamic parameter estimation
in CT perfusion.
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Fig. 3. The forward model of hemodynamic parameter maps
estimation from low-dose sinogram in CT perfusion.

To directly estimate the hemodynamic parameters from
the sinogram, we invert the process of parameter estimation
to formulate the forward model, as demonstrated in Fig. 3.
We assume the Radon transform for the reconstruction and
the Patlak model for the parameter estimation [5]. The cor-
responding computational steps of the forward model is sum-
marized in the right column in Fig. 2.

The classical approach to estimate the hemodynamic pa-
rameters in low-dose CTP generally imposes regularization
on the reconstruction and the estimation stage separately. In
this paper, we propose a direct estimation framework with
regularized optimization on the final hemodynamic maps
only. By integrating the three computation steps in the for-
ward model into one joint step, assuming we already know the
hemodynamic parameter maps Kt and vp for all the voxels,
the sinogram r′(t) can be estimated for each time point t. By
minimizing the difference between the measured sinogram
r(t) with the estimated sinogram r′(t), with proper regu-
larization on the hemodynamic maps directly, we can skip
the computationally-expensive step and the potential errors
introduced in reconstructing the time-series images and the
contrast concentration signals. The direct mode is illustrated
in the bottom box in Fig. 2. Please note that for this generic
direct estimation model, the regularization function can have
a wide selection, while in this work, we use the sparsity in
the gradient domain, i.e. total variation of the hemodynamic
parameter maps, as shown in Eq. (1).

(Kt, vp) = argmin
Kt,vp∈RM×N

‖r(t)−R(P (Kt, vp)/κ+S0(t))‖2F

+ λ1‖Kt‖TV + λ2‖vp‖TV (1)

In Eq. (1), we want to compute Kt and vp, which are the
hemodynamic parameters of the Patlak model. r(t) is the
measured sinogram signal, κ is the hematocrit correction fac-
tor, S0(t) is the pre-contrast signal or baseline image, R is
the Radon transform, P is the Patlak model, ‖.‖TV is the L1

total variation regularizer, as in [13, 14], and λ1, λ2 are the
weighting parameter for the regularizer.

This above problem can be solved efficiently using any
l1 solver such as ADMM[15] or FISTA[16]. Note that the
Radon transform, preprocessing (contrast conversion and
hematocrit correction), and linear regression can be repre-
sented by operators and do not need to be explicit matrices.

3. EXPERIMENTAL RESULTS

In this section, we evaluate the efficacy of the proposed di-
rect estimation framework on both simulated and clinical
CTP data. We conduct experiments to compare with two
baseline methods: the conventional Filtered Back Projection
(FBP), and Total Variation (TV)-based compressed sensing
reconstruction [17]. These two CT image reconstruction algo-
rithms are coupled with multi-variant regression to generate
the hemodynamic parameter maps using the Patlak model.

Our ground truth images consist of clinical CTP datasets
on an acute stroke patient and a digital brain perfusion phan-
tom. The clinical stroke subject is of size 512× 512× 4 with
118 time points. The digital brain perfusion phantom is ob-
tained from the author’s website1, with regions of ischemic

1https://www5.cs.fau.de/research/data/digital-brain-perfusion-phantom/



Fig. 4. Kt maps estimated from digital brain perfusion phan-
tom from 180, 90, and 45 projection angles for FBP+linear
regression (2nd column), TV reconstruction+linear regression
(3rd column) and direct estimation (4th column) in compar-
ison with ground truth (1st column). Arrows in the first row
highlights the artifacts in the FBP and TV-based indirect esti-
mation.

penumbra and infarct core delineated manually on two hemi-
spheres at different locations. The size of the digital perfusion
phantom is 256× 256 with 50 time points at 1 s intervals.
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Fig. 6. Comparison of param-
eter estimation accuracy in lim-
ited projection angle settings us-
ing three methods: Direct estima-
tion, TV+Patlak and FBP+Patlak.
The evaluation metric is signal-to-
noise ratio (SNR).

In this paper, we
use FISTA [16] to solve
Eq. (1). The numerical
accuracy is reported us-
ing the Signal to Noise
Ratio (SNR) in dB. We
select the regularization
parameters on a validation
dataset, where λ1 = 0.05,
λ2 = 0.01, while the pa-
rameter L in the FISTA
algorithm is set to 4. In
order to fairly compare
with the baseline methods,
we tune the parameters in
the indirect reconstruction
algorithms coupled with linear regression to their best perfor-
mance.

We first demonstrate the experimental results in the digital
brain perfusion phantom. In Fig. 4, theKt maps are estimated
with 180, 90 and 45 projection angles, with a region of inter-
est near the artery enlarged in Fig. 5. Note that the contrast
concentration is far more sensitive than the reconstructed im-
ages to projection angles because the baseline image is sub-
tracted and the range of the contrast concentration is much
smaller. For reduced number of projection angles, FBP re-

Fig. 5. The red box region of interest (ROI) of Kt maps in
Fig. 4 estimated from digital brain perfusion phantom from
180, 90 and 45 projection angles for ground truth (1st col-
umn), FBP+linear regression (2nd column), TV reconstruc-
tion+linear regression (3rd column) and direct estimation (4th
column) in comparison with ground truth (1st column).

construction with linear regression shows notably high noise
level and streak artifacts. While the TV reconstruction algo-
rithm coupled with linear regression demonstrates improved
visual results, the streak artifacts and the noise are still present
and visible, especially artifacts at boundaries in Fig. 5 and in
the 45 angle setting, leading to missing of micro-structures in
the brain. In comparison, the proposed direct estimation not
only eliminates the streak artifacts and noise, but also pre-
serves the micro-structures and clear-cut boundaries between
tissue classes.

Fig. 6 shows quantitative comparison of three methods in
terms of parameter estimation accuracy at different number
of projections angles for the Kt map in the digital brain perfu-
sion phantom. From the figure, we observe that direct estima-
tion outperforms FBP and TV-based reconstruction coupled
with linear regression for the Patlak model in limited projec-
tion angle settings. Another observation is that as the number
of projection angles decrease, direct estimation is more ro-
bust in terms of estimation accuracy. While the estimation
accuracy of TV-based reconstruction coupled with linear re-
gression drastically goes from 11.1 dB to 2.7 dB as the num-
ber of projections decrease from 120 to 30 angles, direct es-
timation remains more stable when the estimation accuracy
slightly drops from 19.9 dB to 14.2 dB.

In clinical data of an acute stroke subject and a normal
subject, the artifacts and noise due to tracer delay, electronic
noise and recording error will make the task more challeng-
ing. Fig. 7 shows the Kt and Vp maps of an acute stroke sub-
ject presenting with a right sided perfusion abnormality (left
in the image) at 90 projection angles. While FBP reconstruc-
tion with linear regression totally failed to estimate the cor-



Fig. 7. Kt and Vp maps estimated from a clinical stroke sub-
ject with from 90 projection angles using FBP+linear regres-
sion (2nd column), TV-minimization+linear regression (3rd
column) and direct estimation (4th column).

rect perfusion parameters, TV-based reconstruction with lin-
ear regression for Patlak model has obvious artifacts. Direct
estimation outperforms both methods in restoring the hemo-
dynamic parameters.

4. CONCLUSION

In this paper, we have proposed a novel direct estimation
method for hemodynamic parameter quantification in limited-
data computed tomography perfusion, and have demonstrated
that it can accurately restore the perfusion parameters in Pat-
lak model in digital brain perfusion data and a clinical acute
stroke subject, outperforming the TV-regularized reconstruc-
tion with linear regression. Higher spatio-temporal resolution
and improved coverage may be achieved when applied to 3D
CTP. Future work can evaluate the method’s flexibility with
model selection for reconstruction and hemodynamic param-
eter estimation.
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