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Abstract. Tensor total variation deconvolution has been recently pro-
posed as a robust framework to accurately estimate the hemodynamic
parameters in low-dose CT perfusion by fusing the local anatomical
structure correlation and temporal blood flow continuation. However
the locality property in the current framework constrains the search for
anatomical structure similarities to the local neighborhood, missing the
global and long-range correlations in the whole anatomical structure.
This limitation has led to noticeable absence or artifact of delicate struc-
tures, including the critical indicators for the clinical diagnosis of cere-
brovascular diseases. In this paper, we propose an extension of the TTV
framework by introducing 4D non-local tensor total variation into the de-
convolution to bridge the gap between non-adjacent regions of the same
tissue classes. The non-local regularization using tensor total variation
term is imposed on the spatio-temporal flow-scaled residue functions.
An efficient algorithm and implementation of the non-local tensor to-
tal variation (NL-TTV) reduces the time complexity with fast similarity
computation, accelerated optimization and parallel operations. Exten-
sive evaluations on the clinical data with cerebrovascular diseases and
normal subjects demonstrate the importance of non-local linkage and
long-range connections for low-dose CT perfusion deconvolution.

1 Introduction

Stroke and cerebrovascular diseases are the leading causes of serious, long-term
disability in the United States, with an average occurrence in the population at
every 40 seconds. In the world, 15 million people suffer from stroke each year
and among these, 5 million die and another 5 million are permanently disabled.
The mantra in stroke care is “time is brain”. With each passing minute, more
brain cells are irretrievably lost and, therefore, timely diagnosis and treatment
are essential to increase the chances for recovery. As a critical step in the stroke
care, imaging of the brain provides important quantitative measurements for the
physicians to “see” what is occurring in the brain. Computed tomography perfu-
sion (CTP), with its rapid imaging speed, high resolution and wide availability,
has been one of the most widely accepted imaging modality for stroke care.



Unfortunately, the associated high radiation exposure in CTP have caused
adverse biological effects such as hair loss, skin burn, and more seriously, in-
creased cancer risk. Lowering the radiation exposure would reduce the potential
health hazard to which the patients are exposed, improve healthcare quality
and safety, as well as make CTP modality fully utilized for a wider population.
However, low radiation dose in CTP will inevitably lead to noisy and less accu-
rate quantifications. There are various efforts to reduce the necessary radiation
dose in CTP, mostly in two classes; noise reduction at the reconstruction stage
[1, 2, 3, 4, 5], and stabilization at the deconvolution stage [6, 7, 8, 9].

While the first class of approaches does not solve the inherent instability
problem in the quantification (deconvolution) process of CTP, the second class
of approaches directly addresses this instability issue. Among these methods,
the information redundancy and sparsity is a property that has shed light into
the low-dose quantification problems [10, 11, 7, 8], but the sparsity frameworks
needs training data for dictionary learning. In another line of work, tensor total
variation (TTV) deconvolution [9, 12] has been recently proposed to significantly
reduce the radiation dosage in CTP with improved robustness and quantitative
accuracy by integrating the anatomical structure correlation and the temporal
blood flow model. The anatomical structure of the brain encompasses long-range
similarity of the same tissue classes, as shown in Fig. 1(a). However the locality
property of the current TTV algorithm limits the search for similar patterns
in the 4-connected adjacent neighborhood, neglecting the long-range or global
correlations of the entire brain structure. This locality limitation has led to no-
ticeable absence or artifact of the delicate structures, such as the capillary, the
insula and the parietal lobe, which are critical indicators for the clinical diagnosis
of cerebrovascular diseases. Fig. 1(b) shows the importance of accurate depiction
of hemodynamic parameters. The delicate vascular and cerebral structures are
critical biomarkers of the existence and severity of the cerebrovascular diseases.
Naturally, integrating the long-range and non-local correlation into the estima-
tion process of the hemodynamic parameters would yield more precise depiction
of the pathological regions in the brain.

In this paper, we propose a fast non-local tensor total variation (NL-TTV)
deconvolution method to improve the clinical value of low-dose CTP. Instead of
restricting the regularization of residue functions to the adjoining voxels in the
spatial domain and neighboring frames in the temporal domain, the long-range
dependency and the global connections in the spatial and temporal dimensions
are both considered. While non-local total variation and TTV are not new con-
cepts, the integration of the two methods in a spatio-temporal framework to
regularize the flow-scaled residue impulse functions has never been proposed,
and can make significant improvement in the perfusion parameter estimation.
Furthermore, the efficient algorithm to accelerate the non-local TTV would make
the proposed algorithm clinical valuable.

The contribution of this work is two-fold: First, the long-range and global
connections are explored to leverage the anatomical symmetry and structural
similarity of the same tissue classes in both the spatial and the temporal dimen-
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Fig. 1. (a) The illustration of long-range similarity in the brain. The red and yellow
boxes show the non-local regions which have similar patterns. (b) Perfusion parameter
maps (CBF - cerebral blood flow, CBV - cerebral blood volume, and MTT - mean
transit time) of a 22-year old with severe left middle cerebral artery (MCA) stenosis.
Arrows indicate the regions with ischemia. The shape, intensity and coverage of the
capillary and vessels are evidence of ischemia in the left hemisphere (right side of the
image).

sions. Second, efficient parallel implementation and similarity computation using
window offsets reduce the time complexity of the non-local algorithm. The exten-
sive experiments on low-dose CTP clinical data of subjects with cerebrovascular
diseases and normal subjects are performed. The experiments demonstrate the
superiority of the non-local framework, compared with the local TTV method.
The advantages include more accurate preservation of the fine structures and
higher spatial resolution for the low-dose data.

2 Efficient Non-local Tensor Total Variation
Deconvolution

In this section, we will first briefly review the tensor total variation model for
the low-dose CTP and discuss its deficiency in accurate estimation of delicate
structure and distinguishing pattern complexities. Based on that, we will intro-
duce the proposed efficient non-local tensor total variation model, followed by
experimental results, discussion and conclusion.

2.1 Tensor Total Variation Deconvolution

To reduce the radiation dose in CT perfusion imaging, Tensor total variation
(TTV) [9] is recently proposed to efficiently and robustly estimate the hemo-
dynamic parameters. It integrates the anatomical structure correlation and the
temporal continuation of the blood flow signal. The TTV algorithm optimizes a
cost function with one linear system for the deconvolution and one smoothness



regularization term, as below:

KTTV = arg
K∈RT×N

min(
1

2
‖AK − C‖22 + ‖K‖γTTV ) (1)

The first term is the temporal convolution model. In this term, A ∈ RT×T

is a block-circulant matrix representing the arterial input function (AIF), which
is the input signal to the linear time-invariant system of the capillary bed. The
block-circulant format makes the deconvolution insensitive to delays in the AIF.
C ∈ RT×N is the contrast agent concentration (CAC) curves of all the voxels in
the volume of interest (VOI). Both A and C are extracted from the CTP data.
K ∈ RT×N is the unknown of this optimization problem - the flow-scaled residue
functions of the VOI. Here T is the duration of the signal, and N = N1×N2×N3

is the total number of voxels in the sagittal, coronal and axial directions.
The second term is the tensor total variation regularizer. The TTV regular-

ization is defined as

‖K‖γTTV =
∑
i,j,k,t

√√√√ 4∑
d=1

(γd∇dK̃i,j,k,t)2 (2)

with ∇d is the forward finite difference operator in the dth dimension, and
K̃ ∈ RT×N1×N2×N3 is the 4-dimensional volume reshaped from matrix K with
temporal signal for one dimension and spatial signal for three dimensions. t, i, j, k
are the indices for the temporal and spatial dimensions. The outside summation
means that the square root of the sum of the first order derivative is summed
over all the temporal points t and spatial voxels i, j, k of K̃. L1 norm is used in
the forward finite difference operator ∇d to preserve the edges, and the regular-
ization parameters γd designates the regularization strength for each dimension.
Cerebral blood flow (CBF) maps can be computed from K as the maximum
value at each voxel over time. More details about the TTV framework can be
found in [9].

While TTV achieves significant performance improvement on the digital
brain phantom and low- and ultra-low dose clinical CTP data at 30, 15 and
10 mAs [9], the locality property of the tensor total variation regularization lim-
its the capability of preserving the small and fine anatomical structures, details
and texture in the brain, including the capillary, the insula and the parietal lobe,
which are essential indicators of the location and severity of the ischemic or hem-
orrhagic stroke. It may also create new distortions, such as blurring, staircase
effect and wavelet outliers due to the regularization on the adjacent voxels, as
shown in Fig. 2. Based on the above observation, we propose a fast non-local
tensor total variation (NL-TTV) algorithm to overcome the above limitations of
the local TTV method.

2.2 Non-Local Tensor Total Variation Deconvolution

First introduced by [13], non-local total variation has been studied to address
the limitations of conventional total variation model, including the blocky effect,
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Fig. 2. Illustration of the non-local tensor total variation principle in a 2D image. The
NL-TTV regularization term for voxel i (red dot) is a weighted summation of the dif-
ference between voxel i and the most similar voxels (yellow dots) in the search window
with width W (red box). The weight w(i, j) depends on the patches around the voxels.
Compared to local-TTV, which only considers the 4-connected local neighborhood,
NL-TTV preserves the accuracy and contrast of the vascular structure with higher
fidelity of the reference patch. The actual NL-TTV regularization is imposed on 4D
spatio-temporal flow-scaled residue impulse functions across different slices and time
points.

the missing of the small edges and the lack of long-range information sharing
[14, 15, 16]. It has also been applied to 4D computed tomography [17] and
magnetic resonance imaging reconstruction [18]. This work is the first attempt to
integrate non-local tensor total variation with the spatio-temporal deconvolution
problem in 4D CTP.

The non-local tensor total variation regularizer links each voxel in the volume
with the long-range voxels using a weighted function. For every voxel i, instead of
computing the forward finite difference on the 4-connected neighbors, we search
in a neighborhood window N(i) with window size W , and minimize the weighted
differences between the target voxel and voxels in the window. Specifically, the
non-local tensor total variation can be formulated as:

‖K‖NL−TTV =
∑
i

√∑
j

(K(i)−K(j))2w(i, j) (3)

Here K(i) denotes the value of flow-scaled residue impulse function K at spatio-
temporal voxel i, and w(i, j) is a similarity function between the voxel i and
j. The higher the similarity between the voxels i and j, the higher the weight
function w(i, j). We use an exponential function of the patches surround the two



voxels to model their similarity

w(i, j) =
1

Z(i)
e−
‖K(Pi)−K(Pj)‖

2
2

σ2 (4)

where Z is a normalization factor, with Z(i) =
∑
j w(i, j) and σ is a filter pa-

rameter that controls the shape of the similarity function. Pi is a small patch
around voxel i with radius d. In this way, when two patches are identical or
similar, the weight w will be close to 1; when the two patches are very different,
the weight w will approach 0. Non-local total variation has shown superior per-
formance signal reconstruction and denoising [14, 15], and by fusing it with the
temporal convolution model, we get

KNL−TTV = arg
K∈RT×N

min(
1

2
‖AK − C‖22 + ‖K‖NL−TTV ) (5)

The non-local tensor total variation searches for the similar patches in a
larger window instead of the adjacent 4-connected neighbors in the local TTV.
In this way, the similar tissue patterns of the same tissue types in the long-
range regions of the brain can assist to reduce the artifact and noise in the
deconvolution process. This allow the NL-TTV to deconvolve the low-dose CTP
volume using long-range and global dependency by removing the noise without
distorting the salient structures, as shown in Fig. 2.

It is worthy to note that because the voxel i is any voxel in the spatio-
temporal domain of the flow-scaled residue impulse function K ∈ RT×N , the
NL-TTV is searching the similar patches in the spatio-temporal domain, which
includes the multiple slices in the axial direction and the various time points in
the temporal sequences.

2.3 Efficient Optimization and Implementation

We implement this algorithm by MATLAB and C++ using mex in MATLAB
2013a environment (MathWorks Inc, Natick, MA) and Windows 8 operating
system with 8 Intel Core i5 and 32GB RAM.

Notations: Let’s define some parameters first. Let N be the total number
of voxels in the entire volume. W be the search window size for the similar
voxels around voxel i. d is the radius of the patch around the voxel. Nb is the
number of similar voxels chosen to regularize the voxel i in order to speed up
the computation. m is the dimension of the spatio-temporal tensor. σ is the
Gaussian parameter to control the shape of the similarity function.

In this work, for a 2D slice in the brain CTP data of 512 × 512 voxels, 120
seconds of scanning duration, W = 5 voxels, d = 4 voxels, Nb = 15, σ = 0.5.
m = 4 because the flow-scaled residue impulse functions are spatio-temporal
tensor with 4 dimensions.

Brute-Force Search: The non-local tensor total variation has a higher time
complexity compared to the local TTV. For each voxel i in the volume, we need
to calculate the patch difference between the target voxel and every other voxel



Algorithm 1 The framework of NL-TTV algorithm.

Input: K0 = r1 = 0, t1 = C = 0, τ
Output: Flow-scaled residue functions K ∈ RT×N1×N2×N3 .
for n = 1, 2, . . . , N do
C = C + 1
(1) Steepest gradient descent Kg = rn + sn+1AT (C −Arn)

where sn+1 = vec(Q)T vec(Q)

vec(AQ)T vec(AQ)
, Q ≡ AT (Arn − C), vec(·) vectorizes a matrix

(2) Proximal map:
if C = τ (Acceleration Step) then
Kn = proxγ(2‖K‖NL−TTV )(fold(Kg)), C = 0

where proxρ(g)(x) := arg min
u

{
g(u) + 1

2ρ
‖u− x‖2

}
, and fold(Kg) folds the ma-

trix Kg into a tensor K̃ ∈ RT×N1×N2×N3 .
end if
(3) Update t, r tn+1 = (1 +

√
1 + 4(tn)2)/2, rn+1 = Kn + ((tn − 1)/tn+1)(Kn −

Kn−1)
end for

in the search window. Then we rank all the patch differences in voxel i’s search
window in an ascending order, and pick up the first Nb patches for optimizing
the value of i.

The time complexity of the brutal force non-local TTV is O(N ·((2W+1)(2d+
1))m + N · (2W + 1)m log(Nb)). For the parameters above, the computational
time reaches up to nearly 10 hours, which is unrealistic in clinical applications.

Fast Nearest Neighbor Search: An efficient method to compute the in-
tensity difference between two patches is used to accelerate the non-local TTV is
needed. Specifically, at each offset w = (wx, wy, wz, wt) in the search window W ,
a new matrix D of the same size to the brain volume is created to precompute
the patch differences, with Dw =

∑
i (K(i+ w)−K(i))2. This matrix keeps the

sum of the squared differences from the upper left corner to the current voxel.
When computing the differences between the two patches at location j and offset
w, we only need to compute the value D(jx+d, jy+d)−D(jx+d, jy)−D(jx, jy+
d) + D(jx, jy). This accelerating method to find the nearest neighbors reduced
the time complexity to O(N · (2W + 1)m + log(Nb)). The space complexity is
N · (2W + 1)m.

Efficient Optimization Algorithm: Due to the relatively slow update
in the non-local TTV term, we propose a fast NLTTV algorithm to optimize
the objective function in Eq. (5), as outlined in Algorithm 1. In the iterative
optimization, K is initialized with zero first, and updated using steepest gradient
descent from the temporal convolution model. Then it is further updated using
the NL-TTV regularizer with accelerated step. In the accelerated step, instead
of alternating between the non-local TTV term and the temporal convolution
term once each iteration, we update the non-local TTV term fewer times than
updating the temporal convolution term, which has shown sufficient accuracy in
the experimental results.



Parallel Computing: The intrinsic nature of non-local TTV algorithm al-
lows for multi-threading and parallel computing on the multi-core clusters or
grids. We divide the entire brain volume into sub-volumes, with each of them
processed by one processor. The patch difference computation for every voxel i
and the weight calculation for all the voxels after selecting the top Nb neighbors
can be paralleled.

3 Experiments

Add noise Deconvolve 
Deconvolve 

Compare 

High-dose Simulated low-dose Reference CBF Map Estimated CBF 
Map 

Fig. 3. Simulation of low-dose CTP data from high-dose CTP data and the evaluation
framework

Experimental Setting: The goal of our proposed method is to accurately
estimate the hemodynamic parameters in low-dose CTP by robust deconvolution
(Fig. 3). Due to the ethical issues and potential health risk associated with
scanning the same subject twice under different radiation doses, we follow the
experimental setting in [9] to simulate low-dose CTP data at 15 mAs by adding
correlated Gaussian noise with standard deviation of σ = 25 [19]. Please note
that low-dose simulated is a widely adopted method CT algorithm evaluation
in the medical field [20, 21]. The deconvolution methods are evaluated on the
simulated low-dose CTP data. The quality of the CBF maps of all methods are
evaluated by comparing with the reference maps using peak signal-to-noise ratio
(PSNR). While PSNR may not be the best evaluation metric for the clinical
dataset, it is an objective reflection of the fidelity between the perfusion maps
of the low-dose and the normal dose data.

Our method is evaluated on a clinical dataset of 10 subjects admitted to
the Weill Cornell Medical College with mean age (range) of 53 (42-63) years
and four of them had brain deficits due to aneurysmal subarachnoid hemorrhage
(aSAH) or ischemic stroke, and the rest were normal. CTP images were collected
with a standard protocol using GE Lightspeed Pro-16 scanners (General Electric
Medical Systems, Milwaukee, WI) with cine 4i scanning mode and 60 second
acquisition at 1 rotation per second, 0.5 sec per sample, using 80 kVp and 190
mA. Four 5-mm-thick sections with pixel spacing of 0.43 mm between centers of



columns and rows were assessed at the level of the third ventricle and the basal
ganglia, yielding a spatio-temporal tensor of 512× 512× 4× 118 where there are
4 slices and 119 temporal samples. Approximately 45 mL of nonionic iodinated
contrast was administered intravenously at 5 mL/s using a power injector with
a 5 second delay.

Results: Fig. 4 shows the representative CBF maps of a subject with brain
deficits in the right hemisphere (upper panel) and a normal subject (lower panel).
For each subject, from left to right shows the reference map, the low-dose maps
of standard singular value decomposition (sSVD) [22], block-circulant singu-
lar value decomposition (bSVD) [23], Tikhonov[24], local tensor total variation
(TTV) [9], and our proposed non-local TTV (NL-TTV).
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Fig. 4. Results from a subject with right frontoparietal craniotomy due to ischemia in
the right anterior cerebral artery (RACA) and right middle cerebral artery (RMCA)
territories (upper panel), and a normal subject (lower panel). In each panel, the first
row is the entire CBF map and the second row is the closeup view of selected regions.

The entire brain image and the close-up views demonstrate significant im-
provement in the overall accuracy and preservation of the delicate anatomical



structures using the non-local TTV method for both the deficit and the normal
subjects. sSVD tends to severely over-estimate CBF, while SVD-based methods
also over-estimate perfusion parameters. TTV performs better than the SVD-
based methods in preserving the quantitative accuracy and the contrast reso-
lution between different tissue classes. However, TTV still over-estimates the
CBF value, and the capillaries in the close-up view are dilated due to the local
smoothing using the tensor total variation regularization. On the contrary, NL-
TTV overcomes both issues. The quantitative accuracy of the perfusion maps
improve significantly, and more noticeably, the small vessels and capillaries in
the brain are precisely preserved without dilation or rupture, as we can observe
in the local TTV results.

Quantitative results on the images of 10 subjects are shown in Fig. 5(a).
Our proposed method significantly outperforms all other comparison methods
(p < 0.05). The algorithm converges within 10 iterations (Fig. 5(b)).

The running time of the entire CTP data of one subject is around 30 min,
after our accelerated optimization. Since the algorithm is implemented in MAT-
LAB platform and run on a single PC desktop, grid or cluster computing is
expected to speed up the experiments.
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Fig. 5. (a) Boxplot of PSNR and SSIM for the 10 clinical subjects. The proposed NL-
TTV method significantly outperforms all other comparison methods (p < 0.05). (b)
Convergence curve of the cost function for NL-TTV algorithm.

4 Conclusion

In this paper, we proposed an efficient non-local tensor total variation method
for low-dose CT perfusion deconvolution. The long-range and global similari-
ties of the same tissue classes in the brain structure are leveraged to stabilize
the spatio-temporal residue functions. The overall quantitative accuracy is sig-
nificantly improved with the delicate anatomical structures such as capillaries



well preserved to assist clinical diagnosis. Fast optimization and implementation
schemes are presented to reduce the time complexity and computational cost. Ex-
tensive evaluations with comparison to the existing algorithms, including sSVD,
bSVD, Tikhonov and local TTV, demonstrate the superior performance of the
non-local TTV method in low-dose deconvolution and perfusion parameter esti-
mation.
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