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Abstract. Tensor total variation (TTV) regularized deconvolution has been pro-
posed for robust low radiation dose CT perfusion. In this paper, we extended TTV
algorithm with anisotropic regularization weighting for the temporal and spatial
dimension. We evaluated TTV algorithm on synthetic dataset for bolus delay,
uniform region variability and contrast preservation, and on clinical dataset for
reduced sampling rate with visual and quantitative comparison. The extensive
experiments demonstrated promising results of TTV compared to baseline and
state-of-art algorithms in low-dose and low sampling rate CTP deconvolution
with insensitivity to bolus delay. This work further demonstrates the effective-
ness and potential of TTV algorithm’s clinical usage for cerebrovascular diseases
with significantly reduced radiation exposure and improved patient safety.

1 Introduction

Cerebrovascular disease, or stroke, is the second leading cause of death worldwide after
cancer. CT perfusion (CTP) is one of the most widely used imaging modality for disease
diagnosis and assessment of treatment response in cerebrovascular diseases. However
the radiation exposure in CTP is has caused significant concerns in the community [1].

Numerous efforts have been proposed to reduce the necessary radiation dose to
meet the “as low as reasonably achievable” (ALARA) principle, including lowering
the radiation dose level, reducing the exposure time, using effective shielding for the
patients and increasing the distance between the body and the radiation source.

Recently, tensor total variation (TTV) regularization algorithm has been proposed
for robust low-dose CTP deconvolution [2] by reducing the tube current-exposure time
product measured in mAs, which varies linearly with the radiation dosage. TTV has
shown promising results in correcting the over-estimation of cerebral blood flow (CBF)
and under-estimation of mean transit time (MTT) at significantly reduced radiation level
(8%) compared to commercially available methods, such as standard singular value
decomposition (sSVD) [3], block-circulant singular value decomposition (bSVD) [4],
Tikhonov regularization (Tikh) [5], as well as the state-of-art learning-based method
sparse perfusion deconvolution (SPD) [6]. However, the robustness of TTV to bolus
delay, contrast preservation and low sampling rate has not been fully explored.

In this paper, we use both synthetic simulation and in-vivo clinical data to exten-
sively evaluate TTV algorithm in low-dose, low-sampling rate CTP data with bolus de-
lay. Block-circulant TTV algorithm shows encouraging performance in various tasks,



including contrast preservation, estimation at reduced sampling rate and robustness to
tracer arrival time in arterial input function. This work further demonstrates the effec-
tiveness and potential of TTV algorithm’s clinical usage in cerebrovascular diseases
with significantly reduced radiation exposure and improved patient safety.

2 Anisotropic Tensor Total Variation Regularized Deconvolution

TTV algorithm regularizes the convolution model with tensor total variation term to
reduce the oscillation and error in the recovered residue functions.

Let’s denote A ∈ RL×L as the block-circulant Teoplitz matrix of the zero-padded
arterial input function cart(t) ∈ RT×1, C ∈ RL×N as the zero-padded contrast con-
centration curves cvoi ∈ RT×1 in the region of interest (ROI) with N voxels, and
K ∈ RL×N as the flow-scaled residue impulse functions, where L ≥ 2T , and T is the
time length of the measured signal. ‖ · ‖TV is the total variation norm. To estimate K,
TTV algorithm optimizes

Kttv = argmin
K∈RT×N

(
1

2
‖AK − C‖22 + ‖K‖TV ) (1)

Here we use anisotropic weighting for the tensor total variation term, instead of iso-
tropic weighting in [2]. It is based on the assumption that the piecewise smooth residue
functions in CTP should have small total variation, and the smoothness in the temporal
and spatial dimensions should be different. The tensor total variation term is defined as

‖K‖TV =
∑
t,i,j,k

[
γt|K̃t+1,i,j,k − K̃t,i,j,k|+ γx|K̃t,i+1,j,k − K̃t,i,j,k|

+ γy|K̃t,i,j+1,k − K̃t,i,j,k|+ γz|K̃t,i,j,k+1 − K̃t,i,j,k|
] (2)

where K̃ ∈ RT×N1×N2×N3 is the 4-D volume obtained by reshaping matrix K based
on the spatial and temporal dimension. Here N = N1 × N2 × N3. The tensor to-
tal variation term here uses the forward finite difference operator using L1 norm. The
L1 norm here imposes sparsity in TV regularization term, which imposes smoothness
while preserving the edges. The regularization parameter γi, i = t, x, y, z controls the
regularization strength for the temporal and spatial dimension, and the larger the γi, the
more smoothing the TV term imposes on the residue function in ith dimension.

We propose an algorithm to efficiently solve the problem in Eq. 1 inspired by the
framework of [7], as described in Algorithm 1.

3 Experiments

3.1 Synthetic Evaluation

Because the clinical CTP does not have ground truth perfusion parameter values for
comparison, we first use synthetic data to evaluate the proposed algorithm, using the
synthetic experiment setup in [4].



Algorithm 1 The framework of TTV algorithm.
Input: Regularization parameters γi, i = t, x, y, z
Output: Flow-scaled residue functions K ∈ RT×N1×N2×N3 .
K0 = 0
t1 = r1 = K0

for n = 1, 2, . . . , N do
(1) Steepest gradient descent

Kg = rn + sn+1(AT (C −Arn))

where sn+1 = QTQ
(AQT )(AQ)

, Q ≡ AT (Arn − C)

(2) Proximal map:

Kn = proxγ(2‖K‖TV )(Kg)

where proxρ(g)(x) := argmin
u

{
g(u) + 1

2ρ
‖u− x‖2

}
(3) Update t, r

tn+1 = (1 +
√

1 + 4(tn)2)/2

rn+1 = Kn + ((tn − 1)/tn+1)(Kn −Kn−1)

end for

Bolus Delay In Arterial Input Function: Circular deconvolution has been used
to correct the delay effect using circular representation of cart and cvoi, but with lim-
ited improvement, as shown in Fig. 1, where the arterial input function is delayed by
5 s. bSVD and TTV use the block-circulant version of cart and cvoi, while sSVD and
Tikhonov use standard deconvolution. Though bSVD shows relatively improved perfor-
mance compared to sSVD and Tikh, the estimated CBF (the maximum value of residue
function) is still over-estimated to be around 30 mL/100g/min. On the other hand, TTV
is able to correct the bolus delay and estimate accurate residue function.

Uniform Region Variability: From the recovered residue function, perfusion pa-
rameters CBF and MTT can be estimated. We generate a small region containing 40×40
voxels with the same perfusion characteristics, and compute the mean and standard de-
viation of the perfusion parameters over this region.

1) The ideal variability of the uniform region should be zero. Fig. 2 shows the esti-
mated perfusion maps of the reference and four methods on the uniform region. While
the baseline methods behave poorly in recovering the smooth region, TTV results in uni-
form perfusion maps for all three parameters at PSNR = 15. SPD reduces the noise level
in estimating the three perfusion parameter maps compared to other baseline methods,
but the over-estimation in CBF and under-estimation in MTT could not be corrected
using SPD. In comparison, TTV not only decreases the noise standard deviation in the
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Fig. 1. (a) The delayed arterial input function with 5 s delay compared to tracer arrival at the
tissue. (b)-(f) The recovered residue functions by baseline methods and TTV. The parameters
used for residue function recovery are the simulation is CBV = 4 mL/100 g, CBF = 20 mL/100
g/min, PSNR=25.
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Fig. 2. Visual comparison in a uniform regions of perfusion parameter estimation using baseline
methods and TTV. The ideal variation is 0. The reference is the ground truth at CBV = 4 mL/100
g, CBF = 20 mL/100 g/min, MTT = 12 s, PSNR = 15.
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Fig. 3. Comparisons of reducing variations over homogeneous region of (a) CBF at different
CBF values with PSNR = 15. (b) MTT at different true MTT values with PSNR = 15. (c) CBF
at different PSNR values with true CBF = 20 mL/100 g/min. (d) MTT at different PSNR values
with true MTT = 12 s.



estimated perfusion maps, but also estimatess the accurate quantitative parameters for
CBF and MTT.

2) Quantitative comparison is shown in Fig. 3(a)-(b) (where CBF or MTT varies)
and Fig. 3 (c)-(d) (where PSNR varies). All figures show that TTV produces lower CBF
and MTT variations than the sSVD, bSVD and Tikhonov methods. SPD achieves lower
variation than TTV in MTT estimation at different true MTT values in Fig. 3(c), but the
mean estimated value of MTT in Fig. 2(b) shows under-estimation of MTT, compared
to the ground truth.

Reference

CBF

sSVD bSVD Tikhonov SPD TTV

 

 

0

50

100

MTT
 

 

0

5

10

15

(a) PCNR=1

Reference

CBF

sSVD bSVD Tikhonov SPD TTV

 

 

0

50

100

MTT
 

 

0

5

10

15

(b) PCNR=0.2

Fig. 4. Comparisons of CBF and MTT estimated by the different deconvolution algorithms in
preserving edges between two adjacent regions at PCNR=1 and 0.2. CBV is not shown because
it is uniform in the region. True CBF is 70 and 30 mL/100 g/min on the left and right halves of
the region. CBV is uniform in the region at 4 mL/100g. True MTT is 3.43 and 8 s on the left and
right halves. Temporal resolution is 1 sec and total duration of 60 sec.

Contrast preserving: Contrast is an important indicator of how well two neigh-
boring different regions can be distinguished. The contrast of perfusion parameters be-
tween the normal and abnormal tissue computed using the deconvolution algorithm
from the noisy data should be comparable to that of the noise-free CTP data. To com-
pare the performance of the baseline methods and TTV in preserving contrast, we
generate synthetic CTP data spatially containing two 40 × 20 uniform regions with
different perfusion characteristic. Peak contrast-to-noise ratio (PCNR) is defined as
PCNR = max |I1 − I2|/σ, where I1 and I2 are the perfusion parameter values of
then two images to be compared for contrast.



Fig. 4 shows the estimated CBF and MTT by the different algorithms when PCNR=1
and 0.2. The corresponding σ=40 and 200. While baseline methods sSVD, bSVD and
Tikhonov perform poorly at both PCNR levels, SPD and TTV yield improved CBF and
MTT maps with regard to the reference. When the PCNR = 1 and the noise level is
moderate, both SPD and TTV are capable of removing the noise and preserving the
contrast. However the spatial resolution at the boundary of two regions is smoothed
by SPD, compared to the clear-cut boundary using TTV. When the PCNR is as low as
0.2, the contrast to noise ratio is extremely low. sSVD, bSVD and Tikhonov generate
severely biased perfusion parameters. SPD reduces the noise level to certain extent, but
is unable to correct the estimation bias in CBF and MTT. TTV performs favorably com-
pared to all baseline methods in preserving the edges between two adjacent regions in
CBF and MTT, as well as accurate estimation of perfusion parameters.

3.2 Clinical Evaluations

Retrospective review of consecutive CTP exams performed on aneurysmal subarach-
noid hemorrhage patients enrolled in an IRB-approved and HIPAA-compliant clinical
trial from August 2007-Dec 2013 was used. Ten consecutive patients (9 women, 1 men)
admitted to the Weill Cornell Medical College, with mean age (range) of 54 (35-83)
years were included. 5 patients had brain deficits shown in the CTP images and the
other 5 patients had normal brain images.

Because repetitive scanning of the same patient under different radiation levels is
unethical, low-dose Perfusion maps are simulated from the high-dose 190 mAs by
adding correlated statistical noise [8] with standard deviation of σa = 25.54, which
yields PSNR=40. The maps calculated using bSVD from the 190 mAs high-dose CTP
data is regarded as the “gold standard” or reference images in clinical experiments.
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Fig. 5. Comparisons of RMSE and Lin’s CCC among the four methods. TTV results in significant
(P < 0.001) lower RMSE and higher Lins CCC compared with all the baseline methods.

Visual Comparison: At normal sampling rate of 1 s and reduced temporal sampling
rate of 2 s and 3 s, the errors of CBF estimation in the four baseline algorithms increase,
while TTV maintains accurate estimation for CBF value at all sampling rates.
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Fig. 6. The CBF maps with roomed ROI regions of a patient computed using different deconvo-
lution methods at sampling rate (SR) of 1 s, 2 s and 3 s with 15 mAs tube current. At normal
sampling rate 1 s, baseline methods over-estimate CBF values. At reduced sampling frequency
2 s, sSVD still over-estimate while bSVD, Tikhonov and SPD under-estimate CBF values. At
reduced sampling rate of 3 s, baseline algorithms under-estimate CBF values. At all sampling
rates, TTV accurately estimate the CBF values. (Color image)



Quantitative Comparison: Fig. 5 shows significant improvement in image fidelity
between the low-dose CBF maps and the high-dose CBF maps by using the TTV al-
gorithm compared to the baseline methods. On average, the root-mean-square-error
(RMSE) decreases by 40%, Lin’s CCC increases by 89% from the best performance
by using the baseline methods. The quantitative values are computed with the vascular
pixel elimination to exclude the influence of high blood flow values in the blood vessels.

3.3 Parameters

In the TTV algorithm, there is only a single type of tunable parameter: the TV regular-
ization weight. If the spatial and temporal regularization are treated equally, only one
weighting parameter γ needs to be determined. Fig. 7(a) show the RMSE at different γ
values. When γ < 103, RMSE does not change much. The optimal γ is between 10−4

to 10−3.
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Fig. 7. Performace in terms of root-mean-square-error (RMSE) for different parameters (a) γ and
(b) ratio γt/γs.

Since the temporal and the spatial dimensions of the residue impulse functions have
different scaling, regularization parameters for t and x, y, z should be different too. We
set the spatial γs = γx,y,z = 10−4 since the spatial dimensions have similar scaling, and
tune the ratio between the temporal weight γt and spatial weight γs. Fig. 7(b) shows
that when the ratio γt/γs < 10−4, the performance is stable. Compared to isotropic
TTV, anisotropic TTV with the ratio of spatial and temporal regularization weight set
to 10−4 output improved result from Fig. 7(b). Thus we set γt = 10−8 and γs = 10−4

for all experiments.

4 Conclusion

In this paper, we extended the tensor total variation regularized (TTV) deconvolution
algorithm with anisotropic regularization weighting for the temporal and spatial di-
mensions. We evaluated TTV algorithm for bolus delay, uniform region variability and



contrast preservation on synthetic dataset, as well as for reduced sampling rate with vi-
sual and quantitative comparison on clinical dataset. The extensive experiments demon-
strated the superiority of TTV compared to baseline and state-of-art algorithms in low-
dose and low-sampling-rate CTP deconvolution with insensitivity to tracer arrival time.
Future research include evaluation of TTV algorithm on larger-scale clinical datasets
with acute stroke and other cerebrovascular diseases.
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